
YOSHUA WUYTS ←

TASKS ARE THE WRONG

ABSTRACTION

� 2024�04�27
�� preface: concu�rent and parallel execution

�� tasks are the wrong abstraction for parallel async execution

�� tasks are the wrong abstraction for concu�rent async

execution

�� stealing and sending

�� sharded send bounds

�� parallel futures and send bounds

�� a vision for concu�rency and parallelism in �ust

�� conclusion

Okay, so you've probably read the title and are thinking: "Hey is this

clickbait?" - and no dear reader, it is not. I'm fairly convinced at this

point that tasks, as an abstraction, are not �ight for Rust and we

would do better to achieve parallel execution through composition.

However when it comes to task scheduling things seem less clear,

and I would like to have more data available. Because task

scheduling strategies dete�mine which APIs we can provide, and as

we're looking to standardize the async Rust ecosystem, this will

end up being impo�tant.

So okay, big claim - "Tasks are not the wrong abstraction". Tasks

are a staple in async Rust (and I should know), and task spawning

has been around pretty much since the beginning. However, two

relatively recent developments have made me sta�t to question

whether tasks themselves actually ca��y their weight, both for

single-threaded concu�rent workloads and parallel multi-threaded

workloads:

�� Both Bytedance's �TikTok's) monoio crate and the glommio
crate use a thread-per-core architecture and appear to scale

significantly better than Tokio's work-stealing architecture on

https://blog.yoshuawuyts.com/
https://blog.yoshuawuyts.com/
https://github.com/bytedance/monoio
https://github.com/bytedance/monoio
https://github.com/bytedance/monoio
https://github.com/bytedance/monoio
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md

networking benchmarks. This raises questions about tasks

as p�imitives for parallel async execution. (edit: I mean

"questions" literally here - these are interesting claims which

we should research more closely. We get into that more later

on in this post).

�� Single-threaded executors introduce 'static lifetimes, often

do not co�rectly propagate e�rors and cancellation, and in

recent testing have shown to pe�fo�m up to 2�3x worse than

their st�uctured counterpa�ts. We have alte�native APIs

available for concu�rency which do not have these issues.

This raises questions about tasks as p�imitives for

concu�rent async execution.

In this post I want to discuss task spawning for just concu�rent but

also parallel execution. I want to show some of the issues both of

these approaches �un into, show how we can do better, and talk

about what we need more data on. Finally I want to speculate a

little about where we could go with async parallelism and

concu�rency in Rust. But to save eve�yone some reading, here's

some code roughly summa�izing the first half of this post :

// concurrent execution of two futures today (structured)
let a = async { 1 }; // ← does nothing until .awaited
let b = async { 2 }; // ← does nothing until .awaited
let (a, b) = (a, b).join().await; // ← concurrent `.await`

// parallel execution of two futures today (unstructured)
let a = async_std::spawn(async { 1 }); // ← begins parallel execution when
let b = async_std::spawn(async { 2 }); // ← begins parallel execution when
let a = a.await; // ← await order does not affect exe
let b = b.await; // ← await order does not affect exe

// parallel execution of two futures as proposed (structured)
let a = async { 1 }.par(); // ← does nothing until .awaited
let b = async { 2 }.par(); // ← does nothing until .awaited
let (a, b) = (a, b).join().await; // ← parallel `.await`

PREFACE� CONCURRENT AND PARALLEL

EXECUTION

Note �2024�04�27�� this section was added after repeated

questions about the difference between parallelism and

1

https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/smol-rs/futures-lite/issues/93#issuecomment-2007937805
https://github.com/smol-rs/futures-lite/issues/93#issuecomment-2007937805

concu�rency.

In order to make sense of this post, it's impo�tant to understand the

differences between parallelism and concu�rency, as well as

parallel execution and concu�rent execution. These are related but

distinct te�ms, and it can take some time to inte�nalize. My favo�ite

definition of the differences between these comes from Aaron

Turon's PhD thesis:

Concu�rency is a system-st�uctu�ing mechanism,

parallelism is a resource.

Put concretely: "concu�rency" refers to the way we schedule work.

While "parallelism" refers to e.g. the amount of cores a computer

has. If we want to pe�fo�m parallel execution of work, we have to

schedule work concu�rently using the system's resources for

parallelism. We can plot the relationship of parallelism and

concu�rency in a 2x2 table:

no parallelism has parallelism

sequential
scheduling

sequential
execution

sequential
execution

concu�rent
scheduling

concu�rent
execution

parallel execution

This table is probably going to surp�ise some folks. What we're

seeing here is that even if we use multiple threads, it's still possible

to achieve sequential execution. How can that be? Well dear

reader, imagine some exclusive resource shared between N

threads. In order for any thread to make progress they must take

an exclusive lock out on that resource. That would ce�tainly make

use of multiple threads; but execution would be entirely sequential

- only one thread can make progress at any given moment. In order

to achieve parallel execution it's not enough to just make use of

parallelism; we also have to schedule concu�rently.

Conversely it's also possible to schedule work concu�rently despite

not having access to any parallelism. An example of this is for

example: race two timers with each other. We're waiting on both at

the same time, despite not having multiple threads. This is an

example of concu�rent execution without any access to resources

for parallelism.

http://aturon.github.io/academic/turon-thesis.pdf
http://aturon.github.io/academic/turon-thesis.pdf
http://aturon.github.io/academic/turon-thesis.pdf
http://aturon.github.io/academic/turon-thesis.pdf

TASKS ARE THE WRONG ABSTRACTION

FOR PARALLEL ASYNC EXECUTION

Cq. 2019 I helped popula�ize the reasoning that: "Tasks should

function like the async/.await equivalent of threads". Among

other things that meant that in the runtime crate and

subsequently async-std we made sure that tasks always

retu�ned JoinHandle s, and that those handles could be awaited

to obtain values. P�ior to that it was common to manually create

async one-shot channels to obtain values from tasks (src):

//! What using tasks was like cq. December 2018

use std::thread;
use futures::{executor, channel::oneshot};

fn main() {
let mut handles = vec![];

for _ in 0..10 {
let (sender, receiver) = oneshot::channel();

 handles.push(receiver);
 juliex::spawn(async move {

let id = thread::current().id();
 sender.send(id);
 })
 }

for handler in handles {
let id = handler.await; // this was actually `await!` then.

 println!("handler returned from thread: {id:?}");
 }
}

That rationale that "tasks are like async threads" has stuck around,

and I think it is wrong. See, concu�rency and parallelism in async

Rust are different than in non-async Rust. The Thread abstraction

packages both concu�rency and parallelism into a single

abstraction. Whereas in async Rust the two can be decoupled: we

can execute any number of futures concu�rently, and we don't need

to also make us of parallelism for it. Let's walk through some

2

https://docs.rs/juliex/0.3.0-alpha.8/juliex/fn.spawn.html
https://docs.rs/juliex/0.3.0-alpha.8/juliex/fn.spawn.html

examples, sta�ting with parallel execution using unst�uctured

thread handles:

use std::thread;

let mut handles = vec![];
handles.push(thread::spawn(|| {

1 // ← the result of some computation
}));
handles.push(thread::spawn(|| {

2 // ← the result of another computation
}));

let output = handles.into_iter().map(|h| h.join().unwrap()).
assert_eq!(output, 3);

Rust does not provide us with a way to say that no, we don't

actually want to leverage parallelism here - we just want

concu�rency. That's why thread::spawn always takes a + Send
bound on the closure. In async Rust however, we can just choose

to execute work concu�rently via the Join family of APIs. Here's

an example using futures-concurrency :

use futures_concurrency::prelude::*;

let mut handles = vec![];
handles.push(async {

1 // ← the result of some computation
}));
handles.push(async {

2 // ← the result of another computation
}));

let output = handles.join().await.into_iter().sum();
assert_eq!(output, 3);

St�ucturally this is ve�y similar to the unst�uctured threads

example; however because futures are lazy and automatically

propagate cancellation, they can be considered st�uctured .

Though typically we'd probably w�ite this example like this instead:

use futures_concurrency::prelude::*;

3

let a = async { 1 };
let b = async { 2 };

let output = (a, b).join().await.into_iter().sum(); // ← executes futures co
assert_eq!(output, 3);

Now what about parallelism? Well, the point I'm t�ying to make is

that we can achieve parallel execution through composition rather

than defining new APIs. It's common practice today to reso�t to

task::spawn APIs for this, mi�ro�ing the thread::spawn APIs:

use async_std::task;

let mut handles = vec![];
handles.push(task::spawn(async {

1 // ← the result of some computation
}));
handles.push(task::spawn(async {

2 // ← the result of another computation
}));

let output = handles.into_iter().map(|h| h.await).sum();
assert_eq!(output, 3);

There's a pretty noticeable difference between the previous two

examples: one family of async APIs for concu�rency, and another

family of APIs for both concu�rency and parallelism. My pitch here

is different: I believe the �ight way to achieve parallel execution is

through composition. What we need is not another way to schedule

async work; what we need is a way to define a parallelizable future.

And that's something I've prototyped in my tasky *crate:

use futures_concurrency::prelude::*;
use tasky::prelude::*;

let a = async { 1 }.par(); // ← added `.par` to create a `ParallelFuture`
let b = async { 2 }.par(); // ← added `.par` to create a `ParallelFuture`

let output = (a, b).join().await.into_iter().sum(); // ← executes two future
assert_eq!(output, 3);

https://docs.rs/tasky
https://docs.rs/tasky
https://docs.rs/tasky
https://docs.rs/tasky

This approach makes it so we have one way of scheduling

concu�rent execution, and resources themselves are responsible

for deciding whether they should be parallelizable or not. Again:

async Rust allows us to decouple parallelism from concu�rency in

ways not possible in non-async Rust; and so we should design

our APIs in ways which leverage that decoupling.

With ParallelizableFuture work doesn't sta�t until it is first

.await ed. This makes it behave just like any other future. Unlike

task handles you can't just fire and forget it; you have to be actively

.await ing it to make fo�ward progress. That means a value is

always retu�ned, and cancellation will always propagate. And once

we have async dest�uctors, those should be able to naturally

propagate through the .await points too. This is an API which

should be familiar to use, but hard to misuse. It's setting people up

for success when it comes to things like propagating cancellation

and lea�ning about async concu�rency.

TASKS ARE THE WRONG ABSTRACTION

FOR CONCURRENT ASYNC EXECUTION

This point is probably easier to argue than the previous one: using

spawn APIs for just concu�rency without also leveraging

parallelism is generally not a great expe�ience. Consider the

following example, using task::spawn_local :

use async_std::task;

let mut handles = vec![];
handles.push(task::spawn_local(async {

1 // ← the result of some computation
}));
handles.push(task::spawn_local(async {

2 // ← the result of another computation
}));

let output = handles.into_iter().map(|h| h.await).sum();
assert_eq!(output, 3);

This now does the exact same thing as our earlier Join example,

except it needs to allocate space on the heap to store each

individual future. That's a flat pe�fo�mance tax each task needs to

pay; and in this case we've already shown it's avoidable in ever

scena�io. But that's just pe�fo�mance; there are additional

rest�ictions with regards to ergonomics. The signature of

spawn_local is as follows:

pub fn spawn_local<F, T>(future: F) -> JoinHandle<T>
where
 F: Future<Output = T> + 'static,
 T: 'static,

The 'static lifetime ensures that the future cannot contain any

bo�rows, and resolving it takes a lot of effo�t because it isn't natural

to the language. An example of this is the moro crate, which

provides an API for "scoped single-threaded tasks" via an

async_scope! macro. The macro is necessa�y because the

lifetimes required for this cu�rently can't be expressed in the

language. Here is an adaptation of the thread::scope example

conve�ted to use moro :

let mut container = vec![1, 2, 3];
let mut num = 0;

moro::async_scope!(|s| {
 s.spawn(async {
 println!("hello from the first scoped thread");
 dbg!(&container);
 });
 s.spawn(async {
 println!("hello from the second scoped thread");
 num += container[0] + container[2];
 });
 println!("hello from the main thread");
}).await;

container.push(4);
assert_eq!(num, container.len());

Let's rew�ite this using the futures-concurrency , which doesn't

rely on tasks, doesn't enforce 'static lifetimes, and so in tu�n can

freely express what is being expressed here:

https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/thread/fn.scope.html
https://doc.rust-lang.org/std/thread/fn.scope.html

use futures_concurrency::prelude::*;

let mut container = vec![1, 2, 3];
let mut num = 0;

let a = async {
 println!("hello from the first future");
 dbg!(&container);
};

let b = async {
 println!("hello from the second future");
 num += container[0] + container[2];
};

println!("hello from the main future");
let _ = (a, b).join().await;
container.push(4);
assert_eq!(num, container.len());

There are more complex cases possible where we have

dynamically updating sets of futures or streams we want to append

to, which we want to manage as a group. Getting into that here

would mean we'd �un long, but for an example of the problem I'd

like to point to Niko's mini-redis post, and for an example of how to

solve this without tasks or select! , see the second example of

the StreamGroup type.

I realize that by this point we've veered pretty far off the o�iginal

point of this section. But it's pretty t�ivial it probably bears

repeating: Tasks with their 'static bounds and pe�fo�mance

overhead seem like a poor fit when used solely for concu�rency.

And while crates like moro can help overcome some of those

challenges, they don't do it fully and don't appear to provide

additional expressivity.

STEALING AND SENDING

Baked into Rust's async design is the assumption that work-

stealing schedulers represent the pinnacle of pe�fo�mance, and

therefor it for example makes sense that Waker must always be

Send . Work-stealing allows threads to "steal" work from other

https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://smallcultfollowing.com/babysteps/blog/2022/06/13/async-cancellation-a-case-study-of-pub-sub-in-mini-redis/
https://docs.rs/futures-concurrency/7.6.0/futures_concurrency/stream/stream_group/struct.StreamGroup.html#example
https://docs.rs/futures-concurrency/7.6.0/futures_concurrency/stream/stream_group/struct.StreamGroup.html#example
https://docs.rs/futures-concurrency/7.6.0/futures_concurrency/stream/stream_group/struct.StreamGroup.html#example
https://docs.rs/futures-concurrency/7.6.0/futures_concurrency/stream/stream_group/struct.StreamGroup.html#example

threads when they're idle. In case one thread has a lot of work

scheduled, and another thread is free, this is supposed to enable

lower latencies and more throughput.

This not without downsides though: in order to facilitate this, it

requires that eve�y future contained within a task is Send . The

premise of work-stealing is that the pe�fo�mance gains it

provides are more than the pe�fo�mance penalties we incur from

requi�ing all futures are Send . Because making futures Send not

only ca��ies a degree of complexity for the language, it also comes

with inherent pe�fo�mance penalties because it requires

synchronization. You know how you can't use Rc with

async/.await - that's a direct a�tifact of work-stealing designs.

The Glommio and Monoio �untimes put this premise into question.

Neither of them provide a work-stealing �untime, prefe��ing to use

a "thread-per-core" design instead. But by doing this, they do not

require to use additional synchronization p�imitives, and seem to

pe�fo�m better on networked benchmarks than work-stealing

�untimes. Monoio claims 2x the throughput of Tokio with 4 cores,

and 3x the throughput of Tokio with 16 cores. This is possible

because of their thread-per-core design, but likely also usage of

io_uring . I believe we should get updated numbers on this, at

least compa�ing Monoio to the tokio-uring project.

SHARDED SEND BOUNDS

Tmand�y raised an interesting idea a while back: using Rc and

other !Send types inside of Send futures should fine, as long as

we can guarantee that all references are moved together as a

group. Over in Swift conversations have recently begun about a

feature called Region Based Isolation, desc�ibing a ve�y similar idea

based on the ideas from: "A Flexible Type System for Fearless

Concu�rency" from PLDI 2022. The Swift SE desc�ibes it as follows:

Through the usage of isolation regions, the language can

prove that transfe��ing a non-Sendable value over an

isolation bounda�y cannot result in races because the

value (and any other value that might reference it) is not

used in the caller after the point of transfer.

Translating this to Rust, I believe it would allow us to do the

following:

https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/bytedance/monoio/blob/085bafcec6f718370c75c5e7a78423c8b090911e/docs/en/benchmark.md
https://github.com/gottesmm/swift-evolution/blob/4576ac1a0ff8112e69e56bda5fbbc2bd83ea76cc/proposals/0414-region-based-isolation.md
https://github.com/gottesmm/swift-evolution/blob/4576ac1a0ff8112e69e56bda5fbbc2bd83ea76cc/proposals/0414-region-based-isolation.md
https://www.cs.cornell.edu/andru/papers/gallifrey-types/
https://www.cs.cornell.edu/andru/papers/gallifrey-types/
https://www.cs.cornell.edu/andru/papers/gallifrey-types/
https://www.cs.cornell.edu/andru/papers/gallifrey-types/

let rc = Rc::new(12usize); // ← `!Send` type
task::spawn(async move { // ← crossing a `Send` boundary
 dbg!(rc); // ← all references moved: compiler says OK
}).await;

It makes sense that this is all fine: all references to Rc are moved

to a new thread, so that's not an issue. But I don't know whether

this can hold for all !Send types. I don't think it would be, because

occasionally threads will be "special" and so moving a !Send type

to another thread even with all references might end up with

trouble. This likely would require an additional modifier to Send ,

integrated through the libra�ies and possibly language. It's an

interesting idea that needs more research before we can consider

it viable, but I wanted to make sure to mention it because it does

hold promise.

PARALLEL FUTURES AND SEND BOUNDS

Both Monoio and Glommio provide a local executor as pa�t of their

API. Earlier on in this post I've explained why "local executors" are

not a great abstraction. That's why for wasi-async-runtime ,

which also features a single-threaded �untime, I've chosen not to

provide a spawn API at all. Instead people are encouraged to use

libra�ies such as futures-concurrency instead.

However, even if work-stealing might not ca��y its weight in Rust

�ight now, I think we might still be able to provide a spawn API.

That could potentially even make thread-per-core architectures

nicer to express in ce�tain cases where we want an async fn
main . The choice of whether we believe work-stealing ca��ies its

weight will end up deciding what the �ight API will be to go with.

The task::spawn API for both Tokio and async-std is quite similar

and looks something like this:

pub fn spawn<F, T>(future: F) -> JoinHandle<T>
where
 F: Future<Output = T> + Send + 'static,
 T: Send + 'static,

https://blog.yoshuawuyts.com/building-an-async-runtime-for-wasi/
https://blog.yoshuawuyts.com/building-an-async-runtime-for-wasi/
https://blog.yoshuawuyts.com/building-an-async-runtime-for-wasi/

It takes a Future , and that Future must be Send . Easy, �ight?

Now what if we compare that with the signature of

thread::spawn , which looks like this:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where
 F: FnOnce() -> T + Send + 'static,
 T: Send + 'static,

Here we don't have a future, but instead we have a closure. The

closure itself is Send , and the value T is Send . At a glance this

might look equivalent to the task::spawn APIs, but it's not. This

becomes clearer if we encode the o�iginal API not as taking

Future , but instead as taking IntoFuture :

pub fn spawn<F, T>(into_future: F) -> JoinHandle<T>
where
 F: IntoFuture<Output = T> + Send + 'static,
 <F as IntoFuture>:IntoFuture: Send + 'static,
 T: Send + 'static,

Not only is the thing we pass into the other thread Send ; because

we want to allow the ongoing computation itself to be movable

between threads the future itself must also be Send .

thread::spawn can use !Send types freely because once the

computation has sta�ted, it will not be moved. If we wanted to

encode that, we could do that by changing it to the following

signature:

pub fn spawn<F, T>(into_future: F) -> JoinHandle<T>
where
 F: IntoFuture<Output = T> + Send + 'static,
 T: Send + 'static,

// `F:IntoFuture` is no longer required to be `Send` here

Whether task::spawn should take Send bounds is a decision

we're going to have to make if we want to encode a standardized

spawn API in the stdlib. It's not necessa�ily zero-sum though; we

could probably encode both. But so far evidence seems to indicate

that if we want maximum pe�fo�mance thread-per-core is a better

approach; while if we want maximum convenience enabling !Send
types to work inside of parallelizable futures may actually be

simpler to use. More data here would ce�tainly be helpful.

A VISION FOR CONCURRENCY AND

PARALLELISM IN RUST

So far I've asked a number of questions, and probably obse�ved a

little too much. I imagine the average async Rust user will be

somewhere between confusion and morbid cu�iosity of where I'm

going with all of this. I want to put a rough sketch fo�ward of where

I, Yosh, would like concu�rency and parallelism in Rust to eventually

get to. I believe we could get pretty far if we made concu�rency

and parallelism first-class concepts in Rust via two new keywords,

which we'll call par and co .

Take the venerable Rayon ParallelIterator trait. It allows us to

iterate over items in parallel rather than in sequence. While it works

great using combinator APIs; it does not allow us to use for -loops

the way we'd expect. What if we could do that by introducing for
par..in loops:

fn square(input: impl Iterator<Item = i32>) -> impl Iterator<Item =
 gen move { // ← current unstable `gen` block notation

for par num in input { // ← parallel iteration syntax (hypothetical)
yield num * num;

 }
 }
}

The body of the loop here would be roughly equivalent to Rayon's

ParallelIterator::for_each - with the exception that it

doesn't just loop but retu�ns an iterator. In async Rust we don't yet

have async iteration, but we're cu�rently looking at something like

this:

fn square(input: impl async Iterator<Item = i32>) -> impl async Iterator<Ite
 async gen move { // ← current unstable `async gen` block no

for await num in input { // ← sequential async iteration syntax (li
yield num * num;

 }
 }
}

This is all unstable and unconfi�med, but it seems likely things will

end up along these lines. The least ce�tain pa�t is the exact shapes

and names of traits, but that's not the impo�tant bit here. Now as

we've said we can decouple concu�rency and parallelism in async

Rust. So what would a concu�rent version of this loop look like?

Well, one of the main benefits of async Rust is that we can �un

things concu�rently - so what if we made that a first-class pa�t of

the language? That's what a hypothetical co keyword could be for:

fn square(input: impl async Iterator<Item = i32>) -> impl async Iterator<Ite
 async gen move {

for co await num in input { // ← concurrent async iteration syntax
yield num * num;

 }
 }
}

Whether we'd spell this co.await , co_await or co await
doesn't pa�ticularly matter. Making concu�rency easier to leverage

seems like a nice thing. In te�ms of implementation we could

leverage my recent work on ConcurrentStream for this. If we

then wanted to extend this to parallelism too, we could instead use

par await :

fn square(input: impl async Iterator<Item = i32>) -> impl async Iterator<Ite
 async gen move {

for par await num in input { // ← parallel async iteration syntax (
yield num * num;

 }
 }
}

This doesn't just need to stop at iterators either; we could integrate

this into futures and async/.await too. Not too different from

how Swift's async let notation works. Remember our earlier

example using futures-concurrency to evaluate futures

concu�rently?

https://github.com/yoshuawuyts/futures-concurrency/releases/tag/v7.6.0
https://github.com/yoshuawuyts/futures-concurrency/releases/tag/v7.6.0
https://github.com/yoshuawuyts/futures-concurrency/releases/tag/v7.6.0

use futures_concurrency::prelude::*;

let a = async { 1 };
let b = async { 2 };

let output = (a, b).join().await.into_iter().sum(); // ← executes futures co
assert_eq!(output, 3);

It would be nice if the compiler could pe�fo�m control-flow analysis

directly, and for automatically schedule concu�rent execution of

futures where pe�mitted, as long as they were called with

.co.await :

let a = async { 1 }.co.await; // ← concurrent await syntax (hypothetical)
let b = async { 2 }.co.await; // ← concurrent await syntax (hypothetical)
assert_eq!(a + b, 3);

And what about parallelism? Well, we should also be able to

compose .par with .await to achieve parallel async execution:

let a = async { 1 }.par.await; // ← parallel await syntax (hypothetical)
let b = async { 2 }.par.await; // ← parallel await syntax (hypothetical)
assert_eq!(a + b, 3);

One of the main appeals of representing async operations as types

is that we can then arbitra�ily combine them with other futures to

achieve concu�rent execution. Neither future here needs to be

'static to work with par , and bo�rows should just work as

expected. If we are able to bake concu�rent and parallel execution

directly into the language, we no longer have to represent the

computation as a type. By making .par a modifier to .await ,

parallel futures would not be represented in the type system and

we would be able to solve the scoped parallel async execution

problem directly from the language.

Oh and the other nice bonus of this: it would work pe�fectly with

#[maybe(async)] function bodies, as we can always fall back

from concu�rent semantics in async contexts to sequential

semantics in non-async contexts. There is probably also something

https://blog.yoshuawuyts.com/extending-rusts-effect-system/
https://blog.yoshuawuyts.com/extending-rusts-effect-system/
https://blog.yoshuawuyts.com/extending-rusts-effect-system/
https://blog.yoshuawuyts.com/extending-rusts-effect-system/

interesting to be said about bare par {} blocks and scoped

threads, but that's out of scope (૮Ұ ˶• ܝ •˶ұა) for now.

CONCLUSION

In this post we've jumped around a fair bit. You would be forgiven

for having some trouble following all threads and ideas. But let me

t�y and summa�ize the arguments I've attempted to make:

�� Tasks are a poor fit for non-parallel concu�rent execution.

They come with additional pe�fo�mance overhead and impose

'static lifetime rest�ictions, creating knock-on problems.

�� Tasks are a poor fit for parallel concu�rent execution. They

are presently designed to function as "async/.await" versions

of threads. And as a result combine both concu�rency and

parallelism into a single API. Instead we would do better to

provide a ParallelFuture type which provides parallel

execution through composition with concu�rency p�imitives.

�� The success of the Monoio and Glommio �untimes are

putting into question whether work-stealing executors are

the �ight fit. They show significant pe�fo�mance

improvements over work-stealing by leveraging a thread-per-

core architecture. We need more data to understand the

differences before we can make decisions.

�� Deciding between thread-per-core and work-stealing

executors has ramifications for what spawn APIs should

look like. Work-stealing executors can't capture !Send types,

while non-work-stealing executors can operate on !Send
types.

�� There might be benefits to elevating concu�rency and

parallelism p�imitives from the libra�ies into the language.

Fast, safe, concu�rent execution is Rust's flagship feature, and

making that more accessible would likely pay dividends. This

would also provide an alte�native way of expressing "scoped

tasks".

I hope that if you take anything away from this post it's some of the

ground t�uths of async Rust may be less set in stone than you

expected them to be. There definitely appear to be tradeoffs

between the va�ious task scheduling approaches and designs, and

I don't think we should just assume that work-stealing is the better

approach. What we really need is a better understanding of the

tradeoffs involved, and for that we're going to need data. Deciding

without measu�ing is not going to work.

Oh also: we cannot provide standardized async APIs for

parallelism without first stabilizing async dest�uctors. I find

myself repeating this so often I feel like a walking meme at this

point. Without async dest�uctors so much of async Rust is broken,

and we cannot stabilize inte�faces before we know how async

dest�uctors will interact with them. Async parallelism specifically is

also extra-broken. Async Rust is the flagship feature of p�io�ity for

Rust as a language, and async closures + async dest�uctors is

where we should be spending our time as they're fundamental

building blocks.

And on a closing note: I just want to put out there that we should

dare to dream beyond the mere ossification of the status quo.

Better things are possible, as long as we take care of each other

and are willing to put in the work. I regularly tell myself this; and

now I'm it to you too.

NOTES

1. Note that the third example here says: "st�uctured". What I

actually mean is: as st�uctured as is possible when working within

the cu�rent limitations of the language. But this API would be

entirely st�uctured if we didn't have those limitations.←

2. Romio and Juliex were the reactor and executor Boats and I

worked on between 2018�2019. It's a pretty good snapshot of what

the state of the a�t of APIs looked like back then.←

3. I've gone into details about the limitations of st�uctured

concu�rency in Rust today in other posts. TLDR� we need an async

version of Drop to actually solve all cases.←

REFERENCES

▸ View all references

https://blog.yoshuawuyts.com/tree-structured-concurrency/
https://blog.yoshuawuyts.com/tree-structured-concurrency/
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/#footnote-reference-0
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/#footnote-reference-0
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/#footnote-reference-1
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/#footnote-reference-1
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/#footnote-reference-2
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/#footnote-reference-2

