
YOSHUA WUYTS ←

BRIDGING FUZZING AND

PROPERTY TESTING

� 2023�07�10
�� fuzzing vs prope�ty testing

�� st�uctured inputs

�� heckcheck: prope�ty testing using arbitra�y

�� automated testing strategies

�� conclusion

It's been over three years since Fitzgen published: "Announcing

Better Suppo�t for Fuzzing with St�uctured Inputs in Rust", and a

little over two years since arbitra�y 1.0 was released. A few years

agoI wrote a prope�ty-testing crate based on arbitrary , but

never ended up w�iting about it. So I wanted to take a moment to

change that. We'll sta�t by taking a look at automated testing, then

cover the different approaches to it, explain how to work with

st�uctured inputs, and finally introduce heckcheck - a small

prope�ty-testing libra�y.

Update 2023�07�18� I recently lea�ned about a different crate

using a similar approach to mine: proptest-arbitra�y-interop. The

proptest crate is more mature than my heckcheck project, so if

you're conside�ing adopting the techniques desc�ibed in this post -

please check out the proptest interop crate too.

FUZZING VS PROPERTY TESTING

Both fuzzing and prope�ty testing are ways of automatically testing

code. Where unit tests typically test some expected set of

behavior, automated test have the ability to be more �igorous and

exhaustive - making them far more likely to weed out bugs -

especially those you didn't even conceive of. Fuzzing and prope�ty

testing have a lot in common with each other. Where they tend to

https://blog.yoshuawuyts.com/
https://blog.yoshuawuyts.com/
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://docs.rs/arbitrary/latest/arbitrary/
https://docs.rs/arbitrary/latest/arbitrary/
https://docs.rs/heckcheck/latest/heckcheck/
https://docs.rs/heckcheck/latest/heckcheck/
https://crates.io/crates/proptest-arbitrary-interop
https://crates.io/crates/proptest-arbitrary-interop
https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Property_testing
https://en.wikipedia.org/wiki/Property_testing

differ is how tests are d�iven.

With fuzzing you typically use some exte�nal agent to test your

program. Fuzzers usually have the ability to inst�ument the code

under test, and make use of tools such as sanitizers to check

whether inva�iants are violated. Fuzzers will also keep track of

which input leads to which branches being hit in code, tailor their

input to cover as many branches as possible. This process can take

time, and is why it often pays off to �un fuzzers for extended

pe�iods of time or even continuously. In Rust suppo�t for fuzzing is

provided via the cargo-fuzz extension.

Prope�ty testing typically works the other way around: prope�ty

testing is typically done by including a libra�y in your test code

which allows you to d�ive the tests yourself. Rather than looking for

crashes or sanitizer failures the emphasis is more on checking your

implementation using a strategy - more on those in a later section.

While fuzzing tends to be more thorough, prope�ty testing tends to

be faster to execute. Depending on what you're testing it's not

uncommon to integrate prope�ty tests in your CI test suite - and

�un them eve�y time you make a change. If you're w�iting unsafe

Rust you can even combine prope�ty tests with mi�i to validate with

more confidence whether the �untime behavior of your program

matches Rust's operational semantics.

The final piece of both prope�ty testing and fuzzing is that they

pe�fo�m something called test case sh�inking when they're done.

When they encounter a failing test, what they'll do is t�y and

simplify the input to the bare minimum to isolate the issue as much

as possible. Once simplified it tends to be much easier to

understand, and in tu�n can become easier to conve�t into unit

tests.

There's a lot more to say about automated testing - including how

to use it to mess with the orde�ing of concu�rency p�imitives, or to

intentionally mess with the network. But roughly speaking that

should all just be a matter of wi�ing up d�ivers up to the same

source of entropy coming from the automated testing d�ivers.

STRUCTURED INPUTS

In Fitzgen's post he shows how it's possible to combine fuzing with

st�uctured inputs using arbitrary crate. The way a fuzzer

https://en.wikipedia.org/wiki/Code_sanitizer#Other_sanitizers
https://en.wikipedia.org/wiki/Code_sanitizer#Other_sanitizers
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/datrs/memory-pager/blob/25c24144076ec6df46d0632c9e667df9582769c6/tests/regression.rs
https://github.com/datrs/memory-pager/blob/25c24144076ec6df46d0632c9e667df9582769c6/tests/regression.rs
https://github.com/datrs/memory-pager/blob/25c24144076ec6df46d0632c9e667df9582769c6/tests/regression.rs
https://github.com/datrs/memory-pager/blob/25c24144076ec6df46d0632c9e667df9582769c6/tests/regression.rs
https://docs.rs/loom/latest/loom/
https://docs.rs/loom/latest/loom/
https://docs.rs/turmoil/latest/turmoil/
https://docs.rs/turmoil/latest/turmoil/
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html
https://fitzgeraldnick.com/2020/01/16/better-support-for-fuzzing-structured-inputs-in-rust.html

typically works is that it generates random data which is passed to

a program over some channel. Sometimes this data is generated

from some corpus of data to t�y and weave in phrases we know the

program might be looking for - such as HTTP/1.1 or GET for an

HTTP parser. But with arbitrary this randomness can be more

clearly channeled: it can take the arbitra�y stream of data, and use

it to create st�uctured types.

Pa�t of the reason why Fitzgen did this work was to fuzz WASM

programs. In "W�iting a Test Case Generator for a Programming

Language" he desc�ibes how using cargo fuzz and arbitrary
he's able to generate endless amounts of new, valid WASM

programs to pass to be used to test all so�ts of WASM-related

tools. This allows far more code to be exercised than solely using a

corpus-based approach ever could.

To show an example of what it looks like to use cargo-fuzz, we can

re-use the RGB parser/encoder example from Fitzgen's blog - but

with the actual methods implemented. We sta�t by defining a st�uct

which takes red, green, and blue values:

use arbitrary::Arbitrary;

/// A color value encoded as Red-Green-Blue
#[derive(Arbitrary, Debug, PartialEq, Eq)]
pub struct Rgb {

r: u8,
g: u8,
b: u8,

}

impl Rgb {
/// Convert from RGB to Hexadecimal.
pub fn to_hex(&self) -> String {

 format!("#{:02X}{:02X}{:02X}", self.r, self.g, self
 }

/// Convert from Hexadecimal to RGB.
pub fn from_hex(s: String) -> Self {

let s = s.strip_prefix('#').unwrap();
 Rgb {
 r: u8::from_str_radix(&s[0..2], 16).unwrap(),
 g: u8::from_str_radix(&s[2..4], 16).unwrap(),
 b: u8::from_str_radix(&s[4..6], 16).unwrap(),
 }

https://fitzgeraldnick.com/2020/08/24/writing-a-test-case-generator.html
https://fitzgeraldnick.com/2020/08/24/writing-a-test-case-generator.html
https://fitzgeraldnick.com/2020/08/24/writing-a-test-case-generator.html
https://fitzgeraldnick.com/2020/08/24/writing-a-test-case-generator.html
https://fitzgeraldnick.com/2020/08/24/writing-a-test-case-generator.html
https://fitzgeraldnick.com/2020/08/24/writing-a-test-case-generator.html
https://github.com/bytecodealliance
https://github.com/bytecodealliance
https://github.com/bytecodealliance
https://github.com/bytecodealliance

 }
}

We can expose this to cargo-fuzz to pe�fo�m a roundt�ip-test by

creating a new file containing the following:

// The fuzz target takes a well-formed `Rgb` as input!
libfuzzer_sys::fuzz_target!(|rgb: Rgb| {

let hsl = rgb.to_hsl();
let rgb2 = hsl.to_rgb();

// RGB -> HSL -> RGB is the identity function. This
// property should hold true for all RGB colors!

 assert_eq!(rgb, rgb2);
});

We can then execute it using cargo fuzz by �unning:

$ cargo fuzz run my_test

HECKCHECK� PROPERTY TESTING USING

ARBITRARY

As we've covered the arbitrary crate works great when fuzzing.

And because fuzzing and prope�ty testing are ve�y similar, you'd

assume that it should be possible to use arbitrary for prope�ty-

based tests too �ight? I couldn't find a crate which did this, so I

ended up w�iting one! Enter heckcheck, a really small prope�ty-

testing libra�y. If we take our earlier RGB example and adapt it to

use heckcheck, it will look something like this:

/// Validate values can be converted from RGB to Hex and back.
#[test]
fn rgb_roundtrip() {
 heckcheck::check(|rgb: Rgb| {

let hex = rgb.to_hex();
let res = Rgb::from_hex(hex);

 assert_eq!(rgb, res);
 Ok(())

https://docs.rs/heckcheck/latest/heckcheck/
https://docs.rs/heckcheck/latest/heckcheck/

 });
}

And that's all we had to do. To test the code we just �un cargo
test as usual:

$ cargo test

The same code we would've w�itten to interact with a fuzzer can

now be used for prope�ty testing too. As I've said earlier: both

fuzzing and prope�ty testing have more in common than not. The

difference here compared to using a fuzzer is that this can be �un

as pa�t of CI without a problem, executes really quickly, and is

entirely po�table. Fuzzers need to be installed on the system first,

typically execute more slowly, and some platfo�ms such as

Windows have limited suppo�t for fuzzers.

I wrote heckcheck mostly to see whether it would be possible to

w�ite - and the implementation is maybe �400 lines or so in total. I

bet it could be improved, since in pa�ticular our sh�inking code is

less than ideal, while good approaches are known.

Compared to other popular prope�ty testing libra�ies heckcheck is

more similar to quickcheck than it is to proptest . It has a simple

inte�face, can generate complex values quickly, and uses exte�nal

sh�inking strategies. The proptest docs contain a compa�ison

between proptest and quickcheck, and that same compa�ison

could probably apply between proptest and heckcheck. The only

place where the compa�ison may differ is that the arbitrary
crate has suppo�t for customizing generated values. Say we

wanted to rest�ict the values generated in our RGB implementation

to only valid RGB values, we could change the implementation to

the following:

use arbitrary::{Arbitrary, Unstructured};

/// A color value encoded as Red-Green-Blue
#[derive(Arbitrary, Debug, PartialEq, Eq)]
pub struct Rgb {
 #[arbitrary(with = color_range)]

r: u8,

https://link.springer.com/chapter/10.1007/978-3-030-16722-6_24
https://link.springer.com/chapter/10.1007/978-3-030-16722-6_24
https://docs.rs/quickcheck/latest/quickcheck/
https://docs.rs/quickcheck/latest/quickcheck/
https://docs.rs/quickcheck/latest/quickcheck/
https://docs.rs/proptest/latest/proptest/index.html
https://docs.rs/proptest/latest/proptest/index.html
https://docs.rs/proptest/latest/proptest/index.html
https://proptest-rs.github.io/proptest/proptest/vs-quickcheck.html
https://proptest-rs.github.io/proptest/proptest/vs-quickcheck.html

 #[arbitrary(with = color_range)]
g: u8,

 #[arbitrary(with = color_range)]
b: u8,

}

/// Generate a valid RGB color value
fn color_range(u: &mut Unstructured) -> arbitrary::Result<u8
 u.int_in_range(0..=255)
}

If I could change one thing about the arbitrary crate it's that I'd

like to see it suppo�t patte�n-type notation inside the att�ibutes.

Patte�ns allow p�imitive values to be rest�icted to a subset of their

possible inputs, which should be a fairly common use. With that we

could imagine the RGB type could instead be w�itten like this:

//! This is purely speculative and not currently supported

use arbitrary::{Arbitrary, Unstructured};

/// A color value encoded as Red-Green-Blue
#[derive(Arbitrary, Debug, PartialEq, Eq)]
pub struct Rgb {
 #[arbitrary(pattern = 0..=255)]

r: u8,
 #[arbitrary(pattern = 0..=255)]

g: u8,
 #[arbitrary(pattern = 0..=255)]

b: u8,
}

AUTOMATED TESTING STRATEGIES

Now that we've covered what the different ways of automated

testing are, it's wo�th b�iefly touching on some common testing

strategies. Because once you've understood that automated

testing might be good, there often is a bit of a gap to actually

implement it in your own code. And that's what testing strategies

are for. These are some common testing strategies:

• roundt�ip testing: generate a message, pass it to the

encoder, then pass the encode�'s output to the decoder. The

decode�'s output should be the same as the o�iginal message.

• differential testing: test the program against a "known good"

implementation of a similar program (also known as an

"oracle"). This is useful if, for example, you're re-implementing

an existing protocol or algo�ithm.

• inva�iant testing: test that a ce�tain prope�ty always holds.

This can be a universal prope�ty like: "my program didn't

crash". But inva�iants can be specific too. Rain recently gave a

great example that if you're for example testing a so�ting

function, you can check its co�rectness by making iterating

over each number and checking it's bigger than the last

number.

We've already covered roundt�ip testing earlier in this post, and I

believe inva�iant testing should be fairly straight fo�ward. So as

we're closing out here I just b�iefly wanted to show an example of

how to pe�fo�m differential testing using an approach Tyler Neely

introduced me to a few years ago.

The way this works is that you use your source of entropy to

generate a sequence of operations which you then apply to both

your oracle and your program under test. Should your test t�igger a

failure, the sh�inker will kick in and t�y and remove operations

t�ying to uncover the minimal sequence of operations needed to

t�igger the bug. Say we in the process of building the smallvec

crate; the implementation differs from the stdlib, but the

obse�vable behavior should be the same. Which means we can use

the stdlib's Vec as our oracle for the test, which could look

something like this:

/// A single operation we can apply
#[derive(Arbitrary)]
enum Operation {
 Insert(usize, usize),
 Fetch(usize),
}

#[test]
fn differential_smallvec_test() {
 heckcheck::check(|operations: Vec<Operation>| {

// Setup both our subject and the oracle
let mut subject = smallvec::SmallVec::new();
let mut oracle = vec![];

https://hachyderm.io/@rain
https://hachyderm.io/@rain
https://tylerneely.com/
https://tylerneely.com/
https://docs.rs/smallvec/latest/smallvec/
https://docs.rs/smallvec/latest/smallvec/

// Apply the same operations in-order to both the subject and the or
// comparing outputs whenever we get any.
for operation in operations {

match operation {
 Insert(index, value) => {
 oracle.insert(index, value);
 subject.insert(index, value);
 }
 Fetch(index) => {
 assert_eq!(oracle.get(index), subject.get
 }
 }
 }
 });
}

CONCLUSION

In this post we've covered what fuzzing and prope�ty testing are,

how they're similar, and how they differ. We've introduced

heckcheck, a small prope�ty-testing libra�y and shown how you can

use it to implement va�ious testing strategies with.

I believe one of the greatest strengths Rust has is its ability to

provide unifo�m expe�iences. And I believe that automated testing

is one of the best tools we have to ensure the co�rectness of the

implementations of our Rust programs. I'd love to one day see Rust

provide facilities out of the box for automated testing - including a

standard Arbitrary inte�face.

REFERENCES

▸ View all references

https://docs.rs/heckcheck/latest/heckcheck/
https://docs.rs/heckcheck/latest/heckcheck/

