
YOSHUA WUYTS ←

AUTOMATIC INTERLEAVING

OF HIGH�LEVEL

CONCURRENT OPERATIONS

� 2025�05�05
�� introduction

�� the problem

�� the solution

�� fu�ther reading

INTRODUCTION

When working with low-level concu�rency (atomics), programming

languages are generally quite eager for compilers to reorder

operations if it leads to better pe�fo�mance. Info�mation about

whether it's ok to reorder operations is encoded using Atomic

Orde�ings, Fences, and Operations. It's strange that most

programming languages that suppo�t semantic-aware reorde�ing of

low-level concu�rent operations, don't also include similar suppo�t

for reorde�ing the execution of high-level concu�rent operations.

To my knowledge this is t�ue for most languages, with the notable

exception of Swift and its async let const�uct. This feature

prese�ves the linear-looking nature of async code, but allows the

compiler to inspect the control flow graph and schedule operations

concu�rently where possible. That means that just like with

atomics, an operation that is defined later in a piece of code may

finish execution before an operation that appears earlier. Here is an

example Swift program where eve�ything that can be concu�rent

actually is concu�rent:

func makeDinner() async throws -> Meal {

https://blog.yoshuawuyts.com/
https://blog.yoshuawuyts.com/
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html
https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html
https://doc.rust-lang.org/std/sync/atomic/fn.fence.html
https://doc.rust-lang.org/std/sync/atomic/fn.fence.html
https://doc.rust-lang.org/std/sync/atomic/index.html
https://doc.rust-lang.org/std/sync/atomic/index.html

 async let veggies = chopVegetables() // 1. concurrent w
 async let tofu = marinateTofu() // 2. concurrent w
 async let oven = preheatOven(temperature: 350) // 3. concurrent w

let dish = Dish(ingredients: await [try veggies, tofu]) // 4. depends on:
return await oven.cook(dish, duration: .hours(3)) // 5. depends on:

}

THE PROBLEM

To me this represents the pinnacle of language-level suppo�t for

asynchronous/concu�rent programming. It makes it t�ivial to

change any code that may be �un concu�rently to actually �un

concu�rently. It enables the compiler to take care of what is

othe�wise tedious and/or illegible. Take for example this code that's

w�itten in a se�ial fashion using async/.await:

async fn make_dinner() -> SomeResult<Meal> {
let veggies = chop_vegetables().await?;
let tofu = marinate_tofu().await?;
let oven = preheat_oven(350).await;

let dish = Dish(&[veggies, tofu]).await;
 oven.cook(dish, Duration::from_mins(3 * 60)).await
}

Using Future::join operations we can rew�ite it to execute

independent operations concu�rently. But this comes with the

downside that the code is now significantly less legible. Here is the

same code, w�itten using Future::try_join :

use futures_concurrency::prelude::*;

async fn make_dinner() -> SomeResult<Meal> {
let dish_fut = {

let veggies_fut = chop_vegetables();
let tofu_fut = marinate_tofu();
let (veggies, tofu) = (veggies_fut, tofu_fut).try_join

 Dish::new(&[veggies, tofu]).await
 };

let oven_fut = preheat_oven(350);
let (dish, oven) = (dish_fut, oven_fut).try_join().await?;

 oven.cook(dish, Duration::from_mins(3 * 60)).await
}

To capitalize on one of the core features of async/.await (ad-

hoc concu�rent scheduling), we had to sac�ifice one of its main

benefits (legibility). It's not good when two core pa�ts of the same

feature are in tension with each other like that. And we can't just

wave a wand and tell the compiler to automatically execute these

futures concu�rently. Futures tend to express operations that

change program state in one way or another. That is to say: most

futures encode side-effects. And the compiler can't automatically

infer which side effects can be executed se�ially and which can be

executed concu�rently. That's because it's not aware of the

program semantics.

THE SOLUTION

The solution is to allow programmers to provide opt-in to explicit

reorde�ings in their code, just like Swift does using async let . We

could use a concise notation along the lines of .co.await (this is

a strawman, pick your own favo�ite notation). We want the notation

to be in postfix position because unlike Swift we don't want to

eagerly sta�t executing when operations are defined, but only

affect the way operations are scheduled when .await ed. And this

way we never have to actually have to represent it in the type

system either . This would look something like this:

async fn make_dinner() -> SomeResult<Meal> {
let veggies = chop_vegetables().co.await?;
let tofu = marinate_tofu().co.await?;
let oven = preheat_oven(350).co.await;

let dish = Dish(&[veggies, tofu]).co.await;

 oven.cook(dish, Duration::from_mins(3 * 60)).await
}

This code would directly lower to the equivalent of the

Future::join -based scheme. But with the benefit of needing far

less ceremony to encode the same semantics. The other benefit of

this scheme is that we always retain the option to schedule these

operations se�ially if we choose to. That makes this scheme

1

compatible with async-polymorphic functions, where manual

Future::join calls are not.

A feature along these lines is impo�tant, because in order to make

full use of async Rust's concu�rent scheduling capabilities, any

operations which can be executed concu�rently should be

executed concu�rently. But without language suppo�t that comes at

a severe cost to legibility, and in tu�n maintainability. The only way

out of this dilemma is to do what Swift has done and directly

include language suppo�t for it.

FURTHER READING

• Tasks are the Wrong Abstraction � Introduces the

ParallelFuture trait, which can be combined with the

scheme outlined in this post to automatically schedule futures

on multiple cores.

• Tree-St�uctured Concu�rency � Discusses what st�uctured

concu�rency is, how to reason about it, and what's missing for

Rust to fully suppo�t it.

• Extending Rust's Effect System � Discusses among other

things async-polymorphic functions.

NOTES

1. W�iting .co without following it with an .await should be a

compiler e�ror. The .co would se�ve as a modifier on the .await .

Though perhaps something like C��'s co_await notation is

simpler. Whatever the syntax though, I don't think it should ever

su�face to the type system.←

REFERENCES

▸ View all references

https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/
https://blog.yoshuawuyts.com/tasks-are-the-wrong-abstraction/
https://github.com/yoshuawuyts/parallel-future
https://github.com/yoshuawuyts/parallel-future
https://github.com/yoshuawuyts/parallel-future
https://github.com/yoshuawuyts/parallel-future
https://blog.yoshuawuyts.com/tree-structured-concurrency/
https://blog.yoshuawuyts.com/tree-structured-concurrency/
https://blog.yoshuawuyts.com/extending-rusts-effect-system/
https://blog.yoshuawuyts.com/extending-rusts-effect-system/
https://blog.yoshuawuyts.com/automatic-interleaving-of-high-level-concurrent-operations/#footnote-reference-0
https://blog.yoshuawuyts.com/automatic-interleaving-of-high-level-concurrent-operations/#footnote-reference-0

