
Life is a refactoring process without tests

Home Archives Tags About

The missing parts in Cargo
July 13, 2024 · 16 min

A cargo ship stagnated in March, 2021 (Julianne Cona / Instagram)

▸ Table of Contents

When people discuss the merits of Rust, they often mention its strict ownership

rules, excellent diagnostics, and impressive performance. Cargo and the crates.io

ecosystem frequently receive praise as well. Initially, when I started learning Rust,

I couldn’t understand why Cargo was so highly loved. Having extensive

experience with JavaScript, I was accustomed to convenient package managers

and couldn’t grasp the enthusiasm—wasn’t such a tool a given for any serious

programming language? Surprisingly, not every programming language boasts a

robust toolchain. While scripting languages often excel in this area, solutions for

system-level programming is nearly empty.

https://weihanglo.tw/
https://weihanglo.tw/
https://weihanglo.tw/
https://weihanglo.tw/
https://weihanglo.tw/
https://weihanglo.tw/archives/
https://weihanglo.tw/archives/
https://weihanglo.tw/archives/
https://weihanglo.tw/tags/
https://weihanglo.tw/tags/
https://weihanglo.tw/tags/
https://weihanglo.tw/about/
https://weihanglo.tw/about/
https://weihanglo.tw/about/

A sweet meet in the universe

Cargo is incredibly user-friendly for most individual developers because it JUST

WORKS. You can create a new package with cargo new foo , add dependencies

using cargo add , and build with the blazing-fast Rust tool using cargo build .

Cool! Then, you cargo publish to crates.io and share your project on r/rust .

This process mirrors npm in the JavaScript ecosystem—download, build, publish.

It’s a seamless, one-stop shop without unnecessary boilerplate or system

dependency hassles 1. For individual developers, it’s a blessed tool.

When Rust grows beyond Cargo

Although Cargo is an advanced package manager and build tool for pure Rust

projects, it falls short for more complex, polyglot projects. Enterprise

development environments often face resource constraints—no network access,

limited access to pre-approved open-source projects, unusual linkage setups,

outdated or customized C compiler toolchains, stringent security audits, and

advanced but incompatible cache mechanisms.

Frustration mounts when developers discover Cargo’s limitations for their

projects. They either request specific features (sometimes broadly useful,

sometimes not) or abandon Cargo altogether. This is disheartening, particularly

as Cargo begins to lose users from some of the world’s largest companies 2.

Most wanted features that never arrive

Examining issues with most thumb-ups and most comments reveals the

community’s needs. As of 2024-07-11, the rust-lang/cargo repository has 1,398

open issues—a manageable number, but nearly at its limit. Many issues appear to

be duplicates with slight but essential differences, complicating the search for a

general solution that covers various workflows.

Let’s look at the features the community has wanted for Cargo to support over

the years:

https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+sort%3Areactions-%2B1-desc
https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+sort%3Areactions-%2B1-desc
https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+sort%3Acomments-desc
https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+sort%3Acomments-desc

It’s all about cache

Cargo uses two major types of caches:

• Global Cache: This cache stores downloaded dependency sources (.crate

tarballs and Git repositories) under the ~/.cargo directory. It never

invalidates.

• Local Cache: This is a per-workspace-level cache for intermediate build

artifacts (the target directory). This cache invalidates when a rebuild is

needed. We will focus on this.

Cargo relies heavily on file modification times (mtime) reported by the operating

system to determine cache freshness. However, this rebuild detection method is

notoriously unreliable. For example, the clock may go backward, or the system

mtime may have low precision, such as on Docker or Apple’s HFS. Some

developers have been exploring content-hash based solutions to address this

issue, though the main challenge is performance. This could potentially be solved

by reusing hashing results from rustc, but it requires significant investigation and

cross-team communication.

Rust build times can be quite slow. To improve this, there is interest in reusing

build artifacts between different projects for common crates like syn , serde ,

and rand . Although this seems logical, it is challenging. Cargo has a complex

model for conditional compilation based on different compiler flags, Cargo

features, and target platforms. The rebuild detection mechanism, known as the

fingerprint, tracks these properties. If any of them changes, Cargo rebuilds. This

means we need to track not only what to build but also how to build it. Without

knowing “how,” it’s hard to provide a generalized fix for docker-cache layers.

Thus, simply reusing compiled artifact caches or sharing target-dirs is not very

useful if we implement a basic cache-everything solution. We need a design that

separates artifacts based on different combinations of flags, features, platforms,

and configurations, providing an easy-to-use interface for users to define what to

cache and how.

If your CI system generates a random path for each build, there’s another issue.

The seemingly static download sources will affect cache freshness by changing

https://github.com/rust-lang/cargo/issues/12060
https://github.com/rust-lang/cargo/issues/12060
https://github.com/rust-lang/cargo/issues/6529
https://github.com/rust-lang/cargo/issues/6529
https://rust-lang.zulipchat.com/#narrow/stream/246057-t-cargo/topic/Implementing.20checksum.20based.20fingerprinting/near/446199539
https://rust-lang.zulipchat.com/#narrow/stream/246057-t-cargo/topic/Implementing.20checksum.20based.20fingerprinting/near/446199539
https://github.com/rust-lang/cargo/issues/8716
https://github.com/rust-lang/cargo/issues/8716
https://github.com/rust-lang/cargo/issues/4463
https://github.com/rust-lang/cargo/issues/4463
https://github.com/rust-lang/cargo/issues/4463
https://github.com/rust-lang/cargo/issues/4463
https://doc.rust-lang.org/1.79.0/nightly-rustc/cargo/core/compiler/fingerprint/index.html#fingerprints-and-metadata
https://doc.rust-lang.org/1.79.0/nightly-rustc/cargo/core/compiler/fingerprint/index.html#fingerprints-and-metadata
https://github.com/rust-lang/cargo/issues/2644
https://github.com/rust-lang/cargo/issues/2644
https://github.com/rust-lang/cargo/issues/5931
https://github.com/rust-lang/cargo/issues/5931
https://github.com/rust-lang/cargo/issues/11156
https://github.com/rust-lang/cargo/issues/11156
https://github.com/rust-lang/cargo/issues/10915
https://github.com/rust-lang/cargo/issues/10915

the value of CARGO_HOME . This happens because the CARGO_HOME path is

embedded in debug symbols.

The situation becomes even more complex when considering the non-

determinism of build scripts and proc macros, but I will stop here for now.

Phases of a cargo build

Cargo wasn’t designed to be a complete “build system”. It was just a package

manager that helps fetch dependencies from the internet, simply builds, and

publishes them to crates.io. Okay, I guess I just stepped on a trap of defining what

a build system should be. A build system, or build orchestrator, is software that

generates a set of actions from user-provided build tasks. It can “optionally”

execute these actions (Yes, so CMake is a build system in my mind).

The potential of offloading build executions to other tools is essential. It makes

transparent how build tasks should be executed with desired inputs and outputs,

bringing a more deterministic and analyzable build. By separating the execution

phase from a build, Cargo could be able to tell why a crate is rebuilt, without

actually rebuilding it. Also, clearly no need to guess the test executable name with

jq and grep magics.

To push it further, a build task with well-defined input/output could open a door

for different kinds of pre/post build processing. Hmm… I shouldn’t say pre/post

processing. Tasks ought to be composable. Apart from the execution order, the

interface of defining a build task should be pretty much the same, regardless of

whether it is pre or post processing. Designing such an interface is unfortunately

the most difficult part that slows down the design and development. For now,

Cargo prefers TOML for build configuration. Its static property ensures Cargo only

does things in a defined manner. When you are not on the happy path and need

an escape hatch, Cargo provides a complete unsandboxed environment to do

arbitrary things. Yes, that’s called “build scripts”.

These two approaches are at opposite ends of the spectrum. There is a huge gap

in between that Cargo doesn’t even look into. Why? Because developers who look

at it often end up inventing a programming language (e.g., Nickel, Nix, and

Starlark). Should Cargo evolve toward that direction? I don’t know. There is a

https://github.com/rust-lang/cargo/issues/10915
https://github.com/rust-lang/cargo/issues/10915
https://github.com/rust-lang/cargo/issues/10915
https://github.com/rust-lang/cargo/issues/10915
https://github.com/rust-lang/cargo/issues/2904
https://github.com/rust-lang/cargo/issues/2904
https://github.com/rust-lang/cargo/issues/1924
https://github.com/rust-lang/cargo/issues/1924
https://github.com/rust-lang/cargo/issues/7178
https://github.com/rust-lang/cargo/issues/7178
https://github.com/rust-lang/cargo/issues/545
https://github.com/rust-lang/cargo/issues/545
https://nickel-lang.org/
https://nickel-lang.org/
https://nix.dev/manual/nix/2.23/language/
https://nix.dev/manual/nix/2.23/language/
https://github.com/bazelbuild/starlark
https://github.com/bazelbuild/starlark

proposal for sandboxing build scripts, but it’s more like a patch for build scripts

themselves, not a total solution for build task composability. Ed Page’s post last

year also provides an overview and potential solutions for it. It’s short and worth a

read.

Speaking of breaking a build into phases, Bazel and Buck2 are good examples.

From my truly belief, by doing so, it also helps achieve distributed executions and

remote caching for their use cases. It may not be a necessary feature for indie

developers or small startups. Think about it: What if we solved the cache issue

and someone just built a sharable cache service that benefits everyone’s CI

pipeline?

Build script is not a C package manager

Speaking of build scripts, they deserve credit for Rust’s growing popularity. As a

tool for system-level programming, Cargo is praised for its simplicity — just

cargo build and you’re set. Even if a package needs a missing C library,

build.rs steps in to fetch and build it from source.

But convenience comes with trade-offs. A build script isn’t a proper C package

manager. Its imperative, dynamic nature can make dependency management

tricky. Take the “Cargo feature unification” issue: once a vendored feature is on

in the dependency graph, you can’t turn it off. We could use a declarative

approach like system-deps to handle this better. Yet, how do we model a powerful

build system like CMake in TOML, a less flexible language? It all loops back to

defining the interface of build tasks. Or maybe someone should create a C

package manager that becomes mainstream, so Cargo can just call it?

The unconditional conditional compilation

Alright, let’s dive into the less glamorous side.

Conditional compilation in Cargo revolves around “Cargo features”. These

features can:

• Toggle code blocks with corresponding --cfg flags for the compiler

• Activate optional dependencies

https://epage.github.io/blog/2023/08/are-we-gui-build-yet/
https://epage.github.io/blog/2023/08/are-we-gui-build-yet/
https://bazel.build/extending/concepts#evaluation-model
https://bazel.build/extending/concepts#evaluation-model
https://buck2.build/docs/developers/architecture/buck2/
https://buck2.build/docs/developers/architecture/buck2/
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#Its-all-about-cache
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#Its-all-about-cache
https://www.cachix.org/
https://www.cachix.org/
https://github.com/gdesmott/system-deps
https://github.com/gdesmott/system-deps
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#Phases-of-a-cargo-build
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#Phases-of-a-cargo-build

• Activate other features

This seems more powerful than traditional C’s #ifdef , but actually not. To

prevent excessive compilation overhead, the dependency resolver picks only one

compatible version when a crate appears in the dependency graph multiple times,

and each is within the SemVer-compatible versions defined. And because they

are deemed compatible, Cargo gets one step further that unconditionally merges

all activated features into a union of them. This is the “additive” property. You

have no way to opt-out of this behavior. If you desperately need mutually

exclusive features, you and downstream users of your crate likely hit the ground

hard, as there is no simple way to support this (remember the vendored problem

mentioned earlier). It will become a compatibility hazard if a crate doesn’t respect

SemVer-compatibility and the additive nature of Cargo features.

To make the situation worse, developers want to activate dependencies based on

feature activations, which may in turn activate more features. How long will it take

for a feature unification to converge if that is allowed? I don’t really know. That

said, it is a valid feature request. Just too hard to make the design right. The

Cargo team has made several attempts to make feature resolution better, for

example feature resolver v2. None of them is a clear win, as users need to know

in which situations a feature resolution may be different. Those attempts even

confuse maintainers of Cargo!

A piece of good news is that RFC 3416 was merged, allowing future extensions of

feature metadata like public/private or unstable features. It will make feature

resolution smarter with the sacrifice of software complexity, from the perspective

of both tool users and maintainers.

Finger-crossed cross-compilation

When it comes to cross-compilation, people often highlight its built-in support

through Rustup and Cargo. While this is true, they didn’t tell you the full story.

First of all, if you’re in a pure Rust world, you are the luckiest person in the world.

No need to deal with different compiler flags and linkers. No need to configure

target.<cfg>.rustflags and find the dual behavior between build scripts and

normal dependencies. While target-applies-to-host is a solution to this, it

https://github.com/rust-lang/cargo/issues/3126
https://github.com/rust-lang/cargo/issues/3126
https://github.com/rust-lang/cargo/issues/2980
https://github.com/rust-lang/cargo/issues/2980
https://github.com/rust-lang/cargo/issues/2980
https://github.com/rust-lang/cargo/issues/2980
https://github.com/rust-lang/cargo/issues/5954
https://github.com/rust-lang/cargo/issues/5954
https://github.com/rust-lang/cargo/issues/5954
https://github.com/rust-lang/cargo/issues/5954
https://doc.rust-lang.org/cargo/reference/resolver.html#feature-resolver-version-2
https://doc.rust-lang.org/cargo/reference/resolver.html#feature-resolver-version-2
https://github.com/rust-lang/cargo/issues/10112
https://github.com/rust-lang/cargo/issues/10112
https://rust-lang.zulipchat.com/#narrow/stream/246057-t-cargo/topic/Odd.20cargo.20resolver.20behavior
https://rust-lang.zulipchat.com/#narrow/stream/246057-t-cargo/topic/Odd.20cargo.20resolver.20behavior
https://rust-lang.github.io/rfcs/3416-feature-metadata.html
https://rust-lang.github.io/rfcs/3416-feature-metadata.html
https://github.com/rust-lang/cargo/issues/4897
https://github.com/rust-lang/cargo/issues/4897
https://github.com/rust-lang/cargo/issues/4133
https://github.com/rust-lang/cargo/issues/4133
https://github.com/rust-lang/cargo/issues/9453
https://github.com/rust-lang/cargo/issues/9453

never comes stabilized as it may break some subtle workflows around passing

rustflags.

Beyond flag configurations, it’s challenging to determine from Cargo.toml

whether a package supports or requires building on certain platforms. While we

have per-package-target, its semantics remain unclear, especially in relation to

artifact dependencies and building the standard library (build-std). An even

trickier part is the right timiing of filtering supported platforms. Should

dependency resolution be aware of this? Should the lockfile track dependencies

for supported platforms?

All of these questions above are not yet answered.

If all we have is a dependency resolver

As a package manager, selecting the correct dependency versions is the primary

goal of Cargo. Cargo has its own ad-hoc dependency resolution algorithm that

only a few people understand. Cargo made conditional compilation part of the

resolver, so it can pick the correct set of optional dependencies and features

within a valid version range. It understands [patch] because the resolver needs

to pretend a patched dependency is from the original source. It knows the

preferred Rust toolchain version in mind so that it can perform an MSRV-aware

resolution.

While keeping in mind that Cargo’s resolver and the entire community follow

SemVer strictly, there is still a huge desire for allowing multiple SemVer-

compatible versions in a dependency graph. Different strategies have been

proposed, such as resolving to minimal versions. Restrictions like disallowing

duplicate native lib linkage in one graph are looking for a lift. Besides, there is a

potential need for support in resolving platform-specific dependencies.

Every feature request seems minimal. However, every problem becomes a

version-solving problem if all we have is a dependency resolver. And that

exacerbates the hard-to-maintain situation worse. The resolver is not an LLM, but

it is still a myth to some maintainers how it actually works.

We should be glad that one of the Cargo maintainers decided to stand out and

https://github.com/rust-lang/cargo/pull/10395#issuecomment-1051023136
https://github.com/rust-lang/cargo/pull/10395#issuecomment-1051023136
https://github.com/rust-lang/cargo/issues/6179
https://github.com/rust-lang/cargo/issues/6179
https://github.com/rust-lang/cargo/issues/9406
https://github.com/rust-lang/cargo/issues/9406
https://github.com/rust-lang/cargo/pull/9096
https://github.com/rust-lang/cargo/pull/9096
https://github.com/rust-lang/wg-cargo-std-aware
https://github.com/rust-lang/wg-cargo-std-aware
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#The-unconditional-conditional-compilation
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#The-unconditional-conditional-compilation
https://github.com/rust-lang/cargo/blob/b60a1555155111e962018007a6d0ef85207db463/src/cargo/core/resolver/context.rs#L121-L135
https://github.com/rust-lang/cargo/blob/b60a1555155111e962018007a6d0ef85207db463/src/cargo/core/resolver/context.rs#L121-L135
https://github.com/rust-lang/cargo/blob/b60a1555155111e962018007a6d0ef85207db463/src/cargo/core/resolver/context.rs#L121-L135
https://github.com/rust-lang/cargo/blob/b60a1555155111e962018007a6d0ef85207db463/src/cargo/core/resolver/context.rs#L121-L135
https://github.com/rust-lang/cargo/issues/9930
https://github.com/rust-lang/cargo/issues/9930
https://github.com/rust-lang/cargo/issues/9930
https://github.com/rust-lang/cargo/issues/9930
https://github.com/rust-lang/cargo/issues/5640
https://github.com/rust-lang/cargo/issues/5640
https://github.com/rust-lang/cargo/issues/5640
https://github.com/rust-lang/cargo/issues/5640
https://github.com/rust-lang/cargo/issues/5657
https://github.com/rust-lang/cargo/issues/5657
https://github.com/rust-lang/cargo/issues/5237
https://github.com/rust-lang/cargo/issues/5237
https://github.com/rust-lang/cargo/issues/5237
https://github.com/rust-lang/cargo/issues/5237
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#Finger-crossed-cross-compilation
https://weihanglo.tw/posts/2024/the-missing-parts-in-cargo/#Finger-crossed-cross-compilation

pursue a goal to modularize Cargo’s ad-hoc resolver. To be more precise, it is

letting the top-notch dependency resolver library pubgrub understand all

shenanigans Cargo is doing right now. While this is a bold project, I am really

looking forward to the outcome. You can track the progress by subscribing to this

Zulip topic.

Stability with stagnation

Enough! We’ve talked too much about open issues. Let’s step back and find out

why the innovation seems to be stuck.

The stability guarantee of Cargo is both a blessing and a curse to the community.

It’s a blessing that we don’t worry too much when running rustup update every

six weeks. To make it worse, Cargo is one of the fastest-growing programming

languages. Even an unstable nightly feature cannot be slightly removed due to the

large adoption these days.

“Stability without stagnation” is a principle Rust holds. This is the gist of the 6-

weeks “release train” model. However, people are so creative that inventing their

own workflows to fix the inability of all the aforementioned missing features.

That’s nice, but Cargo is stuck in these implicit dependent relations, which makes

maintainers3 stressed out and reluctant to take risks on new stuff. You can see

how the discussion RFC 3537 went, regardless of the intention of it was finding a

middle ground to improve the current situation.

https://rust-lang.github.io/rust-project-goals/2024h2/pubgrub-in-cargo.html
https://rust-lang.github.io/rust-project-goals/2024h2/pubgrub-in-cargo.html
https://rust-lang.zulipchat.com/#narrow/stream/260232-t-cargo.2FPubGrub/topic/Progress.20report
https://rust-lang.zulipchat.com/#narrow/stream/260232-t-cargo.2FPubGrub/topic/Progress.20report
https://rust-lang.zulipchat.com/#narrow/stream/260232-t-cargo.2FPubGrub/topic/Progress.20report
https://rust-lang.zulipchat.com/#narrow/stream/260232-t-cargo.2FPubGrub/topic/Progress.20report
https://github.com/rust-lang/cargo/issues/7614#issuecomment-1444692932
https://github.com/rust-lang/cargo/issues/7614#issuecomment-1444692932
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html#stability-without-stagnation
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html#stability-without-stagnation
https://github.com/rust-lang/rfcs/pull/3537
https://github.com/rust-lang/rfcs/pull/3537

Maybe because of the stability guarantee, people put a much higher bar for new

features to be “perfect” and satisfy everyone. There is a summary of the Docker

cache problem calling out:

For a feature to be stablized in cargo, it needs to fit into the cohesive whole,

meaning it needs to work without a lot of caveats. It can’t be a second tier

solution

I have a dream. A dream that Cargo has its own release cadence, so it is free from

the strict stability curse and can then ship major version releases.

Maximize compatibility with minimal
compatibility

Well, it might be more than a dream to evolve Cargo without stagnation. A great

example is cargo-nextest . As a non-official third-party Cargo plugin, cargo-

nextest doesn’t need to hold the stability guarantee like other official Rust tools.

Instead, it ships a performant test execution model that is deemed a breaking

change if it were made to Cargo. It turns out that people love it and are willing to

update their test code accordingly in exchange for test execution speed-up. Not

to say that in most scenarios, cargo-nextest is just a drop-in replacement.

In the success story of cargo-nextest , its maintainers got a space to

experiment on different design ideas, as well as gain some adoptions for

feedback. Is it possible to achieve that for other parts of Cargo? To answer the

question, first, we need to figure out the minimal set of functionalities Cargo must

provide to be compatible with the crates.io ecosystem. Calling out being

compatible with crates.io is because, to be honest, Cargo is nothing if there is no

such ecosystem. If we want to see a wide adoption of our cargo-nextbuild ,

cargo-nextrun , or else, we would like to maximize compatibility with the

crates.io ecosystem. You don’t ever want to recreate a whole new ecosystem for

Rust, trust me.

https://hackmd.io/@kobzol/S17NS71bh#Solution-Brainstorming
https://hackmd.io/@kobzol/S17NS71bh#Solution-Brainstorming
https://hackmd.io/@kobzol/S17NS71bh#Solution-Brainstorming
https://hackmd.io/@kobzol/S17NS71bh#Solution-Brainstorming
https://nexte.st/
https://nexte.st/
https://nexte.st/
https://github.com/rust-lang/cargo/issues/5609
https://github.com/rust-lang/cargo/issues/5609
https://github.com/rust-lang/cargo/issues/5609
https://github.com/rust-lang/cargo/issues/5609

Let’s see what the minimal set of functionalities a Cargo-compatible tool needs to

have to be free from stagnation.

Note that a Cargo-compatible tool doesn’t necessarily need to be done from

scratch. It can be a wrapper of Cargo or use cargo-the-library.

Matching the result of dependency resolution

In an ideal world, a published crate on crates.io is guaranteed to be buildable.

Other developers can fetch its source and build it flawlessly. This guarantee is

upheld with the Cargo ad-hoc dependency resolver, and their contract is written in

the form of dependencies and features tables in Cargo.toml .

If we’re going to build a new dependency resolver, we don’t want to fall into a

situation where the old resolver found a solution for a package, whereas the new

resolver can’t. That makes the package unbuildable, hurting the compatibility.

It is acceptable that two dependency resolvers find different solutions, as long as

those solutions are valid for both resolvers.

In summary, a Cargo-compatible tool must produce dependency resolution

results that are valid in Cargo, and vice versa 4. This also includes correctly

parsing dependency information5 from Cargo.toml and Cargo.lock .

Matching the behavior of running build scripts

In a Cargo package, every dependency is statically known, with one exception:

Running build scripts. By the nature of build scripts being able to run arbitrary

code, they are considered “dynamic dependencies”. Cargo doesn’t know what will

be produced until a build script has run.

Cargo has a set of build script instructions that defines corresponding behavior

before, during, and after running a build script. For example, a Cargo-compatible

tool must not run if the path given by cargo::rerun-if-changed=PATH has no

change. When a cargo::rustc-env=VAR=VALUE instruction is emitted, the env var

must be set for the compiler invocation of the crate-being-built.

That is to say, a Cargo-compatible tool must exactly match the behavior of

https://doc.rust-lang.org/nightly/cargo/reference/build-scripts.html
https://doc.rust-lang.org/nightly/cargo/reference/build-scripts.html

running build scripts, including:

• Determine whether a rerun is needed.

• Correctly parse the emitted build script instructions.

• Configure the compiler invocation based on emitted instructions.

Setting environment variables for crates

This one is relatively straightforward. Cargo sets environment variables for

compiler invocations and build script runs. These variables are either package

metadata from Cargo.toml or necessary information helping build scripts do

dirty jobs. The tricky part is that some variables are pretty Cargo-centric. For

example, it’s odd that a non-Cargo tool setting a path to cargo because a crate

requiring the CARGO environment variable to call cargo executable recursively.

However, it doesn’t really make the situation worse, as build scripts are already

able to do anything.

Closing

In this note, we reviewed the current state of Cargo. There are a bunch of feature

requests never done. They stagnate because of the pursuit of perfection or fear

of breaking unnoticed workflows. They often have a way too large design space

with only a tiny place to experiment.

We then looked into a way to break the stagnation. Taking cargo-nextest as an

example, we need to ensure a minimal compatible interface is implemented for a

Cargo-compatible tool when experimenting with new ideas. Surprisingly, the

minimal compatible layer is still of a reasonable size, though we might miss

some important aspects that should be covered.

So, are we ready for a new adventure?

Discuss on Reddit r/rust

1. This is a success story for build scripts that they just vendor everything C

https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html
https://doc.rust-lang.org/nightly/cargo/reference/environment-variables.html
https://www.reddit.com/r/rust/comments/1e34v6b/the_missing_parts_in_cargo/
https://www.reddit.com/r/rust/comments/1e34v6b/the_missing_parts_in_cargo/

CC BY-NC-SA 4.0 · Powered by Hugo & PaperMod

dependencies, however, silently. It is ironically that it is now considered a

failure because silent vendoring is not acceptable from several aspects. See

system-deps#97. ↩

2. Apparently, Google and Meta don’t really use Cargo. Projects like Nix and Rust-

for-Linux are willing to roll out their own build system for Rust. ↩

3. At least for me, I often feel incapable of merging a PR, even when it seemed

completely harmless but actually broke 3rd-party plugin users. ↩

4. This is actually written in the 2024H2 Project Goals “Extend pubgrub to match

cargo’s dependency resolution”. Thanks again to the owner of the goal! ↩

5. Thankfully, not all fields in Cargo.toml are needed for the minimal interface.

In Cargo, the core fields are defined in the Summary struct. They construct

necessary info for the resolver to work. ↩

Rust

NEXT »

如何成為正港倫敦⼈

https://gohugo.io/
https://gohugo.io/
https://github.com/adityatelange/hugo-PaperMod/
https://github.com/adityatelange/hugo-PaperMod/
https://github.com/gdesmott/system-deps/issues/97
https://github.com/gdesmott/system-deps/issues/97
https://github.com/rust-lang/cargo/issues/11487
https://github.com/rust-lang/cargo/issues/11487
https://rust-lang.github.io/rust-project-goals/2024h2/pubgrub-in-cargo.html#milestones
https://rust-lang.github.io/rust-project-goals/2024h2/pubgrub-in-cargo.html#milestones
https://rust-lang.github.io/rust-project-goals/2024h2/pubgrub-in-cargo.html#milestones
https://rust-lang.github.io/rust-project-goals/2024h2/pubgrub-in-cargo.html#milestones
https://github.com/rust-lang/cargo/blob/b31577d43ce235bb77167d399e14a0b5f6fdf584/src/cargo/core/summary.rs#L14-L31
https://github.com/rust-lang/cargo/blob/b31577d43ce235bb77167d399e14a0b5f6fdf584/src/cargo/core/summary.rs#L14-L31
https://github.com/rust-lang/cargo/blob/b31577d43ce235bb77167d399e14a0b5f6fdf584/src/cargo/core/summary.rs#L14-L31
https://github.com/rust-lang/cargo/blob/b31577d43ce235bb77167d399e14a0b5f6fdf584/src/cargo/core/summary.rs#L14-L31
https://github.com/rust-lang/cargo/blob/b31577d43ce235bb77167d399e14a0b5f6fdf584/src/cargo/core/summary.rs#L14-L31
https://weihanglo.tw/tags/rust/
https://weihanglo.tw/tags/rust/
https://weihanglo.tw/posts/2023/become-a-real-londoner/
https://weihanglo.tw/posts/2023/become-a-real-londoner/
https://weihanglo.tw/posts/2023/become-a-real-londoner/
https://weihanglo.tw/posts/2023/become-a-real-londoner/
https://weihanglo.tw/posts/2023/become-a-real-londoner/

