
BUILDING NIX FLAKES FROM RUST
WORKSPACES
22 September 2022 — by Tor Hovland

 nix rust webassembly

Did you know that with Nix you can easily define and load development
environments with all the tools that you need, without having to install
anything (except Nix) on your local machine? It may be as simple as this
shell.nix file:

{ pkgs ? import <nixpkgs> {} }:

pkgs.mkShell {

 buildInputs = with pkgs; [rustc cargo cargo-flamegraph];

}

Now, if you run nix-shell , you’ll be given a shell with Rust, Cargo, and Cargo
Flamegraph available to you. That’s pretty neat, but what if you want to take it
a step further, and use Nix to package your Rust code? There are many options
available, with di�erent trade o�s, and it can be quite overwhelming to
choose between them, although there is some information on the NixOS Wiki.
In this post we are going to try the di�erent options on a simple but not
entirely trivial Rust code sample.

https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/nix
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://www.tweag.io/blog/tags/webassembly
https://nixos.wiki/wiki/Rust#Packaging_Rust_projects_with_nix
https://nixos.wiki/wiki/Rust#Packaging_Rust_projects_with_nix
https://www.tweag.io/
https://www.tweag.io/

But why Nix? Cargo uses lock files and does a good job of keeping track of
Rust dependencies. But Nix goes further, also taking into account both system
dependencies and the Rust compiler itself. Also, in a polyglot environment, Nix
can simplify the build process by not requiring a concoction of compilers and
tools to be installed.

Our Rust code includes:

• an app that we want to compile into a native executable

• a WebAssembly library

• a common package used by both of the above

We also want to be able to build Nix flakes, for the hermetic packaging they
provide.

The complete sample code for each Nix packaging variant is available on
GitHub.

The common package fetches cat images, like this:

THE RUST CODE SAMPLE

https://www.tweag.io/blog/2020-05-25-flakes/
https://www.tweag.io/blog/2020-05-25-flakes/
https://github.com/tweag/rust-wasm-nix
https://github.com/tweag/rust-wasm-nix
https://www.tweag.io/static/e3760f0240b89cd0d20d95021be5c7c2/857b3/beth-macdonald-Y6M1aiGudSg-unsplash.jpg
https://www.tweag.io/static/e3760f0240b89cd0d20d95021be5c7c2/857b3/beth-macdonald-Y6M1aiGudSg-unsplash.jpg
https://www.tweag.io/static/e3760f0240b89cd0d20d95021be5c7c2/857b3/beth-macdonald-Y6M1aiGudSg-unsplash.jpg

use Deserialize;

#[derive(Deserialize)]

pub struct Cat {

pub url: String

}

pub async fn fetch_cats() -> Result<Vec<Cat>, Error> {

Ok(get("https://api.thecatapi.com/v1/images/search")

.await?

.json::<Vec<Cat>>()

.await?)

}

As you can see, this code depends on serde as well as reqwest .

The native app calls this code and prints the URL of the first cat found, simply
assuming that at least one cat was retrieved.

use Error;

use cats;

#[tokio::main]

async fn main() -> Result<(), Box<dyn Error>> {

let cats = fetch_cats().await?;

println!("There's a cat at {}", cats[0].url);

Ok(())

}

The WebAssembly code does something very similar, but with explicit error
handling in order to simplify the interface provided to any Javascript client
code.

#[wasm_bindgen]

serde::

reqwest::

reqwest::

std::error::

cats::

pub async fn cat_url() -> String {

let cats = fetch_cats().await.expect("cat response");

 cats[0].url.to_string()

}

When these packages are not connected to a single Cargo workspace, the
native app can be built by running cargo build in the app package
directory. The WebAssembly package can also be built like that, but it will get
compiled into native code, which is not what we want. Instead, we build it by
running cargo build --target wasm32-unknown-unknown in the wasm package
directory.

If we are using a Cargo workspace, however, things are a little di�erent. Now
we can build the entire workspace by running cargo build in the root
directory, but as you may imagine, this will compile everything into native
code. Of course, running cargo build --target wasm32-unknown-unknown isn’t
going to help, because it will try to compile the native app into WebAssembly,
which doesn’t work and is not what we want either.

There are two ways to fix this. We can either go into each package directory
and run the appropriate commands as before, or we can specify individual
workspace members like this:

cargo build -p app

cargo build -p wasm --target wasm32-unknown-unknown

Now let’s see how we can achieve the same from within a Nix flake.

We’ll define our Nix flake like this:

{

cats::

THE FLAKE

https://doc.rust-lang.org/cargo/reference/workspaces.html
https://doc.rust-lang.org/cargo/reference/workspaces.html

 description = "A flake for building a Rust workspace using buildRustPackage."

 inputs = {

 rust-overlay.url = "github:oxalica/rust-overlay";

 flake-utils.follows = "rust-overlay/flake-utils";

 nixpkgs.follows = "rust-overlay/nixpkgs";

};

 outputs = inputs: with inputs;

 flake-utils.lib.eachDefaultSystem (system:

let

 pkgs = nixpkgs.legacyPackages.${system};

 code = pkgs.callPackage ./. { inherit nixpkgs system rust-overlay

in rec {

 packages = {

 app = code.app;

 wasm = code.wasm;

all = pkgs.symlinkJoin {

 name = "all";

 paths = with code; [app wasm];

};

 default = packages.all;

};

}

);

}

What’s nice about this flake is that we can essentially reuse it for any of the
variants we will be trying later. The most interesting part is where we make it
call ./. , which makes it look for a default.nix file. This is where we put
everything that is specific to the tool we are using. The output of default.nix
is expected to be a derivation called app and another one called wasm . As
you can see, we define both of these as flake output packages, but we also
define an output called all which contains both. We set this as the default
package, so that when we run nix build , we actually get everything.

BUILDRUSTPACKAGE

The first possibility for setting up default.nix is to use buildRustPackage ,
which is built-in into nixpkgs . We can build the native app like this:

app = pkgs.rustPlatform.buildRustPackage {

 pname = "app";

 version = "0.0.1";

 src = ./.;

 cargoBuildFlags = "-p app";

 cargoLock = {

 lockFile = ./Cargo.lock;

};

 nativeBuildInputs = [pkgs.pkg-config];

 PKG_CONFIG_PATH = "${pkgs.openssl.dev}/lib/pkgconfig";

};

The WebAssembly code is not as straightforward, though, because
buildRustPackage insists on setting the --target flag to either the (native)

host system, or to whatever we’re cross-compiling against. The cross-
compilation should actually work, but when configuring it, Nix ends up
building a Rust compiler from scratch where the target is set to WebAssembly
everywhere. This eventually fails.

Instead, we have to override the cargo build step like this:

wasm = rustPlatformWasm.buildRustPackage {

 pname = "wasm";

...

 buildPhase = ''

 cargo build --release -p wasm --target=wasm32-unknown-unknown

 '';

 installPhase = ''

 mkdir -p $out/lib

 cp target/wasm32-unknown-unknown/release/*.wasm $out/lib/

 '';

};

Please note rustPlatformWasm here, which uses the Rust overlay to get a
toolchain with support for the wasm32-unknown-unknown target. See the code
repository for details.

While buildRustPackage works, it is quite basic. Since each app corresponds to
a single Nix derivation, if anything at all changes, such as source code,
dependencies, or Nix config, the app needs to be rebuilt entirely.

Interestingly, it also only seems to work when the Rust code is in a workspace.
When it’s just three separate packages, the path dependency to ../cats
leads to a build error. This is the case for the WebAssembly app, where we
override buildPhase , as well as for the native app, where we don’t.

Now let’s see if any of the other tools can do a better job, starting with naersk.

In order to use naersk we add it to our flake inputs, and pass it to our
default.nix file:

naersk.url = "github:nix-community/naersk";

...

code = pkgs.callPackage ./. { inherit nixpkgs system naersk rust-overlay

The real changes are in default.nix , but even here it doesn’t look
dramatically di�erent from before:

let

...

NAERSK

https://github.com/tweag/rust-wasm-nix/blob/master/variants/buildRustPackage-workspace/default.nix
https://github.com/tweag/rust-wasm-nix/blob/master/variants/buildRustPackage-workspace/default.nix
https://github.com/tweag/rust-wasm-nix/blob/master/variants/buildRustPackage-workspace/default.nix
https://github.com/tweag/rust-wasm-nix/blob/master/variants/buildRustPackage-workspace/default.nix

 naerskLib = pkgs.callPackage naersk {};

 naerskLibWasm = pkgs.callPackage naersk {

 rustc = rustWithWasmTarget;

};

in {

 app = naerskLib.buildPackage {

 name = "app";

 src = ./.;

 cargoBuildOptions = x: x ++ ["-p" "app"];

 nativeBuildInputs = [pkgs.pkg-config];

 PKG_CONFIG_PATH = "${pkgs.openssl.dev}/lib/pkgconfig";

};

 wasm = naerskLibWasm.buildPackage {

 name = "wasm";

 src = ./.;

 cargoBuildOptions = x: x ++ ["-p" "wasm"];

 copyLibs = true;

 CARGO_BUILD_TARGET = wasmTarget;

};

}

It’s nice that naersk lets us use CARGO_BUILD_TARGET , so we don’t have to
override the build and install phase, like we had to for buildRustPackage. Even
nicer is that naersk splits the app code and the third-party dependencies into
separate derivations, so as long as we don’t update any dependencies, builds
are fast. We can even modify our local cats dependency without triggering a
full build.

However, like before, we can not get the build to work unless our packages
are structured inside a Cargo workspace. This is a known issue.

We can add crane to our flake inputs like this:

CRANE

https://github.com/nix-community/naersk/issues/133
https://github.com/nix-community/naersk/issues/133

crane.url = "github:ipetkov/crane";

As crane is heavily inspired by naersk, it is no surprise that it works very
similarly:

let

...

 craneLib = crane.mkLib pkgs;

 craneLibWasm = craneLib.overrideToolchain rustWithWasmTarget;

in

{

 app = craneLib.buildPackage {

 src = ./.;

 cargoExtraArgs = "-p app";

 nativeBuildInputs = [pkgs.pkg-config];

 PKG_CONFIG_PATH = "${pkgs.openssl.dev}/lib/pkgconfig";

};

 wasm = craneLibWasm.buildPackage {

 src = ./.;

 cargoExtraArgs = "-p wasm --target ${wasmTarget}";

Override crane's use of --workspace, which tries to build everything.
 cargoCheckCommand = "cargo check --release";

 cargoBuildCommand = "cargo build --release";

};

}

Out of the box, the WebAssembly build doesn’t work because crane runs Cargo
with the --workspace flag, which means that it tries to also build the native
app to WebAssembly. Luckily, we can override this using cargoCheckCommand
and cargoBuildCommand .

Like naersk, crane splits the app code and the third-party dependencies into
separate derivations, allowing for fast builds as long as dependencies aren’t

updated. And, once again, trying to build separate packages outside of a
workspace fails.

Where crane is trying to improve on naersk is to make it easier to compose
di�erent Cargo invocations as completely separate derivations. For example,
you can have one derivation that builds all your dependencies, and additional
derivations for running Clippy, building the code, running tests with code
coverage, etc. These can of course depend on each other, and Nix will make
sure that you don’t have to wait for output that has already been built.

Let’s now take a look at cargo2nix. Like before, we need to add a flake input:

cargo2nix.url = "github:cargo2nix/cargo2nix/release-0.11.0";

However, due to a fix we’ll come back to in a moment, we’re using our own fork
for now.

While the other tools parsed Cargo.lock implicitly, with cargo2nix we need to
explicitly generate a Cargo.nix file like this:

nix run github:cargo2nix/cargo2nix

git add Cargo.nix

Building the native app is quite straightforward:

let

 pkgs = import nixpkgs {

inherit system;

 overlays = [cargo2nix.overlays.default];

};

CARGO2NIX

https://discourse.nixos.org/t/introducing-crane-composable-and-cacheable-builds-with-cargo/17275/4
https://discourse.nixos.org/t/introducing-crane-composable-and-cacheable-builds-with-cargo/17275/4
https://discourse.nixos.org/t/introducing-crane-composable-and-cacheable-builds-with-cargo/17275/4
https://discourse.nixos.org/t/introducing-crane-composable-and-cacheable-builds-with-cargo/17275/4
https://github.com/tweag/rust-wasm-nix/blob/master/variants/cargo2nix-workspace/flake.nix
https://github.com/tweag/rust-wasm-nix/blob/master/variants/cargo2nix-workspace/flake.nix

 rustPkgs = pkgs.rustBuilder.makePackageSet {

 rustVersion = "1.61.0";

 packageFun = import ./Cargo.nix;

};

in {

 app = (rustPkgs.workspace.app {}).bin;

}

Building the WebAssembly should also have been as easy as this:

rustWithWasmTarget = pkgs.rust-bin.stable.${rustVersion}.default.override

 targets = [wasmTarget];

};

rustPkgsWasm = pkgs.rustBuilder.makePackageSet {

 rustVersion = "1.61.0";

 packageFun = import ./Cargo.nix;

 rustToolchain = rustWithWasmTarget;

 target = wasmTarget;

};

Unfortunately, this exposes a bug in the way cargo2nix handles target-
specific dependencies. It skips native-only dependencies if the host platform
is wasm32 , but it should really check the target platform. We can work around
this by specifying a cross-system that is wasm32 , and the one supported by
Nix is wasm32-wasi :

pkgsWasm = import nixpkgs {

inherit system;

 crossSystem = {

 system = "wasm32-wasi";

 useLLVM = true;

};

 overlays = [cargo2nix.overlays.default];

https://github.com/cargo2nix/cargo2nix/issues/286
https://github.com/cargo2nix/cargo2nix/issues/286

};

There is another problem you may run into, because cargo2nix now thinks
you’re building for wasm32-unknown-wasi , and not wasm32-unknown-unknown .
Your Cargo.nix file may contain dependencies like this:

${ if hostPlatform.parsed.kernel.name == "wasi" then "getrandom" else

This means we are now getting dependencies we are not supposed to get,
and which fail to build. We need to guide cargo2nix to the correct kernel name
here:

packageFun = attrs: import ./Cargo.nix (attrs // {

 hostPlatform = attrs.hostPlatform // {

 parsed = attrs.hostPlatform.parsed // {

 kernel.name = "unknown";

};

};

});

You may wonder if we cannot similarly work around the problem mentioned
above, and altogether skip the crossSystem config, by simply setting
cpu.name = "wasm32" . Unfortunately, I have not had success with that.

Anyway, we can finally get our WebAssembly:

wasm = (rustPkgsWasm.workspace.wasm {}).out;

This wouldn’t actually produce any WebAssembly output, but with the help
from my colleagues Alexei Drake and Yorick van Pelt we were able to submit a
fix.

https://github.com/cargo2nix/cargo2nix/pull/283
https://github.com/cargo2nix/cargo2nix/pull/283
https://github.com/cargo2nix/cargo2nix/pull/283
https://github.com/cargo2nix/cargo2nix/pull/283

And for the first time, we managed to also build the code as separate crates,
not within a common workspace. All we needed to do was to delete the top-
level Cargo files, generate Cargo.lock and Cargo.nix for both /app and /
wasm , and update the references to Cargo.nix in default.nix .

Like naersk and crane, our own code and the dependencies are split into
separate derivations, but cargo2nix doesn’t stop there. All crates get their
own derivation, which means that if we update only one dependency (in
Cargo.lock and subsequently in Cargo.nix), we may still enjoy a quick build.

This is helpful if just one or two of your dependencies change frequently. Or if
you need to somehow break a very long CI build into stages, although you
would have to be a little creative, because cargo2nix doesn’t have any
support for building just some dependencies.

There are even more tools for building Rust code with Nix, but they were not
up to the challenge, for various reasons.

• carnix is an old tool that is no longer maintained, and superseded by
crate2nix.

• crate2nix also seems to not be maintained much any more, and it doesn’t
support building WebAssembly anyway.

• dream2nix is a very exciting project that aims to unify the many “2nix”
converters into a common framework. However, it doesn’t seem to be
mature enough for our purposes, with little documentation and
apparently no way to specify a WebAssembly build target.

• nocargo is another option under development, that, like cargo2nix, will
build one derivation per crate. But, as its name suggests, it will not
depend on Cargo at all, only Rustc. Unfortunately, it wasn’t able to build
our sample code. While it seemingly built the Cats library and the native
app without issue, the resulting app output was empty. And the

OTHER OPTIONS

https://github.com/kolloch/crate2nix
https://github.com/kolloch/crate2nix
https://github.com/kolloch/crate2nix/issues/112
https://github.com/kolloch/crate2nix/issues/112
https://github.com/kolloch/crate2nix/issues/112
https://github.com/kolloch/crate2nix/issues/112
https://github.com/nix-community/dream2nix
https://github.com/nix-community/dream2nix
https://github.com/oxalica/nocargo
https://github.com/oxalica/nocargo

WebAssembly build failed with error messages. Also, having path
dependencies outside of a workspace wasn’t supported.

Which tool should you use, then? As always, it depends. If you have a simple
app and just want to package it with Nix, buildRustPackage may be all you
need. But I think you’ll soon appreciate the faster builds that the other tools
provide by splitting your code and dependencies into separate derivations.
Crane does seem to be an improvement over naersk, and because it
delegates all the hard parts to Cargo, it can stay clear of all the problems that
cargo2nix will need to handle.

If, for any reason, you need to split your dependencies into one derivation per
crate, then cargo2nix seems to be your only option. The downsides are that
you need to manage a Cargo.nix file, and that you may run into bugs if you
have complicated builds.

Nocargo looks promising, and may well become the preferred choice when it
has matured.

BEHIND THE SCENES

Tor is a Rust developer at Tweag who lives in Trondheim, Norway
with his wife and two sons.

Sustainable so�ware development with Nix

CONCLUSION

TOR HOVLAND

TECH GROUP

Learn more!

Research, create, improve and maintain programming
languages and their tooling to enhance developer productivity
and to deliver reliable, maintainable, correct and performant
so�ware with minimum e�ort.

Learn more!

If you enjoyed this article, you might be interested in joining the Tweag team.

This article is licensed under a Creative Commons Attribution 4.0 International
license.

← Optimizing Nickel's Array Contracts Four months into The Nix Book →

COMPANY

About
Open Source
Careers
Contact Us

WHAT WE DO

Strategy
Product Development
Platform Modernization
Digital Operations
Work

NIX

PROGRAMMING
LANGUAGES AND

COMPILERS

TECH GROUP

https://www.tweag.io/group/nix/
https://www.tweag.io/group/nix/
https://www.tweag.io/group/nix/
https://www.tweag.io/group/nix/
https://www.tweag.io/group/nix/
https://www.tweag.io/group/nix/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/careers
https://www.tweag.io/careers
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.tweag.io/blog/2022-09-20-optimizing-nickel-array-contracts/
https://www.tweag.io/blog/2022-09-20-optimizing-nickel-array-contracts/
https://www.tweag.io/blog/2022-09-20-optimizing-nickel-array-contracts/
https://www.tweag.io/blog/2022-09-20-optimizing-nickel-array-contracts/
https://www.tweag.io/blog/2022-09-29-the-nix-book-report/
https://www.tweag.io/blog/2022-09-29-the-nix-book-report/
https://www.tweag.io/blog/2022-09-29-the-nix-book-report/
https://www.tweag.io/blog/2022-09-29-the-nix-book-report/
https://moduscreate.com/about/
https://moduscreate.com/about/
https://moduscreate.com/about/
https://www.tweag.io/opensource
https://www.tweag.io/opensource
https://www.tweag.io/opensource
https://moduscreate.com/careers
https://moduscreate.com/careers
https://moduscreate.com/careers
https://www.tweag.io/contact
https://www.tweag.io/contact
https://www.tweag.io/contact
https://moduscreate.com/services/strategy/
https://moduscreate.com/services/strategy/
https://moduscreate.com/services/strategy/
https://moduscreate.com/services/product-development/
https://moduscreate.com/services/product-development/
https://moduscreate.com/services/product-development/
https://moduscreate.com/services/platform-modernization/
https://moduscreate.com/services/platform-modernization/
https://moduscreate.com/services/platform-modernization/
https://moduscreate.com/services/digital-operations/
https://moduscreate.com/services/digital-operations/
https://moduscreate.com/services/digital-operations/
https://moduscreate.com/work/
https://moduscreate.com/work/
https://moduscreate.com/work/

INSIGHTS

Modus Blog
Ospo Blog
Research
Innovation podcast

CONNECT WITH US

© 2024 Modus Create, LLC Privacy Policy Sitemap

https://moduscreate.com/insights/blog/
https://moduscreate.com/insights/blog/
https://moduscreate.com/insights/blog/
https://www.tweag.io/blog
https://www.tweag.io/blog
https://www.tweag.io/blog
https://www.tweag.io/research
https://www.tweag.io/research
https://www.tweag.io/research
https://moduscreate.com/insights/conversations-with-chief-innovators/
https://moduscreate.com/insights/conversations-with-chief-innovators/
https://moduscreate.com/insights/conversations-with-chief-innovators/
https://github.com/tweag
https://github.com/tweag
https://www.youtube.com/c/tweag
https://www.youtube.com/c/tweag
https://twitter.com/tweagio
https://twitter.com/tweagio
https://www.linkedin.com/company/tweag-i-o/
https://www.linkedin.com/company/tweag-i-o/
https://bsky.app/profile/tweag.io
https://bsky.app/profile/tweag.io
https://social.tweag.io/@tweag
https://social.tweag.io/@tweag
https://moduscreate.com/privacy-policy/
https://moduscreate.com/privacy-policy/
https://moduscreate.com/privacy-policy/
https://moduscreate.com/sitemap/
https://moduscreate.com/sitemap/
https://moduscreate.com/sitemap/

