
BUILDING A RUST WORKSPACE WITH
BAZEL
27 July 2023 — by Ilya Polyakovskiy

 bazel cargo rust

The vast majority of the Rust projects are using Cargo as a build tool. Cargo is
great when you are developing and packaging a single Rust library or
application, but when it comes to a fast-growing and complex workspace, one
could be attracted to the idea of using a more flexible and scalable build
system. Here is a nice article elaborating on why Cargo should not be
considered as a such a build system. But there are a handful of reasons to
consider Bazel:

• Bazel’s focus on hermeticity and aggressive caching allows us to improve
median build and test times, especially for a single Pull Request against a
relatively large codebase.

• Remote caching and execution can significantly reduce the amount of
Rust compilation done locally on developers’ machines.

• The polyglot nature of Bazel allows expressing connections between Rust
code and targets written in other languages in a much more simple and
straightforward manner. Be it building Python packages from Rust code
with PyO3, connecting JavaScript code with WASM compiled from Rust, or
managing Rust crates incorporating FFI calls from a C-library; with Bazel
you have a solid solution.

https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/bazel
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/cargo
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://www.tweag.io/blog/tags/rust
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
https://www.tweag.io/
https://www.tweag.io/

That’s all great, but how am I going to make my Cargo workspace use Bazel? To
show this, I’m going to take an open source Rust project and guide you
through the steps to migrate it to Bazel.

I chose ripgrep, since it is well-known in the Rust community. The project is
organized as a Cargo workspace consisting of several crates:

[[bin]]

bench = false

path = "crates/core/main.rs"

name = "rg"

[[test]]

name = "integration"

path = "tests/tests.rs"

[workspace]

members = [

"crates/globset",

"crates/grep",

"crates/cli",

"crates/matcher",

"crates/pcre2",

"crates/printer",

"crates/regex",

"crates/searcher",

"crates/ignore",

]

Let’s see what it will take to build and test this workspace with Bazel.

RIPGREP

https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep

Luckily, there is a Bazel extension for building Rust projects: rules_rust . It
supports handling Rust toolchains, building Rust libraries, binaries and
proc_macro crates, running build.rs scripts, automatically converting

Cargo dependencies to Bazel and a lot more.

First, we’ll create a Bazel workspace. If you are not familiar with Bazel and Bazel
workspaces, we have an article on the Tweag blog covering this topic.

If you would like to follow along, you can use the ripgrep fork here, which is
based o� of commit 4fcb1b2202 of the upstream project. The builds were
tested with Bazel version 6.1.2.

So, let’s start with creating a WORKSPACE file and importing rules_rust :

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

http_archive(

 name = "rules_rust",

 sha256 = "48e715be2368d79bc174efdb12f34acfc89abd7ebfcbffbc02568fcb9ad91536"

 urls = ["https://github.com/bazelbuild/rules_rust/releases/download/0.24.0/rules_

)

load("@rules_rust//rust:repositories.bzl", "rules_rust_dependencies"

rules_rust_dependencies()

rust_register_toolchains(

 edition = "2018",

)

Here we’ve specified the edition. Editions are used by the Rust team to
perform changes which are backwards incompatible, you can leave it
unspecified and just use the latest one. ripgrep is using “2018”, and we are
doing the same. There is also a standard mechanism of distributing and
updating the Rust toolchain through channels. rust_register_toolchains

SETTING UP A WORKSPACE

http://bazelbuild.github.io/rules_rust
http://bazelbuild.github.io/rules_rust
http://bazelbuild.github.io/rules_rust
https://www.tweag.io/blog/2020-05-06-convert-haskell-project-to-bazel
https://www.tweag.io/blog/2020-05-06-convert-haskell-project-to-bazel
https://github.com/k1nkreet/ripgrep/tree/ae6f18e03a67ecf6a3a50dafb1570d97011875b9
https://github.com/k1nkreet/ripgrep/tree/ae6f18e03a67ecf6a3a50dafb1570d97011875b9
https://doc.rust-lang.org/edition-guide/editions
https://doc.rust-lang.org/edition-guide/editions
https://rust-lang.github.io/rustup/concepts/channels.html
https://rust-lang.github.io/rustup/concepts/channels.html
http://bazelbuild.github.io/rules_rust/flatten.html#rust_register_toolchains
http://bazelbuild.github.io/rules_rust/flatten.html#rust_register_toolchains
http://bazelbuild.github.io/rules_rust/flatten.html#rust_register_toolchains

allows us to set the Rust toolchain version for all three channels (stable, beta
and nightly) we want to use for our workspace. Regarding the rustc version,
if we look at the ripgrep CI configuration, we notice it uses the nightly
toolchain pinned by the dtolnay/rust-toolchain Github action.
rust_register_toolchains allows us to omit the versions attribute. In this

case, we will end up using the stable and nightly versions pinned by the
version of rules_rust . One could reason this behavior is closer to what is
done by ripgrep ’s CI configuration, but I would rather suggest being more
explicit for the sake of reproducibility and clarity:

rust_register_toolchains(

 edition = "2018",

 versions = [

"1.70.0",

"nightly/2023-06-01",

],

)

Here we’ve defined explicitly which versions of stable and nightly Rust we
want to use in our build. By default, Bazel invokes rustc from the stable
channel. For switching to nightly , we need to invoke the build with --

@rules_rust//rust/toolchain/channel=nightly flag. To make nightly default,
we can create a .bazelrc file inside the repository root and add this line:

build --@rules_rust//rust/toolchain/channel=nightly

Cargo makes it easy to specify the dependencies and build your Rust project
on top of them. In Bazel we also need to explicitly declare all the external
dependencies and it would be extremely painful to manually write BUILD files
for every Rust crate our project depends on. Luckily, there are some tools to
generate Bazel targets from Cargo.lock files, for external dependencies. The

EXTERNAL DEPENDENCIES

https://github.com/BurntSushi/ripgrep/blob/304a60e8e9d4b2a42dc3dfb1ba4cef6d7bf92515/.github/workflows/ci.yml
https://github.com/BurntSushi/ripgrep/blob/304a60e8e9d4b2a42dc3dfb1ba4cef6d7bf92515/.github/workflows/ci.yml
https://github.com/BurntSushi/ripgrep/blob/304a60e8e9d4b2a42dc3dfb1ba4cef6d7bf92515/.github/workflows/ci.yml
https://github.com/BurntSushi/ripgrep/blob/304a60e8e9d4b2a42dc3dfb1ba4cef6d7bf92515/.github/workflows/ci.yml
https://github.com/dtolnay/rust-toolchain
https://github.com/dtolnay/rust-toolchain
https://github.com/dtolnay/rust-toolchain
https://github.com/dtolnay/rust-toolchain

rules_rust documentation mentions two: crate_universe and cargo-raze .
Since crate_universe is a successor to cargo-raze , included into the
rules_rust package, I’m going to focus on this tool.

To configure it we need to add the following to our WORKSPACE file:

load("@rules_rust//crate_universe:repositories.bzl", "crate_universe_dependencies"

crate_universe_dependencies()

load("@rules_rust//crate_universe:defs.bzl", "crates_repository")

crates_repository(

 name = "crate_index",

 cargo_lockfile = "//:Cargo.lock",

 lockfile = "//:cargo-bazel-lock.json",

 manifests = [

"//:Cargo.toml",

"//:crates/globset/Cargo.toml",

"//:crates/grep/Cargo.toml",

"//:crates/cli/Cargo.toml",

"//:crates/matcher/Cargo.toml",

"//:crates/pcre2/Cargo.toml",

"//:crates/printer/Cargo.toml",

"//:crates/regex/Cargo.toml",

"//:crates/searcher/Cargo.toml",

"//:crates/ignore/Cargo.toml",

],

)

load("@crate_index//:defs.bzl", "crate_repositories")

crate_repositories()

crates_repository creates a repository_rule containing targets for all
external dependencies explicitly mentioned in the Cargo.toml files as
dependencies. We need to specify several attributes:

http://bazelbuild.github.io/rules_rust/crate_universe.html
http://bazelbuild.github.io/rules_rust/crate_universe.html
http://bazelbuild.github.io/rules_rust/crate_universe.html
https://github.com/google/cargo-raze
https://github.com/google/cargo-raze
https://github.com/google/cargo-raze

• cargo_lockfile : the actual Cargo.lock of the Cargo workspace.

• lockfile : this is the file used by crate_universe to store metadata
gathered from Cargo files. Initially it should be created empty, then it will
be automatically updated and maintained by crate_universe .

• manifests : the list of Cargo.toml files in the workspace.

Let’s create an empty lock file for crate_universe and the empty
BUILD.bazel file for a so far empty Bazel package:

$ touch cargo-bazel-lock.json BUILD.bazel

Now we can run bazel sync to pin cargo dependencies as Bazel targets :

$ CARGO_BAZEL_REPIN=1 bazel sync --only=crate_index

You should run this command whenever you update dependencies in Cargo
files. We can also use a Bazel query to examine targets generated by
crate_universe :

$ bazel query @crate_index//...

@crate_index//:aho-corasick

@crate_index//:base64

@crate_index//:bstr

@crate_index//:bytecount

@crate_index//:clap

@crate_index//:crossbeam-channel

@crate_index//:encoding_rs

@crate_index//:encoding_rs_io

@crate_index//:fnv

@crate_index//:glob

@crate_index//:jemallocator

@crate_index//:lazy_static

@crate_index//:log

1

https://bazel.build/query/guide
https://bazel.build/query/guide

@crate_index//:memchr

@crate_index//:memmap

@crate_index//:pcre2

@crate_index//:regex

@crate_index//:regex-automata

@crate_index//:regex-syntax

@crate_index//:same-file

@crate_index//:serde

@crate_index//:serde_derive

@crate_index//:serde_json

@crate_index//:srcs

@crate_index//:termcolor

@crate_index//:thread_local

@crate_index//:walkdir

@crate_index//:winapi-util

Here we can see that the @crate_index repository consists of targets for
dependencies explicitly mentioned in the Cargo files.

Now it’s time to build some crates in our workspace. Let’s look at the matcher
crate for example, we will handle the rest of the crates the same way.

[package]

name = "grep-matcher"

version = "0.1.6" #:version
authors = ["Andrew Gallant <jamslam@gmail.com>"]

description = """

A trait for regular expressions, with a focus on line oriented search.

"""

documentation = "https://docs.rs/grep-matcher"

homepage = "https://github.com/BurntSushi/ripgrep/tree/master/crates/matcher"

repository = "https://github.com/BurntSushi/ripgrep/tree/master/crates/matcher"

WRITING BUILD FILES AND CARGO-BAZEL
PARITY

readme = "README.md"

keywords = ["regex", "pattern", "trait"]

license = "Unlicense OR MIT"

autotests = false

edition = "2018"

[dependencies]

memchr = "2.1"

[dev-dependencies]

regex = "1.1"

[[test]]

name = "integration"

path = "tests/tests.rs"

To build this crate with Bazel we create crate/matcher/BUILD.bazel :

load("@rules_rust//rust:defs.bzl", "rust_library")

rust_library(

 name = "grep-matcher",

 srcs = glob([

"src/**/*.rs",

]),

 deps = [

 "@crate_index//:memchr,

],

 proc_macro_deps = [],

 visibility = ["//visibility:public"],

)

Here we simply define the Rust library according to the documentation. Bazel
requires us to specify all dependencies explicitly, and since we are generating
a @crate_index repository based on Cargo files, to add new dependencies,
we’ll have to change Cargo files, run bazel sync and update BUILD files

http://bazelbuild.github.io/rules_rust/defs.html#rust_library
http://bazelbuild.github.io/rules_rust/defs.html#rust_library

accordingly. This will create two sources of the same information that need to
be synchronized manually, which is inconvenient and error-prone. Luckily,
there are some handy functions in crate_universe to address this. We can
rewrite the same BUILD file like this:

load("@crate_index//:defs.bzl", "aliases", "all_crate_deps")

load("@rules_rust//rust:defs.bzl", "rust_library")

rust_library(

 name = "grep-matcher",

 srcs = glob([

"src/**/*.rs",

]),

 aliases = aliases(),

 deps = all_crate_deps(),

 proc_macro_deps = all_crate_deps(

 proc_macro = True,

),

 visibility = ["//visibility:public"],

)

We don’t need to specify dependencies explicitly any more. The
all_crate_deps function returns the list of dependencies for the crate

defined in the same directory as a BUILD file this function was called from,
based on the gathered metadata saved in the cargo-bazel-lock.json file. To
see the BUILD file with these functions expanded one could run:

$ bazel query //crates/matcher:grep-matcher --output=build

rust_library(

 name = "grep-matcher",

 visibility = ["//visibility:public"],

 aliases = {},

 deps = ["@crate_index__memchr-2.5.0//:memchr"],

 proc_macro_deps = [],

 srcs = ["//crates/matcher:src/interpolate.rs", "//crates/matcher:src/lib.rs"

)

We need aliases = aliases() here in case the crate is using dependency
renaming. There is an example of it in the searcher crate:

memmap = { package = "memmap2", version = "0.5.3" }

Otherwise we would have to write explicitly:

aliases = {

"@crate_index//:memmap2": "memmap",

}

This allows us to have Cargo files as a single source of external dependencies,
so when we need to add a new dependency, for example, we could just use
cargo add and repin Bazel dependencies with CARGO_BAZEL_REPIN=1 bazel
sync --only=crate_index . An important limitation is that crate_universe

ignores path dependencies. This means we need to manually specify internal
dependencies inside the workspace. We’ll see how this works later.

Next, it’s time to migrate the tests. Crate grep-matcher has two types of tests:
unit and integration. Unit tests are defined in the source files of each library,
while integration tests have their own source files. Let’s migrate the unit tests
first:

https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#renaming-dependencies-in-cargotoml
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#renaming-dependencies-in-cargotoml
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#renaming-dependencies-in-cargotoml
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#renaming-dependencies-in-cargotoml

load("@rules_rust//rust:defs.bzl", "rust_test")

rust_test(

 name = "tests",

 crate = ":grep-matcher",

 aliases = aliases(

 normal_dev = True,

 proc_macro_dev = True,

),

 deps = all_crate_deps(

 normal_dev = True,

),

 proc_macro_deps = all_crate_deps(

 proc_macro_dev = True,

),

)

We are using the crate attribute instead of srcs here because those tests
don’t have their own sources.

And here is a declaration for integration tests:

rust_test(

 name = "integration",

 srcs = glob([

"tests/**/*.rs",

]),

 crate_root = "tests/tests.rs",

 deps = all_crate_deps(

 normal_dev = True

) + [

":grep-matcher",

],

 proc_macro_deps = all_crate_deps(

 proc_macro_dev = True

),

)

Here we’ve added the dependency on the crate and used crate_root since
the name of the target and the name of the main file are di�erent.

Let’s look at the root Cargo.toml file:

build = "build.rs"

...

[[bin]]

bench = false

path = "crates/core/main.rs"

name = "rg"

...

[[test]]

name = "integration"

path = "tests/tests.rs"

...

[dependencies]

...

grep = { version = "0.2.12", path = "crates/grep" }

ignore = { version = "0.4.19", path = "crates/ignore" }

First, we need to deal with Cargo invoking build.rs before compiling the
binary. And again, there is a rule created specifically for this in rules_rust :

load("@rules_rust//cargo:defs.bzl", "cargo_build_script")

cargo_build_script(

 name = "build",

 srcs = [

"build.rs",

"crates/core/app.rs",

],

BUILD AND TEST RIPGREP BINARY

https://bazelbuild.github.io/rules_rust/cargo.html#cargo_build_script
https://bazelbuild.github.io/rules_rust/cargo.html#cargo_build_script

 deps = all_crate_deps(

 normal = True,

 build = True,

) + [

"//crates/grep",

"//crates/ignore",

],

 crate_root = "build.rs",

)

The build.rs file imports code from crates/core/app.rs to generate shell
completions for example, which in turn depends on some crates from the
workspace. Now we can build and test the rg binary:

rust_binary(

 name = "rg",

 srcs = glob([

"crates/core/**/*.rs",

]),

 aliases = aliases(),

 deps = all_crate_deps() + [

"//crates/grep",

"//crates/ignore",

":build",

],

 proc_macro_deps = all_crate_deps(

 proc_macro = True,

),

 visibility = ["//visibility:public"],

)

Let’s see how it works:

$ bazel build //:rg

INFO: Analyzed target //:rg (156 packages loaded, 2780 targets configured).

INFO: Found 1 target...

Target //:rg up-to-date:

 bazel-bin/rg

INFO: Elapsed time: 111.921s, Critical Path: 101.86s

INFO: 238 processes: 115 internal, 123 linux-sandbox.

INFO: Build completed successfully, 238 total actions

$./bazel-bin/rg

error: The following required arguments were not provided:

 <PATTERN>

USAGE:

 rg [OPTIONS] PATTERN [PATH ...]

 rg [OPTIONS] -e PATTERN ... [PATH ...]

 rg [OPTIONS] -f PATTERNFILE ... [PATH ...]

 rg [OPTIONS] --files [PATH ...]

 rg [OPTIONS] --type-list

 command | rg [OPTIONS] PATTERN

 rg [OPTIONS] --help

 rg [OPTIONS] --version

For more information try --help

Voilà! You can also find artifacts created by build.rs in the ./bazel-bin/
build.out_dir directory.

Now we can add top-level tests in the same way we did for grep-matcher and
other crates, with the only di�erence being: the rg integration tests are
using some data files in tests/data directory, so we need to specify this
explicitly in the BUILD file:

rust_test(

 name = "tests",

 crate = ":rg",

 deps = all_crate_deps(

 normal_dev = True,

),

 proc_macro_deps = all_crate_deps(

 proc_macro_dev = True,

),

)

rust_test(

 name = "integration",

 srcs = glob([

"tests/**/*.rs",

]),

 deps = all_crate_deps(

 normal = True,

 normal_dev = True,

),

 data = glob([

"tests/data/**",

]),

 proc_macro_deps = all_crate_deps(

 proc_macro_dev = True

),

 crate_root = "tests/tests.rs",

)

Now we can execute all our tests:

$ bazel test //...

One of Bazel’s main concerns is the hermeticity of builds. It means Bazel aims
to always return the same output for the same input source code and product
configuration by isolating the build from changes to the host system. One of
the major sources of non-hermetic builds in Rust, in turn, is Cargo build
scripts executed when compiling dependencies. For example, crates with

IMPROVING HERMETICITY

https://bazel.build/basics/hermeticity
https://bazel.build/basics/hermeticity
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html

Rust bindings to some well-known C-libraries usually have a build script that
looks up a dynamic library to link globally in your system. Usual practice for
such libraries is to use pkg-config crate for this lookup, so if you have pkg-
config somewhere in the dependency chain, chances are high that your build
is not hermetic. crate_universe generates cargo_build_script targets for
dependencies automatically, so we’ll have the same problem in our Bazel
build. Let’s look at what we have so far:

$ bazel query "deps(//:rg)" | grep pkg_config

@crate_index__pkg-config-0.3.27//:pkg_config

Okay, let’s try to figure out which library brings in this dependency:

$ bazel query "allpaths(//:rg, @crate_index__pkg-config-0.3.27//:pkg_config)"

//:build

//:build_

//:rg

//crates/grep:grep

//crates/pcre2:grep-pcre2

@crate_index__pcre2-0.2.3//:pcre2

@crate_index__pcre2-sys-0.2.5//:build_script_build

@crate_index__pcre2-sys-0.2.5//:pcre2-sys_build_script

@crate_index__pcre2-sys-0.2.5//:pcre2-sys_build_script_

@crate_index__pcre2-sys-0.2.5//:pcre2_sys

@crate_index__pkg-config-0.3.27//:pkg_config

Now it’s clear there is only one library using it: pcre2-sys . If we look at its
build script we’ll see that it looks for libpcre2 unless the environment
variable PCRE2_SYS_STATIC is set. In this case, it builds the static library
libpcre2.a from sources and links with it. This means that in order to make

our build hermetic, we need to pass this environment variable to the build
script automatically generated by crate_universe for pcre2-sys .
Fortunately, there is a tool for this in crate_universe . Let’s go back to the
WORKSPACE file and change it a bit:

https://crates.io/crates/pkg-config/0.3.27
https://crates.io/crates/pkg-config/0.3.27
https://crates.io/crates/pkg-config/0.3.27
https://crates.io/crates/pkg-config/0.3.27
https://crates.io/crates/pcre2-sys
https://crates.io/crates/pcre2-sys
https://crates.io/crates/pcre2-sys
https://github.com/BurntSushi/rust-pcre2/blob/5c5d720dd69e257315e4ac340b840736c9839fb0/pcre2-sys/build.rs
https://github.com/BurntSushi/rust-pcre2/blob/5c5d720dd69e257315e4ac340b840736c9839fb0/pcre2-sys/build.rs
https://bazelbuild.github.io/rules_rust/crate_universe.html#crateannotation
https://bazelbuild.github.io/rules_rust/crate_universe.html#crateannotation

load("@rules_rust//crate_universe:defs.bzl", "crates_repository", "crate"

crates_repository(

 name = "crate_index",

 cargo_lockfile = "//:Cargo.lock",

 lockfile = "//:cargo-bazel-lock.json",

 manifests = [

"//:Cargo.toml",

"//:crates/globset/Cargo.toml",

"//:crates/grep/Cargo.toml",

"//:crates/cli/Cargo.toml",

"//:crates/matcher/Cargo.toml",

"//:crates/pcre2/Cargo.toml",

"//:crates/printer/Cargo.toml",

"//:crates/regex/Cargo.toml",

"//:crates/searcher/Cargo.toml",

"//:crates/ignore/Cargo.toml",

],

 annotations = {

"pcre2-sys": [crate.annotation(

 build_script_env = {

"PCRE2_SYS_STATIC": "1",

}

)],

},

)

Since Rust 1.24 rustc has incremental compilation feature. Unfortunately, it is
not supported in rules_rust yet, which makes a crate the smallest possible
compilation unit for Rust project in Bazel. For some crates, it could
significantly increase the compilation time for an arbitrary code change.
Nevertheless there is some ongoing work in rules_rust to support

IMPORTANT NOTE ABOUT
INCREMENTALITY

https://blog.rust-lang.org/2018/02/15/Rust-1.24.html
https://blog.rust-lang.org/2018/02/15/Rust-1.24.html

incremental features of rustc : here, here and here

Now we have a fully hermetic Bazel build for ripgrep . You can find the
complete implementation here. It keeps Cargo files as a source of truth
regarding external dependencies and project structure, which helps with
managing those dependencies or IDE setup, since IDEs can use Cargo files to
configure themselves. There is still work to be done to automate path

dependencies and there are some projects out there aiming for that. Maybe
we’ll look at it closer next time. Stay tuned!

1. You can find more details about this command here↩

2. Well, technically not completely hermetic; Bazel still picks up CC toolchain
from the system. There are some resources regarding hermetic CC
toolchains in Bazel here, here and here.↩

BEHIND THE SCENES

Research, create, improve and maintain programming
languages and their tooling to enhance developer productivity
and to deliver reliable, maintainable, correct and performant
so�ware with minimum e�ort.

CONCLUSION
2

ILYA POLYAKOVSKIY

TECH GROUP

https://nikhilism.com/post/2020/bazel-persistent-worker-rust
https://nikhilism.com/post/2020/bazel-persistent-worker-rust
https://github.com/bazelbuild/rules_rust/pull/667
https://github.com/bazelbuild/rules_rust/pull/667
https://github.com/bazelbuild/rules_rust/pull/684
https://github.com/bazelbuild/rules_rust/pull/684
https://github.com/k1nkreet/ripgrep/tree/bazel-build
https://github.com/k1nkreet/ripgrep/tree/bazel-build
https://github.com/Calsign/gazelle_rust
https://github.com/Calsign/gazelle_rust
https://bazelbuild.github.io/rules_rust/crate_universe.html#repinning--updating-dependencies
https://bazelbuild.github.io/rules_rust/crate_universe.html#repinning--updating-dependencies
https://blog.aspect.dev/hermetic-c-toolchain
https://blog.aspect.dev/hermetic-c-toolchain
https://github.com/tweag/rules_nixpkgs
https://github.com/tweag/rules_nixpkgs
https://jakstys.lt/2022/how-uber-uses-zig/
https://jakstys.lt/2022/how-uber-uses-zig/

Learn more!

Correct, e�cient, and reliable builds are critical for developers
to work and collaborate e�ectively.

Learn more!

If you enjoyed this article, you might be interested in joining the Tweag team.

This article is licensed under a Creative Commons Attribution 4.0 International
license.

← How to Prevent GHC from Inferring Types with Undesirable Constraints

Supercharging your Rust static executables with mimalloc →

COMPANY

About
Open Source
Careers
Contact Us

WHAT WE DO

Strategy
Product Development
Platform Modernization
Digital Operations
Work

INSIGHTS

Modus Blog
Ospo Blog

PROGRAMMING
LANGUAGES AND

COMPILERS

SCALABLE BUILDS

TECH GROUP

https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/programming-languages-and-compilers/
https://www.tweag.io/group/scalable-builds/
https://www.tweag.io/group/scalable-builds/
https://www.tweag.io/group/scalable-builds/
https://www.tweag.io/group/scalable-builds/
https://www.tweag.io/group/scalable-builds/
https://www.tweag.io/group/scalable-builds/
https://www.tweag.io/careers
https://www.tweag.io/careers
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.tweag.io/blog/2023-07-20-ill-formedness-indicators/
https://www.tweag.io/blog/2023-07-20-ill-formedness-indicators/
https://www.tweag.io/blog/2023-07-20-ill-formedness-indicators/
https://www.tweag.io/blog/2023-07-20-ill-formedness-indicators/
https://www.tweag.io/blog/2023-08-10-rust-static-link-with-mimalloc/
https://www.tweag.io/blog/2023-08-10-rust-static-link-with-mimalloc/
https://www.tweag.io/blog/2023-08-10-rust-static-link-with-mimalloc/
https://www.tweag.io/blog/2023-08-10-rust-static-link-with-mimalloc/
https://moduscreate.com/about/
https://moduscreate.com/about/
https://moduscreate.com/about/
https://www.tweag.io/opensource
https://www.tweag.io/opensource
https://www.tweag.io/opensource
https://moduscreate.com/careers
https://moduscreate.com/careers
https://moduscreate.com/careers
https://www.tweag.io/contact
https://www.tweag.io/contact
https://www.tweag.io/contact
https://moduscreate.com/services/strategy/
https://moduscreate.com/services/strategy/
https://moduscreate.com/services/strategy/
https://moduscreate.com/services/product-development/
https://moduscreate.com/services/product-development/
https://moduscreate.com/services/product-development/
https://moduscreate.com/services/platform-modernization/
https://moduscreate.com/services/platform-modernization/
https://moduscreate.com/services/platform-modernization/
https://moduscreate.com/services/digital-operations/
https://moduscreate.com/services/digital-operations/
https://moduscreate.com/services/digital-operations/
https://moduscreate.com/work/
https://moduscreate.com/work/
https://moduscreate.com/work/
https://moduscreate.com/insights/blog/
https://moduscreate.com/insights/blog/
https://moduscreate.com/insights/blog/
https://www.tweag.io/blog
https://www.tweag.io/blog
https://www.tweag.io/blog

Research
Innovation podcast

CONNECT WITH US

© 2024 Modus Create, LLC Privacy Policy Sitemap

https://www.tweag.io/research
https://www.tweag.io/research
https://www.tweag.io/research
https://moduscreate.com/insights/conversations-with-chief-innovators/
https://moduscreate.com/insights/conversations-with-chief-innovators/
https://moduscreate.com/insights/conversations-with-chief-innovators/
https://github.com/tweag
https://github.com/tweag
https://www.youtube.com/c/tweag
https://www.youtube.com/c/tweag
https://twitter.com/tweagio
https://twitter.com/tweagio
https://www.linkedin.com/company/tweag-i-o/
https://www.linkedin.com/company/tweag-i-o/
https://bsky.app/profile/tweag.io
https://bsky.app/profile/tweag.io
https://social.tweag.io/@tweag
https://social.tweag.io/@tweag
https://moduscreate.com/privacy-policy/
https://moduscreate.com/privacy-policy/
https://moduscreate.com/privacy-policy/
https://moduscreate.com/sitemap/
https://moduscreate.com/sitemap/
https://moduscreate.com/sitemap/

