
Just use just

OMG, the bog is ive! And this is the first artice!

This first artice wi be about Just a command-ine too I recenty discovered that

immediatey became essentia in many work projects. Since it's a too written in Rust, it's

fast, it's we designed and documented, it features coored output, and it's an essentia

step in your termina's hypsterization process!

Let's suppose you've just depoyed your appication via scp (sigh!) on one of your work's

machines. Maybe your appication was aready buit using toos ike Decine, so it's

aready capabe of parsing command-ine options and fags and printing a compete hep

ike:

$ foo --help

Usage:

 foo schedule

 foo encrypt

 foo decrypt

foo tool, it can encrypt and decrypt files and schedule operations

Options and flags:

 --help

 Display this help text.

Subcommands:

 schedule

 schedules encryptions/decriptions

 encrypt

 encrypts files

 decrypt

 decrypts files

But et's add a sow-changing configuration to the scenario, which changes so often that

it doesn't justify a refactor to add a ibrary ike Ciris to your code. Maybe some non-

June 02, 2021 · 1364 words · 7 min

TONIOGELA'S

https://toniogela.dev/just/
https://toniogela.dev/just/
https://github.com/casey/just
https://github.com/casey/just
https://ben.kirw.in/decline/
https://ben.kirw.in/decline/
https://cir.is/
https://cir.is/
https://toniogela.dev/
https://toniogela.dev/
https://toniogela.dev/

power users need to change that configuration once a week or month because of

reasons.

What's missing? Maybe there's a oca MySq that needs to be queried for maintenance

operations, or perhaps a remote database/storage/service/whatever that requires another

command-ine too to be interacted with.

This is one of the times in which unmaintained, undocumented, fauty crap ike

maintenance_script.sh or fix_for_prod.sh begins to spread around. In no time, the

situation wi ook simiar to

/home/applicative_account/perform_operation.sh

/home/colleague1/perform_operation_copy.sh

/home/colleague1/old_version/perform_operation_as_root.sh

/home/sre_guy/this_should_fix_everything.sh

/home/random_data_scientist/do_not_run.sh #(ofc it was chmod +x)

90% of them wi have the shebang #!/bin/bash whie the 10% #!/bin/sh . Some of them

wi have zsh commands because there are peope around that uses zsh (ike me) that

forgets that it doesn't share 100% of the syntax with bash (not ike me, I swear).

Most of them wi contain amost the same commands ike

mysql prod_db < maintenance.sql > maintenance_output.dump

or tempatized commands ike

"/foo-${VERSION}/bin/foo"

that depend on environment variabes defined in the .profile of a deeted user.

The ast time you used SheCheck to check the scripts, the inter expoded, and

somewhere in the word, Stephen Bourne suddeny began crying without any apparent

reason.

Just to the rescue
As its Github README states, Just is a handy way to save and run project-specific

commands caed recipes, stored in a fie caed justfile with a syntax inspired by Make.

Here's a tiny exampe:

https://www.shellcheck.net/
https://www.shellcheck.net/
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://github.com/casey/just#just
https://github.com/casey/just#just

build:

 cc *.c -o main

test everything

test-all: build

 ./test --all

run a specific test

test TEST: build

 ./test --test {{TEST}}

Just searches for a justfile in the current directory written in its particuar syntax, so

et's begin creating one with an heo word recipe and et's try to run it:

hello-world:

 echo "Hello World!"

▾ output

$ just hello-world

echo "Hello World!"

Hello World!

As you can see, just shows the command that is about to run before running it, whie we

can't say the same for goba or user-defined alias es in various shes (uness using

something ike set -x for bash). If you want to suppress this behaviour, you can put a @ in

front of the command to hide.

hello-world:

@echo "Hello World!"

▾ output

$ just hello-world

Hello World!

Let's try to create a second recipe with an argument.

hello-world:

@echo "Hello World!"

salute guy:

@echo "Hello {{guy}}!"

▾ output

$ just salute

error: Recipe `salute` got 0 arguments but takes 1

usage:

 just salute guy

$ just salute Tonio

Hello Tonio!

$ just --dry-run salute Tonio

echo "Hello Tonio"

The recipe cannot obviousy run without an argument since that argument is referred to in

the body of the recipe using just syntax {{ argument_or_variable_name }} . If you want to

"debug" the recipe that wi run with the provided arguments, you can use the --dry-run

command-ine fag. This can come in handy if a command is ong and compex and you

have, for exampe, to schedue it in your crontab fie. Just copy it from there.

Arguments are reay powerfu since they can have defaut vaues and can be variadic

(both in the form zero or more or one or more):

hello target="World":

@echo "Hello {{target}}!"

hello-all +targets="Tim": # One or more plus a default value

@echo "Hello to everyone: {{targets}}!"

hello-any *targets: # Zero or more

@echo "Hello {{targets}}!"

▾ output

$ just hello

Hello World!

$ just hello-all

Hello to everyone: Tim!

$ just hello-all "Tim" "Martha" "Lisa"

Hello to everyone: Tim Martha Lisa!

$ just hello-any

Hello !

$ just hello-any "Bob" "Lucas"

Hello Bob Lucas!

We know enough syntax. Let's try to buid a meaningfu exampe for our messed-up work

machine and et's try new features just if we need them (no pun intended).

An amost working exampe

If we inspect the history of our machine, we' notice that most of the commands are foo

invocations with nohup and stdin and stderr redirection into a .log fie. We shoud

consider refactoring the appication, removing a the println s to repace them with a

logger.info , maybe using a ogging framework that automaticay handes og rotation and

simiar.

In the meantime, we can standardize how foo is caed, how the outputs are redirected,

and its execution detached to avoid interactive sessions that might eary terminate if you

cose a termina session.

foo_version := "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"

conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

encrypts 'target' and detaches

encrypt target:

 nohup {{foo_executable}} "encrypt" {{target}} {{conf_file}} &>> {{log_file}} &

decrypts 'target' and detaches

decrypt target:

 nohup {{foo_executable}} "decrypt" {{target}} {{conf_file}} &>> {{log_file}} &

schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

schedule operation:

 nohup {{foo_executable}} "schedule" "{{operation}}" {{conf_file}} &>> {{log_file}} &

Probaby nohup + & is overkiing, but who cares ?)

That's better. We've used variabes to avoid repetitions, tempatized every recipe and

added comments. It woud be nice, though, to directy tai the log_file once a recipe is

aunched and avoid repetitions even more.

foo_version := "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"

conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

_default:

@just --list --unsorted

encrypts 'target' and detaches

encrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

decrypts 'target' and detaches

decrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

schedule operation:

@just _run_detached "schedule" "{{operation}}"

@just tail 20

Follows the log file

tail n="200":

 tail -{{n}}f {{log_file}}

_run_detached command argument:

 nohup {{foo_executable}} {{command}} {{argument}} {{conf_file}} &>> {{log_file}} &

Nice, we've used many features of just, in particuar recipes whose name begins with an

underscore are caed hidden recipes. Hidden means that if you run just --list , they

won't get printed since they're meant to be used internay. A specia recipe was used, the

default one, that gets caed if you prompt just without any recipe name. EDIT Since

the name is not precisey default , just runs the first recipe in the justfie, that has to be a

recipe without arguments)

$ just

Available recipes:

 encrypt target # encrypts 'target' and detaches

 decrypt target # decrypts 'target' and detaches

 schedule operation # schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

 tail n="200" # Follows the log file

Oh nice, the comments we wrote previousy just became documentation! Pus, we caed

the tail recipe from others, etting just encrypt "something" resembe an interactive

command.

Let's now set the same interpreter for a the recipes choosing from the avaiabe ones:

https://github.com/casey/just#shell
https://github.com/casey/just#shell

set shell := ["bash", "-uc"] . This way, every recipe ine wi run in a newy spawned

sub shell , bash in this case. If it fees ike the way the shebang #!/bin/bash works, you're

right.

In fact, it's possibe to define shebang recipes to be abe to use oca variabes in recipes

but remember to add set -euxo pipefail ike the documentation suggests if you're using

Bash to maintain the fai-fast behaviour.

Mixing and stirring commands, recipes, just features you' probaby come up with

something simiar to this prod-ike exampe:

 Justfie

set shell := ["bash", "-uc"]

Foo

foo_version := "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"

conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

Bar

bar_executable := "/home/power_user/bar"

sre_victim := "baz@sre.com"

MySql

my_sql_default_user := "random_guy"

dump_query := "select 'I have no intention to write queries in this example';"

now := `date -u +"%Y-%m-%dT%H:%M:%SZ"`

mysql_output_file := "/home/power_user/mysql_dumps/" + now + ".dump"

Colors

RED := "\\u001b[31m"

GREEN := "\\u001b[32m"

YELLOW := "\\u001b[33m"

BOLD := "\\u001b[1m"

RESET := "\\u001b[0m"

Foo Recipes

_default:

@just --list --unsorted

encrypts 'target' and detaches

encrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

https://github.com/casey/just#safer-bash-shebang-recipes
https://github.com/casey/just#safer-bash-shebang-recipes
https://github.com/casey/just#setting-variables-in-a-recipe
https://github.com/casey/just#setting-variables-in-a-recipe

decrypts 'target' and detaches

decrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

schedule operation:

@just _run_detached "schedule" "{{operation}}"

@just tail 20

Follows the log file

tail n="200":

 tail -{{n}}f {{log_file}}

Unsurprisingly kills foo

kill:

 pgrep -f {{foo_executable}}

Bar Recipes

Will notify an SRE with a boring mail.

notify:

@just _bold_squares "{{YELLOW}}WARNING"

@echo -e "{{BOLD}} A SRE will be notified with an e-mail!{{RESET}}"

 {{bar_executable}} notify {{sre_victim}}

MySql Recipes

runs the dump query

dump username password:

@just kill

@just _mysql_command_to {{username}} {{password}} {{dump_query}} > {{mysql_output_file}}

runs the dump query with default user

dump-with-default-user password:

@just kill

@just _mysql_command_to {{my_sql_default_user}} {{password}} {{dump_query}} > {{mysql_output_file

Hidden Recipes

_bold_squares message:

@echo -e "{{BOLD}}[{{RESET}}{{message}}{{RESET}}{{BOLD}}]{{RESET}}"

_mysql_command username password query:

 mysql -u {{username}} -p {{password}} -e {{query}}

_mysql_command_to username password query output_file:

 _mysql_command {{username}} {{password}} {{query}} > {{output_file}}

_run_detached command argument:

 nohup {{foo_executable}} {{command}} {{argument}} {{conf_file}} &>> {{log_file}} &

"It's not enough to enforce peope to not
mess up production machines with crappy
she scripts!"
Obviousy, just doesn't automaticay sove every probem you might encounter in heaviy

unmaintained machines with a ot of conficting she scripts, mosty because of peope,

but at east:

• It ets you concentrate every project-reated commands in a singe fie that can be

easiy tracked by a VCS to become part of the depoyment

• It decarativey sets the interpreter

• It ets you you write a muti-command script without reying on super-verbose and tricky

match-case bash syntax with the addition of:

◦ defaut arguments

◦ easy string tempating

◦ command evauation using backticks (see the now variabe in the previous exampe)

◦ conditiona expressions that are evauated before the command execution

◦ get_or_else syntax for environment variabes

• It integrates with fzf to choose argument-ess recipes interactivey

• Recipes can depend on other recipes, ike tests on build as in the first exampe

• It can generate its own she competion scripts using just --completions <shell_name>

• It can be used as an interpreter, turning justfile s in runnabe just script simpy

prepending #!/usr/bin/env just --justfile This can be handy if you maybe want to use

it with crontab)

and HIPSTER ALERT:

• It has its own Github Action

• Syntax Highight for Vim, Emacs and Visua Studio Code is aready avaiabe

Creating practica recipes, instaing the prebuit binaries, and the command-ine

competion scripts can probaby convince peope to use it. If not, try documenting your

software, using exampes in the justfile that's sitting in the home of the repo, or try

harder using

https://github.com/casey/just
https://github.com/casey/just
https://github.com/casey/just#command-evaluation-using-backticks
https://github.com/casey/just#command-evaluation-using-backticks
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#environment-variables
https://github.com/casey/just#environment-variables
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#just-scripts
https://github.com/casey/just#just-scripts
https://github.com/extractions/setup-just
https://github.com/extractions/setup-just
https://github.com/casey/just#editor-support
https://github.com/casey/just#editor-support

1 reaction

1

0 comments – powered by giscus

Write Preview

Sign in to comment

Sign in with GitHub

* Run `just` for a complete list *

* of available commands *

as the /etc/motd for the prod machines.

More Toos!

▾ SPOILER: next too
Zoa : the tempating engine I'm using for this bog :)

https://www.getzola.org/
https://www.getzola.org/

