O TONIOGELA'S

Just use just

June 02, 2021 - 1364 words * 7 min
OMG, the blog is live! @ And this is the first article! &

This first article will be about Just a command-line tool | recently discovered that
immediately became essential in many work projects. Since it's a tool written in Rust, it's
fast, it's well designed and documented, it features colored output, and it's an essential

step in your terminal's hypsterization process!

Let's suppose you've just deployed your application via (sigh!) on one of your work's
machines. Maybe your application was already built using tools like Decline, so it's
already capable of parsing command-line options and flags and printing a complete help
like:

$ foo --help
Usage:
foo schedule
foo encrypt
foo decrypt

foo tool, it can encrypt and decrypt files and schedule operations

Options and flags:
--help
Display this help text.

Subcommands:
schedule
schedules encryptions/decriptions
encrypt
encrypts files
decrypt
decrypts files

But let's add a slow-changing configuration to the scenario, which changes so often that
it doesn't justify a refactor to add a library like Ciris to your code. Maybe some non-


https://toniogela.dev/just/
https://toniogela.dev/just/
https://github.com/casey/just
https://github.com/casey/just
https://ben.kirw.in/decline/
https://ben.kirw.in/decline/
https://cir.is/
https://cir.is/
https://toniogela.dev/
https://toniogela.dev/
https://toniogela.dev/

power users need to change that configuration once a week or month because of
reasons.

What's missing? Maybe there's a local MySql that needs to be queried for maintenance
operations, or perhaps a remote database/storage/service/whatever that requires another
command-line tool to be interacted with.

This is one of the times in which unmaintained, undocumented, faulty crap like
maintenance_script.sh or fix_for_prod.sh begins to spread around. In no time, the
situation will look similar to

/home/applicative_account/perform_operation.sh
/home/colleaguel/pexrform_operation_copy.sh
/home/colleaguel/old_version/perform_operation_as_xroot.sh
/home/sre_guy/this_should_fix_everything.sh

/home/random_data_scientist/do_not_run.sh #(ofc it was chmod +x)

90% of them will have the shebang while the 10% (#!/bin/sh). Some of them

will have commands because there are people around that uses (like me) that
forgets that it doesn't share 100% of the syntax with (not like me, | swear).

Most of them will contain almost the same commands like
mysql prod_db < maintenance.sql > maintenance_output.dump
or templatized commands like
"/f00-${VERSION} /bin/foo"

that depend on environment variables defined in the of a deleted user.

The last time you used ShellCheck to check the scripts, the linter exploded, and
somewhere in the world, Stephen Bourne suddenly began crying without any apparent

reason.

Just to the rescue

As its Github README states, Just is a handy way to save and run project-specific
commands called recipes, stored in a file called with a syntax inspired by Make.

Here's a tiny example:


https://www.shellcheck.net/
https://www.shellcheck.net/
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://github.com/casey/just#just
https://github.com/casey/just#just

build:

cc *.c -0 main

# test everything
test-all: build
./test --all

# run a specific test
test TEST: build
./test --test {{TEST}}

Just searches for a in the current directory written in its particular syntax, so
let's begin creating one with an hello world recipe and let's try to run it:

hello-world:
echo "Hello World!"

v output

$ just hello-world
echo "Hello World!"
Hello Woxrld!

As you can see, just shows the command that is about to run before running it, while we
can't say the same for global or user-defined [aliasjes in various shells (unless using
something like for bash). If you want to suppress this behaviour, you can put a|e|in
front of the command to hide.

hello-world:
@echo "Hello World!"

v output

$ just hello-world
Hello World!

Let's try to create a second recipe with an argument.

hello-world:
@echo "Hello World!"

salute guy:
@echo "Hello {{guy}}!"



v output

$ just salute
error: Recipe “salute’ got @ arguments but takes 1
usage:

just salute guy

$ just salute Tonio
Hello Tonio!

$ just --dry-run salute Tonio
echo "Hello Tonio"

The recipe cannot obviously run without an argument since that argument is referred to in

the body of the recipe using just syntax [{{ argument_or_variable_name }}). If you want to
"debug" the recipe that will run with the provided arguments, you can use the
command-line flag. This can come in handy if a command is long and complex and you

have, for example, to schedule it in your crontab file. Just copy it from there.

Arguments are really powerful since they can have default values and can be variadic

(both in the form [zero or more] or [one or more]):

hello target="World":
@echo "Hello {{target}}!"

hello-all +targets="Tim": # One or more plus a default value
@echo "Hello to everyone: {{targets}}!"

hello-any *targets: # Zero or more
@echo "Hello {{targets}}!"

v output

$ just hello
Hello World!

$ just hello-all
Hello to everyone: Tim!

$ just hello-all "Tim" "Martha" "Lisa"
Hello to everyone: Tim Martha Lisa!

$ just hello-any
Hello !

$ just hello-any "Bob" "Lucas"



Hello Bob Lucas!

We know enough syntax. Let's try to build a meaningful example for our messed-up work
machine and let's try new features just if we need them (no pun intended ).

An almost working example

If we inspect the history of our machine, we'll notice that most of the commands are
invocations with and stdin and stderr redirection into a file. We should
consider refactoring the application, removing all the (printlnjs to replace them with a

(1ogger . info), maybe using a logging framework that automatically handles log rotation and
similar.

In the meantime, we can standardize how is called, how the outputs are redirected,
and its execution detached to avoid interactive sessions that might early terminate if you

close a terminal session.

"0.3.0"

"/home/power_user/foo-

foo_version

foo_executable : + foo_version + "/bin/foo"

conf_file "/home/power_user/foo.conf"

log_file "/home/power_user/foo.log"

# encrypts 'target' and detaches
encrypt target:
nohup {{foo_executable}} "encrypt" {{target}} {{conf_file}} &>> {{log_file}} &

# decrypts 'target' and detaches
decrypt target:
nohup {{foo_executable}} "decrypt" {{target}} {{conf_file}} &>> {{log_file}} &

# schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'
schedule operation:
nohup {{foo_executable}} "schedule" "{{operation}}" {{conf_file}} &>> {{log_file}} &

(Probably + (&) is overkilling, but who cares =/?)

That's better. We've used variables to avoid repetitions, templatized every recipe and
added comments. It would be nice, though, to directly tail the once a recipe is
launched and avoid repetitions even more.

"0.3.0"
"/home/power_user/foo-

foo_version

foo_executable : + foo_version + "/bin/foo"

conf_file "/home/power_user/foo.conf"

log_file "/home/power_user/foo.log"



_default:
@just --1list --unsorted

# encrypts 'target' and detaches

encrypt target:
@just _run_detached "schedule" "{{target}}"
@just tail

# decrypts 'target' and detaches

decrypt target:
@just _run_detached "schedule" "{{target}}"
@just tail

# schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'
schedule operation:

@just _run_detached "schedule
@just tail 20

{{operation}}"

# Follows the log file
tail n="200":
tail -{{n}}f {{log_file}}

_run_detached command argument:
nohup {{foo_executable}} {{command}} {{argument}} {{conf_file}} &>> {{log_file}} &

Nice, we've used many features of just, in particular recipes whose name begins with an
underscore are called hidden recipes. Hidden means that if you run (just --list) they
won't get printed since they're meant to be used internally. A special recipe was used, the
one, that gets called if you prompt without any recipe name. [EDIT] (Since
the name is not precisely , just runs the first recipe in the justfile, that has to be a
recipe without arguments)

$ just

Available recipes:
encrypt target # encrypts 'target' and detaches
decrypt target # decrypts 'target' and detaches

schedule operation # schedules operations formatted like '<cron_expression> <decrypt|encr
tail n="200" # Follows the log file

Oh nice, the comments we wrote previously just became documentation! Plus, we called

the recipe from others, letting (just encrypt "something”] resemble an interactive

command.

Let's now set the same interpreter for all the recipes choosing from the available ones:



https://github.com/casey/just#shell
https://github.com/casey/just#shell

[set shell := ["bash", "-uc"]]. This way, every recipe line will run in a newly spawned

sub[shel1), in this case. If it feels like the way the shebang works, you're

right.

In fact, it's possible to define shebang recipes to be able to use local variables in recipes

but remember to add [set -euxo pipefail] like the documentation suggests if you're using

Bash to maintain the fail-fast behaviour.

Mixing and stirring commands, recipes, just features you'll probably come up with
something similar to this prod-like example:

OO0 Justfile

set shell := ["bash", "-uc"]

# Foo

foo_version = "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"
conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

# Bar

bar_executable := "/home/power_user/bar"

sre_victim := "baz@sre.com"

# MySql

my_sql_default_user := "random_guy"

dump_query = "select 'I have no intention to write queries in this example';"
now = “date -u +"%Y-%m-%dT%H:%M:%SZ""

mysql_output_file "/home/power_user/mysql_dumps/" + now + ".dump"

# Colors

RED := "\\u@@lb[31m"
GREEN = "\\u@@1lb[32m"
YELLOW := "\\u@@1lb[33m"
BOLD = "\\u@@lb[1m"
RESET := "\\u@@lb[@Om"

## Foo Recipes

_default:
@just --1list --unsorted

# encrypts 'target' and detaches

encrypt target:
@just _run_detached "schedule" "{{target}}"
@just tail



https://github.com/casey/just#safer-bash-shebang-recipes
https://github.com/casey/just#safer-bash-shebang-recipes
https://github.com/casey/just#setting-variables-in-a-recipe
https://github.com/casey/just#setting-variables-in-a-recipe

# decrypts 'target' and detaches

decrypt target:
@just _run_detached "schedule" "{{target}}"
@just tail

# schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'
schedule operation:

@just _run_detached "schedule" "{{operation}}"

@just tail 20

# Follows the log file
tail n="200":
tail -{{n}}f {{log_file}}

# Unsurprisingly kills foo
kill:
pgrep -f {{foo_executable}}

## Bar Recipes

# Will notify an SRE with a boring mail.

notify:
@just _bold_squares "{{YELLOW}}WARNING"
@echo -e "{{BOLD}} A SRE will be notified with an e-mail!{{RESET}}"
{{bar_executable}} notify {{sre_victim}}

## MySql Recipes

# runs the dump query
dump username password:
@just kill
@just _mysql_command_to {{username}} {{password}} {{dump_query}} > {{mysql_output_file}}

# runs the dump query with default user
dump-with-default-user password:
@just kill
@just _mysgl_command_to {{my_sql_default_user}} {{password}} {{dump_query}} > {{mysql_out

## Hidden Recipes

_bold_squares message:
@echo -e "{{BOLD}}[{{RESET}}{{message}}{{RESET}}{{BOLD}}]1{{RESET}}"

_mysql_command username password query:
mysql -u {{username}} -p {{password}} -e {{query}}

_mysql_command_to username password query output_file:
_mysql_command {{username}} {{password}} {{query}} > {{output_file}}




_run_detached command argument:
nohup {{foo_executable}} {{command}} {{argument}} {{conf_file}} &>> {{log_file}} &

"It's not enough to enforce people to not
mess up production machines with crappy
shell scripts!"

Obviously, just doesn't automatically solve every problem you might encounter in heavily
unmaintained machines with a lot of conflicting shell scripts, mostly because of people,
but at least:

e It lets you concentrate every project-related commands in a single file that can be
easily tracked by a VCS to become part of the deployment

¢ |t declaratively sets the interpreter

e |t lets you you write a multi-command script without relying on super-verbose and tricky

bash syntax with the addition of:

o default arguments

(@]

easy string templating

o

command evaluation using backticks (see the variable in the previous example)

o

conditional expressions that are evaluated before the command execution

o syntax for environment variables

e |t integrates with |fzf|to choose argument-less recipes interactively

* Recipes can depend on other recipes, like [tests]on [build]as in the first example

o It can generate its own shell completion scripts using [just --completions <shell_name>|
o It can be used as an interpreter, turning [justfile]s in runnable just script simply
prepending (#!/usr/bin/env just --justfile] (This can be handy if you maybe want to use

it with [crontab))

and HIPSTER ALERT:

¢ |t has its own Github Action

e Syntax Highlight for Vim, Emacs and Visual Studio Code is already available

Creating practical recipes, installing the prebuilt binaries, and the command-line
completion scripts can probably convince people to use it. If not, try documenting your
software, using examples in the that's sitting in the home of the repo, or try
harder using


https://github.com/casey/just
https://github.com/casey/just
https://github.com/casey/just#command-evaluation-using-backticks
https://github.com/casey/just#command-evaluation-using-backticks
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#environment-variables
https://github.com/casey/just#environment-variables
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#just-scripts
https://github.com/casey/just#just-scripts
https://github.com/extractions/setup-just
https://github.com/extractions/setup-just
https://github.com/casey/just#editor-support
https://github.com/casey/just#editor-support

hhkhkhkhhhhkhhkhhhhhhhhhhrhkhrhkhrrrrrd k%

* Run “just® for a complete list *
* of available commands *

hhkhkhkhkhkhkhkhhkhhdhhhhkhdhdhhddhdrhdddrrrrr*x*x

as the for the prod machines.

More Tools!

v SPOILER: next tool
Zola : the templating engine I'm using for this blog :)

1 reaction

0 comments - powered by giscus

Write Preview Aa
Sign in to comment

Sign in with GitHub



https://www.getzola.org/
https://www.getzola.org/

