
Just use just

OMG, the bog is ive! And this is the first artice!

This first artice wi be about Just a command-ine too I recenty discovered that

immediatey became essentia in many work projects. Since it's a too written in Rust, it's

fast, it's we designed and documented, it features coored output, and it's an essentia

step in your termina's hypsterization process!

Let's suppose you've just depoyed your appication via scp (sigh!) on one of your work's

machines. Maybe your appication was aready buit using toos ike Decine, so it's

aready capabe of parsing command-ine options and fags and printing a compete hep

ike:

$ foo --help

Usage:

 foo schedule

 foo encrypt

 foo decrypt

foo tool, it can encrypt and decrypt files and schedule operations

Options and flags:

 --help

 Display this help text.

Subcommands:

 schedule

 schedules encryptions/decriptions

 encrypt

 encrypts files

 decrypt

 decrypts files

But et's add a sow-changing configuration to the scenario, which changes so often that

it doesn't justify a refactor to add a ibrary ike Ciris to your code. Maybe some non-

June 02, 2021 · 1364 words · 7 min

TONIOGELA'S

https://toniogela.dev/just/
https://toniogela.dev/just/
https://github.com/casey/just
https://github.com/casey/just
https://ben.kirw.in/decline/
https://ben.kirw.in/decline/
https://cir.is/
https://cir.is/
https://toniogela.dev/
https://toniogela.dev/
https://toniogela.dev/

power users need to change that configuration once a week or month because of

reasons.

What's missing? Maybe there's a oca MySq that needs to be queried for maintenance

operations, or perhaps a remote database/storage/service/whatever that requires another

command-ine too to be interacted with.

This is one of the times in which unmaintained, undocumented, fauty crap ike

maintenance_script.sh or fix_for_prod.sh begins to spread around. In no time, the

situation wi ook simiar to

/home/applicative_account/perform_operation.sh

/home/colleague1/perform_operation_copy.sh

/home/colleague1/old_version/perform_operation_as_root.sh

/home/sre_guy/this_should_fix_everything.sh

/home/random_data_scientist/do_not_run.sh #(ofc it was chmod +x)

90% of them wi have the shebang #!/bin/bash whie the 10% #!/bin/sh . Some of them

wi have zsh commands because there are peope around that uses zsh (ike me) that

forgets that it doesn't share 100% of the syntax with bash (not ike me, I swear).

Most of them wi contain amost the same commands ike

mysql prod_db < maintenance.sql > maintenance_output.dump

or tempatized commands ike

"/foo-${VERSION}/bin/foo"

that depend on environment variabes defined in the .profile of a deeted user.

The ast time you used SheCheck to check the scripts, the inter expoded, and

somewhere in the word, Stephen Bourne suddeny began crying without any apparent

reason.

Just to the rescue
As its Github README states, Just is a handy way to save and run project-specific

commands caed recipes, stored in a fie caed justfile with a syntax inspired by Make.

Here's a tiny exampe:

https://www.shellcheck.net/
https://www.shellcheck.net/
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://en.wikipedia.org/wiki/Stephen_R._Bourne
https://github.com/casey/just#just
https://github.com/casey/just#just

build:

 cc *.c -o main

test everything

test-all: build

 ./test --all

run a specific test

test TEST: build

 ./test --test {{TEST}}

Just searches for a justfile in the current directory written in its particuar syntax, so

et's begin creating one with an heo word recipe and et's try to run it:

hello-world:

 echo "Hello World!"

▾ output

$ just hello-world

echo "Hello World!"

Hello World!

As you can see, just shows the command that is about to run before running it, whie we

can't say the same for goba or user-defined alias es in various shes (uness using

something ike set -x for bash). If you want to suppress this behaviour, you can put a @ in

front of the command to hide.

hello-world:

@echo "Hello World!"

▾ output

$ just hello-world

Hello World!

Let's try to create a second recipe with an argument.

hello-world:

@echo "Hello World!"

salute guy:

@echo "Hello {{guy}}!"

▾ output

$ just salute

error: Recipe `salute` got 0 arguments but takes 1

usage:

 just salute guy

$ just salute Tonio

Hello Tonio!

$ just --dry-run salute Tonio

echo "Hello Tonio"

The recipe cannot obviousy run without an argument since that argument is referred to in

the body of the recipe using just syntax {{ argument_or_variable_name }} . If you want to

"debug" the recipe that wi run with the provided arguments, you can use the --dry-run

command-ine fag. This can come in handy if a command is ong and compex and you

have, for exampe, to schedue it in your crontab fie. Just copy it from there.

Arguments are reay powerfu since they can have defaut vaues and can be variadic

(both in the form zero or more or one or more):

hello target="World":

@echo "Hello {{target}}!"

hello-all +targets="Tim": # One or more plus a default value

@echo "Hello to everyone: {{targets}}!"

hello-any *targets: # Zero or more

@echo "Hello {{targets}}!"

▾ output

$ just hello

Hello World!

$ just hello-all

Hello to everyone: Tim!

$ just hello-all "Tim" "Martha" "Lisa"

Hello to everyone: Tim Martha Lisa!

$ just hello-any

Hello !

$ just hello-any "Bob" "Lucas"

Hello Bob Lucas!

We know enough syntax. Let's try to buid a meaningfu exampe for our messed-up work

machine and et's try new features just if we need them (no pun intended).

An amost working exampe

If we inspect the history of our machine, we' notice that most of the commands are foo

invocations with nohup and stdin and stderr redirection into a .log fie. We shoud

consider refactoring the appication, removing a the println s to repace them with a

logger.info , maybe using a ogging framework that automaticay handes og rotation and

simiar.

In the meantime, we can standardize how foo is caed, how the outputs are redirected,

and its execution detached to avoid interactive sessions that might eary terminate if you

cose a termina session.

foo_version := "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"

conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

encrypts 'target' and detaches

encrypt target:

 nohup {{foo_executable}} "encrypt" {{target}} {{conf_file}} &>> {{log_file}} &

decrypts 'target' and detaches

decrypt target:

 nohup {{foo_executable}} "decrypt" {{target}} {{conf_file}} &>> {{log_file}} &

schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

schedule operation:

 nohup {{foo_executable}} "schedule" "{{operation}}" {{conf_file}} &>> {{log_file}} &

Probaby nohup + & is overkiing, but who cares ?)

That's better. We've used variabes to avoid repetitions, tempatized every recipe and

added comments. It woud be nice, though, to directy tai the log_file once a recipe is

aunched and avoid repetitions even more.

foo_version := "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"

conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

_default:

@just --list --unsorted

encrypts 'target' and detaches

encrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

decrypts 'target' and detaches

decrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

schedule operation:

@just _run_detached "schedule" "{{operation}}"

@just tail 20

Follows the log file

tail n="200":

 tail -{{n}}f {{log_file}}

_run_detached command argument:

 nohup {{foo_executable}} {{command}} {{argument}} {{conf_file}} &>> {{log_file}} &

Nice, we've used many features of just, in particuar recipes whose name begins with an

underscore are caed hidden recipes. Hidden means that if you run just --list , they

won't get printed since they're meant to be used internay. A specia recipe was used, the

default one, that gets caed if you prompt just without any recipe name. EDIT Since

the name is not precisey default , just runs the first recipe in the justfie, that has to be a

recipe without arguments)

$ just

Available recipes:

 encrypt target # encrypts 'target' and detaches

 decrypt target # decrypts 'target' and detaches

 schedule operation # schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

 tail n="200" # Follows the log file

Oh nice, the comments we wrote previousy just became documentation! Pus, we caed

the tail recipe from others, etting just encrypt "something" resembe an interactive

command.

Let's now set the same interpreter for a the recipes choosing from the avaiabe ones:

https://github.com/casey/just#shell
https://github.com/casey/just#shell

set shell := ["bash", "-uc"] . This way, every recipe ine wi run in a newy spawned

sub shell , bash in this case. If it fees ike the way the shebang #!/bin/bash works, you're

right.

In fact, it's possibe to define shebang recipes to be abe to use oca variabes in recipes

but remember to add set -euxo pipefail ike the documentation suggests if you're using

Bash to maintain the fai-fast behaviour.

Mixing and stirring commands, recipes, just features you' probaby come up with

something simiar to this prod-ike exampe:

 Justfie

set shell := ["bash", "-uc"]

Foo

foo_version := "0.3.0"

foo_executable := "/home/power_user/foo-" + foo_version + "/bin/foo"

conf_file := "/home/power_user/foo.conf"

log_file := "/home/power_user/foo.log"

Bar

bar_executable := "/home/power_user/bar"

sre_victim := "baz@sre.com"

MySql

my_sql_default_user := "random_guy"

dump_query := "select 'I have no intention to write queries in this example';"

now := `date -u +"%Y-%m-%dT%H:%M:%SZ"`

mysql_output_file := "/home/power_user/mysql_dumps/" + now + ".dump"

Colors

RED := "\\u001b[31m"

GREEN := "\\u001b[32m"

YELLOW := "\\u001b[33m"

BOLD := "\\u001b[1m"

RESET := "\\u001b[0m"

Foo Recipes

_default:

@just --list --unsorted

encrypts 'target' and detaches

encrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

https://github.com/casey/just#safer-bash-shebang-recipes
https://github.com/casey/just#safer-bash-shebang-recipes
https://github.com/casey/just#setting-variables-in-a-recipe
https://github.com/casey/just#setting-variables-in-a-recipe

decrypts 'target' and detaches

decrypt target:

@just _run_detached "schedule" "{{target}}"

@just tail

schedules operations formatted like '<cron_expression> <decrypt|encrypt> <target>'

schedule operation:

@just _run_detached "schedule" "{{operation}}"

@just tail 20

Follows the log file

tail n="200":

 tail -{{n}}f {{log_file}}

Unsurprisingly kills foo

kill:

 pgrep -f {{foo_executable}}

Bar Recipes

Will notify an SRE with a boring mail.

notify:

@just _bold_squares "{{YELLOW}}WARNING"

@echo -e "{{BOLD}} A SRE will be notified with an e-mail!{{RESET}}"

 {{bar_executable}} notify {{sre_victim}}

MySql Recipes

runs the dump query

dump username password:

@just kill

@just _mysql_command_to {{username}} {{password}} {{dump_query}} > {{mysql_output_file}}

runs the dump query with default user

dump-with-default-user password:

@just kill

@just _mysql_command_to {{my_sql_default_user}} {{password}} {{dump_query}} > {{mysql_output_file

Hidden Recipes

_bold_squares message:

@echo -e "{{BOLD}}[{{RESET}}{{message}}{{RESET}}{{BOLD}}]{{RESET}}"

_mysql_command username password query:

 mysql -u {{username}} -p {{password}} -e {{query}}

_mysql_command_to username password query output_file:

 _mysql_command {{username}} {{password}} {{query}} > {{output_file}}

_run_detached command argument:

 nohup {{foo_executable}} {{command}} {{argument}} {{conf_file}} &>> {{log_file}} &

"It's not enough to enforce peope to not
mess up production machines with crappy
she scripts!"
Obviousy, just doesn't automaticay sove every probem you might encounter in heaviy

unmaintained machines with a ot of conficting she scripts, mosty because of peope,

but at east:

• It ets you concentrate every project-reated commands in a singe fie that can be

easiy tracked by a VCS to become part of the depoyment

• It decarativey sets the interpreter

• It ets you you write a muti-command script without reying on super-verbose and tricky

match-case bash syntax with the addition of:

◦ defaut arguments

◦ easy string tempating

◦ command evauation using backticks (see the now variabe in the previous exampe)

◦ conditiona expressions that are evauated before the command execution

◦ get_or_else syntax for environment variabes

• It integrates with fzf to choose argument-ess recipes interactivey

• Recipes can depend on other recipes, ike tests on build as in the first exampe

• It can generate its own she competion scripts using just --completions <shell_name>

• It can be used as an interpreter, turning justfile s in runnabe just script simpy

prepending #!/usr/bin/env just --justfile This can be handy if you maybe want to use

it with crontab)

and HIPSTER ALERT:

• It has its own Github Action

• Syntax Highight for Vim, Emacs and Visua Studio Code is aready avaiabe

Creating practica recipes, instaing the prebuit binaries, and the command-ine

competion scripts can probaby convince peope to use it. If not, try documenting your

software, using exampes in the justfile that's sitting in the home of the repo, or try

harder using

https://github.com/casey/just
https://github.com/casey/just
https://github.com/casey/just#command-evaluation-using-backticks
https://github.com/casey/just#command-evaluation-using-backticks
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#environment-variables
https://github.com/casey/just#environment-variables
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#conditional-expressions
https://github.com/casey/just#just-scripts
https://github.com/casey/just#just-scripts
https://github.com/extractions/setup-just
https://github.com/extractions/setup-just
https://github.com/casey/just#editor-support
https://github.com/casey/just#editor-support

1 reaction

1

0 comments – powered by giscus

Write Preview

Sign in to comment

Sign in with GitHub

* Run `just` for a complete list *

* of available commands *

as the /etc/motd for the prod machines.

More Toos!

▾ SPOILER: next too
Zoa : the tempating engine I'm using for this bog :)

https://www.getzola.org/
https://www.getzola.org/

