
Tinkering
Come for the Foo, stay for the Bar

Home GitHub About Talks

Property-based testing in Rust with Proptest

Posted on June 19, 2020

Table of Contents:

• What is property-based testing?

• Getting started

• Using proptest

• Strategies

◦ Strategy::prop_map

◦ Strategy::prop_filter

◦ Strategy::prop_flat_map

◦ Just

◦ prop_oneof!

• Writing the parser

◦ Word

◦ Words

◦ Enclosed

◦ Chunk

◦ Punctuation

◦ Sentence

• Conclusion

Note: I originally wrote this article for LogRocket. You can find the original here.

Software testing is an industry standard practice, but testing methodologies and

techniques vary dramatically in their practicality and effectiveness. Today you’ll learn

about property-based testing (PBT) including how it works, when it makes sense, and

how to do it in Rust.

What is property-based testing?

https://tinkering.xyz/
https://tinkering.xyz/
https://tinkering.xyz/
https://tinkering.xyz/
https://github.com/zmitchell
https://github.com/zmitchell
https://tinkering.xyz/about/
https://tinkering.xyz/about/
https://tinkering.xyz/talks/
https://tinkering.xyz/talks/
https://blog.logrocket.com/property-based-testing-in-rust-with-proptest/
https://blog.logrocket.com/property-based-testing-in-rust-with-proptest/

To illustrate how PBT works, let’s first look at a basic unit test. Let’s say that you’ve

written a function maybe_works that you want to compare against a function that

you know works properly, say definitely_works . A unit test comparing these two

functions for some input input would look like the test below.

fn test_maybe_works() {

let input = ...;

 assert_eq!(maybe_works(input), definitely_works(input));

}

That test was very easy to write, but there are some issues to be aware of. One issue

is that you need to know which exact inputs to use in your tests that will alert you to

the presence of bugs. Another issue is that this becomes tedious when you want to

test maybe_works against definitely_works for a variety of inputs.

A more efficient way to test maybe_works against definitely_works would be to

run the test several times with a variety of randomly generated inputs. With these

randomly generated inputs you don’t know the precise value being supplied to

maybe_works or definitely_works , but you can often make a general statement

such as “the outputs of maybe_works and definitely_works should be the same

given the same input.” In practice the “randomly generated inputs” are rarely truly

random. You typically constrain the inputs somehow so that you can target a certain

piece of code and avoid false positives or negatives.

It’s common, however, not to have a reference implementation such as

definitely_works . In this case you need to think harder and more abstractly about

the properties of your code (hence property-based testing) and how you can verify

them. Yet another way to use PBT is as a guide in the design of a piece of code. In

this article we’re going to use PBT to help us write a parser.

Getting started

Create a new cargo project called sentence-parser .

$ cargo new --lib sentence-parser

You’ll use the pest crate to write the parser, so add pest to your Cargo.toml .

[dependencies]

pest = "~2.1"

pest_derive = "~2.1"

The pest crate generates a parser from a user-defined grammar file, so create a file

called sentence.pest and put it in the src directory. Paste the following contents

into the file.

word = { ASCII_ALPHA+ }

WHITESPACE = _{" "}

The pest crate is not the focus of this tutorial, but it’s helpful to have a cursory

understanding of this grammar file. Each rule in the file tells pest how to parse a

certain type of input. You can use rules within the definition of other rules to

eventually build a parser that understands complex input. For a detailed overview of

the syntax, see the pest syntax guide.

For simplicity’s sake we’re going to significantly relax the definitions of “word” and

“sentence.” We’ll define a “word” as “any sequence of one or more ASCII alphabetical

characters.” This means that flkjasdfAQTCcs is a valid word for our purposes.

To create a parser from this file add the following snippet to lib.rs .

#[macro_use] extern crate pest_derive;

use pest::Parser;

#[derive(Parser)]

#[grammar = "sentence.pest"]

pub struct SentenceParser;

The #[derive(Parser)] and #[grammar = "``sentence.pest``"``] attributes

will read the grammar file and generate a parser based on that grammar. This will

also generate an enum called Rule which has a variant for each of the rules in the

grammar file. When you want to parse the contents of a string, you pass one of the

Rule variants to SentenceParser::parse along with the string. We will use this

feature to test individual rules in the grammar rather than testing the whole thing at

once.

Finally, add proptest to your Cargo.toml .

[dev-dependencies]

proptest = "~0.9"

Using proptest

Doing PBT with proptest can look mostly the same as writing normal tests. There

are two major differences which I’ll illustrate with the snippet below.

#[cfg(test)]

mod tests {

use super::*;

 #[test]

fn a_normal_test() {

 ...

 assert!(...)

 }

 proptest!{

 #[test]

fn a_property_based_test(foo in some_strategy()) {

 ...

 prop_assert!(...)

 }

 }

}

The first thing to note is that you can mix PBT with normal unit tests; PBT isn’t all or

nothing. Next, note that your property-based tests must be wrapped in the

proptest! macro. Another point of note is that prop_assert! is used in place of

assert! . The proptest test runner will attempt to find a minimal failing input by

causing the test to fail with simpler and simpler inputs. Using the prop_assert! and

prop_assert_eq! macros will cause the test failure message (panic message) to

be printed only for the minimal failing input rather than multiple times for a single

test. Finally, notice that the function arguments to the property-based test are of the

form argname in strategy .

Conceptually, a “strategy” is a way of generating instances of a type, possibly with

some constraints. More concretely, a strategy is a type that implements the

Strategy trait. In addition, implementing the Arbitrary trait defines the default or

main strategy for a type. This Arbitrary implementation will typically be the

strategy that generates the widest range of values for the type. The any<T>()

function provided by proptest uses this Arbitrary implementation to generate

truly arbitrary instances of the type T . If you would like to generate instances that are

subject to some constraints, you need to define functions that return impl

Strategy .

The proptest crate provides implementations of Arbitrary for a wide variety of

Rust primitives and collections. Implementing Arbitrary for your own type is

straightforward. The example below is mostly boilerplate.

impl Arbitrary for T {

type Parameters = ();

type Strategy = BoxedStrategy<Self>;

fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {

 ...

 }

}

The only piece that really requires thought on your part is the … , which defines how

to generate the values. You may parameterize how the strategy generates values

using the Parameters type definition. In most cases this isn’t necessary, so define it

as () . The concrete type of the strategy returned by arbitrary_with is defined by

the Strategy type definition. You may declare a specific type, or you may choose

the simplest route and return a trait object via the BoxedStrategy type.

The strategy defined by the Arbitrary trait may generate values that are too

general for some scenario, or you may simply want to define more than one strategy

for a given type. In either case you will want to write a function that returns a strategy.

fn my_strategy() -> impl Strategy<Value = T> {

 ...

}

Both methods above share some common patterns represented by … . The

Transforming Strategies section of the proptest book illustrates how this is done in

great detail, but we’ll discuss it briefly since it’s such a common practice when using

proptest .

Strategies

The proptest crate comes with several built-in strategies, namely any<T> , the

proptest::collection module, proptest::string::string_regex , and a

variety of others. In addition, tuples and arrays of strategies are themselves

strategies. This means that you can generate a tuple of values where each value is

drawn from a different strategy, then apply methods from the Strategy trait and

turn the tuple’s elements into another type.

Strategy::prop_map

The prop_map method allows you to transform the values generated by a strategy

and transform them into a new type. This is one of the primary methods you’ll use to

build up a custom type from primitives or other types. The example below illustrates

how you can generate a struct by transforming a tuple of primitive types.

struct Point {

x: f32,

y: f32

}

fn point_strat() -> impl Strategy<Value = Point> {

 (any<f32>::(), any<f32>::()).prop_map(|(x, y)| {

 Point {

 x: x,

 y: y

 }

 })

}

In short, a strategy produces a random value and prop_map uses that random value

to compute a different value.

Strategy::prop_filter

The prop_filter methods lets you constrain the values produced by one strategy

by filtering with a predicate. The function below returns a strategy that generates

u8 s that are greater than 100.

fn u8_greater_than_100() -> impl Strategy<Value = u8> {

 any::<u8>().prop_filter("reason for filtering", |x| x > &100u8)

}

Strategy::prop_flat_map

Sometimes you want to generate values that depend on each other somehow. This is

a scenario in which you’ll want to reach for the prop_flat_map method. When

called on a strategy, the prop_flat_map method takes a random value from that

strategy and uses it to produce another strategy. Note the difference between

prop_map and prop_flat_map . With prop_map a value from a strategy is used to

produce a new value, whereas with prop_flat_map a value from a strategy is used

to produce a new strategy. The canonical example use case from the proptest

documentation is a strategy that produces a Vec and a random valid index into that

Vec .

fn vec_and_index() -> impl Strategy<Value = (Vec<String>, usize)> {

 prop::collection::vec(".*", 1..100)

 .prop_flat_map(|vec| {

let len = vec.len();

 (Just(vec), 0..len)

 })

}

Just

This type creates a strategy that always returns the same value. One use case is

shown in the prop_flat_map example above. Another use case is with the

prop_oneof! macro.

prop_oneof!

This macro creates a strategy that produces values from a list of strategies. The

most common use case is generating enum variants.

enum MyEnum {

 Foo,

 Bar,

 Baz,

}

fn myenum_strategy() -> impl Strategy<Value = MyEnum> {

 prop_oneof![

 Just(MyEnum::Foo),

 Just(MyEnum::Bar),

 Just(MyEnum::Baz),

]

}

Note that you must supply a list of strategies, not a list of values. This is why you

must wrap the enum variants in Just .

Writing the parser

Now that you know some common proptest patterns you can get down to the

business of writing and testing a parser.

Word

Create a proptest! block in the test module. First we’ll create a function called

valid_word that returns a strategy that produces, you guessed it, a valid word.

#[cfg(test)]

mod test {

use super::*;

 proptest!{

fn valid_word() -> impl Strategy<Value = String> {

 proptest::string::string_regex("[a-zA-Z]+").unwrap()

 }

 #[test]

fn parses_valid_word(w in valid_word()) {

let parsed = SentenceParser::parse(Rule::word, w.as_str());

 prop_assert!(parsed.is_ok());

 }

 }

}

The proptest::string::string_regex function returns a strategy that produces

strings that match the provided regular expression. In this case that’s a sequence of

one or more ASCII letters. You could have used the shorthand w in "``[a-zA-

Z]+``" to accomplish the same thing, but I find that writing the strategy as a

function allows you to give a descriptive name to the regular expression. Note that in

_ in valid_word() the _ defines the name of the value produced by the strategy

so that you can use it in the body of your test.

The test attempts to parse the generated word using the rule Rule::word . If you run

cargo test you should see that your test passes (along with other compilation

statements).

Tests that pass when fed valid inputs are important, but tests that detect errors when

your code is fed invalid inputs are equally important. This time you’ll create a test that

feeds non-letter characters to the parser as well as strings of length zero. Create

another test that looks like this.

fn invalid_word() -> impl Strategy<Value = String> {

 proptest::string::string_regex("[^a-zA-Z]*").unwrap()

}

#[test]

fn rejects_invalid_word(w in invalid_word()) {

let parsed = SentenceParser::parse(Rule::word, w.as_str());

 prop_assert!(parsed.is_err());

}

Run the test suite again and see that the tests pass.

Words

Now create a words rule that looks like this.

words = { word+ }

This rule will match sequences of word s joined by spaces. We’ll follow the same

pattern as before to test whether we’ve created a good rule. First create a test that

attempts to parse valid input. Note that this time we’ll use Rule::words instead of

Rule::word .

fn words() -> impl Strategy<Value = String> {

 proptest::string::string_regex("[a-z]+([a-z]+)*").unwrap()

}

#[test]

fn parses_valid_words(ws in words()) {

let parsed = SentenceParser::parse(Rule::words, ws.as_str());

 prop_assert!(parsed.is_ok());

}

Run the test to make sure everything works.

Next we’ll create a test that attempts to parse invalid input, but first we need to

decide what that invalid input should look like. We already know that we can parse a

word properly, so let’s test whether the words rule can parse zero word s and

whether it can parse word s separated by characters other than spaces. You don’t

need a property-based test for the empty string, so go ahead and create the following

test inside the test module, but outside the proptest! block.

#[test]

fn words_rejects_empty_string() {

let parsed = SentenceParser::parse(Rule::words, "");

 assert!(parsed.is_err());

}

What’s left is to test what happens when we have characters other than just a space

between word s such as \t , \r , and \n . Unfortunately, supplying an input string

like this and expecting parsing to fail doesn’t work. Consider the string "``a\tb``" .

The issue is that \t isn’t a valid character that can appear in a word , so the parser

stops consuming characters at \t , having only consumed the a . However, a

matches the word , which matches words (“at least one word "). So, our string that

contains invalid word separators still successfully matches the words rule because

words is only matching part of the input. We can rectify this by changing our rule to

parse until the end of the input rather than finishing on some minimal prefix of the

input that parses successfully.

words = { word+ ~ EOI }

The EOI rule is provided by pest and represents “end of input.” This solves our

problem for now, but it will break things later when we try to parse entire sentences.

For now we’ll leave the words rule as is and forego feeding it this kind of invalid

input.

Enclosed

Now we’re going to build on the words rule by creating a rule, enclosed , that simply

wraps a words in some kind of delimiter such as commas or parentheses.

enclosed = ${

 "(" ~ words ~ ")" |

 ", " ~ words ~ ","

}

Note that this rule begins with $, which indicates that we don’t want ~ to implicitly

gobble up whitespace. We want this because (foo bar) is valid, but (foo bar)

is not.

To test this rule we’re going generate more complex inputs from strategies that we’ll

define. First, we’ll create a strategy that generates a string that can be parsed by the

enclosed rule. To do this we need a way of generating matching delimiters. In your

tests module, create the following type.

#[derive(Debug, PartialEq, Clone)]

enum EnclosedDelimiter {

 OpenParen,

 CloseParen,

 OpenComma,

 CloseComma,

}

Next we’ll create a method that converts the various enum variants into &str .

impl EnclosedDelimiter {

fn to_str(&self) -> &str {

match self {

 EnclosedDelimiter::OpenParen => "(",

 EnclosedDelimiter::CloseParen => ")",

 EnclosedDelimiter::OpenComma => ", ",

 EnclosedDelimiter::CloseComma => ","

 }

 }

}

Now create a function called opening_delimiter . This function will only generate

valid opening delimiters.

fn opening_delimiter() -> impl Strategy<Value = EnclosedDelimiter> {

 prop_oneof![

 Just(EnclosedDelimiter::OpenParen),

 Just(EnclosedDelimiter::OpenComma)

].boxed()

}

Now create a function called valid_enclosed . This function will return a strategy

that only generates strings that the enclosed rule can successfully parse by

matching the randomly chosen valid opening delimiter with its matching closing

delimiter. This is an example of when the prop_flat_map method comes in handy.

fn valid_enclosed() -> impl Strategy<Value = String> {

let words_strat = proptest::string::string_regex("[a-z]+([a-z]+)*

 (opening_delimiter(), words_strat).prop_flat_map(|(open, words)| {

let close = match open {

 EnclosedDelimiter::OpenParen => Just(EnclosedDelimiter::CloseParen),

 EnclosedDelimiter::OpenComma => Just(EnclosedDelimiter::CloseComma),

 _ => unreachable!()

 };

 (Just(open), close, Just(words))

 }).prop_map(|(open, close, words)| {

let mut enclosed = String::new();

 enclosed.push_str(open.to_str());

 enclosed.push_str(words.as_str());

 enclosed.push_str(close.to_str());

 enclosed

 })

}

This strategy begins with an opening delimiter and a valid sequence of words, then

uses prop_flat_map to select the valid closing delimiter. Once the delimiters and

words have been generated they are combined into a String . The _ =>

unreachable!() line is included because match must be exhaustive and we know

that opening_delimiter can’t generate either of the closing delimiters.

Now write the parses_valid_enclosed test and make sure it works.

#[test]

fn parses_valid_enclosed(enc in valid_enclosed()) {

let parsed = SentenceParser::parse(Rule::enclosed, enc.as_str());

 prop_assert!(parsed.is_ok());

}

Uh oh, this test fails! The minimal failing input in this case is (a a) . The reason may

not be obvious unless you’re familiar with pest , but it has to do with how

whitespace is handled. Remember that the enclosed rule began with $. A rule that

starts with @ or $ is called “atomic” and will not implicitly consume whitespace

between tokens, and this property cascades to sub-rules within the current rule. In

this case, enclosed references the words rule, which changes how words

matches whitespace in the context of the enclosed rule. All we need to do is put a

! in front of the words rule to prevent this cascade. The new rules should look like

this.

word = { ASCII_ALPHA+ }

words = !{ word+ }

enclosed = ${

 "(" ~ words ~ ")" |

 ", " ~ words ~ ","

}

WHITESPACE = _{" "}

The tests should all pass now.

The next task is to generate invalid strings for the enclosed rule. Now the opening

delimiter may be any of the delimiters, and the closing delimiter will be explicitly

chosen not to match the opening delimiter.

First we’ll implement the Arbitrary trait so that we can generate randomly selected

instances of EnclosedDelimiter .

impl Arbitrary for EnclosedDelimiter {

type Parameters = ();

type Strategy = BoxedStrategy<Self>;

fn arbitrary_with(_: Self::Parameters) -> Self::Strategy {

 prop_oneof![

 Just(EnclosedDelimiter::OpenParen),

 Just(EnclosedDelimiter::CloseParen),

 Just(EnclosedDelimiter::OpenComma),

 Just(EnclosedDelimiter::CloseComma),

].boxed()

 }

}

Now create the function that intentionally mismatches the delimiters.

fn invalid_enclosed() -> impl Strategy<Value = String> {

let words_strat = proptest::string::string_regex("[a-z]+([a-z]+)*

 (any::<EnclosedDelimiter>(), words_strat).prop_flat_map(|(open, words

let close = match open {

 EnclosedDelimiter::OpenParen => prop_oneof![

 Just(EnclosedDelimiter::OpenParen),

 Just(EnclosedDelimiter::OpenComma),

 Just(EnclosedDelimiter::CloseComma)

].boxed(),

 EnclosedDelimiter::CloseParen => any::<EnclosedDelimiter>(),

 EnclosedDelimiter::OpenComma => prop_oneof![

 Just(EnclosedDelimiter::OpenParen),

 Just(EnclosedDelimiter::CloseParen),

// Just(EnclosedDelimiter::OpenComma),

].boxed(),

 EnclosedDelimiter::CloseComma => any::<EnclosedDelimiter>(),

 };

 (Just(open), close, Just(words))

 }).prop_map(|(open, close, words)| {

let mut enc = String::new();

 enc.push_str(open.to_str());

 enc.push_str(words.as_str());

 enc.push_str(close.to_str());

 enc

 })

}

You’ll notice that one of the lines is commented out. If you uncomment this line you’ll

see that the test fails because it successfully parses what is supposed to be invalid

input. The string representation of the OpenComma variant ends with a space, so the

parser sees foo, as foo , followed by CloseComma , followed by ``. This means that

an OpenComma / OpenComma pair can accidentally be parsed as OpenComma /

CloseComma and no error will be generated. This error will be addressed by a later

rule so we’ll skip testing it in this rule. This is what the test looks like.

#[test]

fn rejects_mismatched_enclosed_delimiters(enc in invalid_enclosed()) {

let parsed = SentenceParser::parse(Rule::enclosed, enc.as_str());

 prop_assert!(parsed.is_err());

}

We can make another test that simply leaves off the closing delimiter.

fn missing_closing_delimiter() -> impl Strategy<Value = String> {

 (any::<EnclosedDelimiter>(), words()).prop_map(|(open, ws)| {

let mut enc = String::new();

 enc.push_str(open.to_str());

 enc.push_str(ws.as_str());

 enc

 })

}

#[test]

fn rejects_missing_closing_delimiter(enc in missing_closing_delimiter()) {

let parsed = SentenceParser::parse(Rule::enclosed, enc.as_str());

 prop_assert!(parsed.is_err());

}

Run the tests again and verify that they all still pass.

Chunk

The words and enclosed rules are similar in the sense that they both represent

sequences of words. To encode this similarity we’ll make a chunk rule that matches

either words or enclosed so that we can represent a sequence of words, some of

which may be enclosed in delimiters, as a sequence of chunk s.

chunk = ${ words | enclosed }

Fortunately we’ve already written strategies for words and enclosed so we can

skip straight to writing tests for this rule.

#[test]

fn parses_valid_words_chunk(ws in words()) {

let parsed = SentenceParser::parse(Rule::chunk, ws.as_str());

 prop_assert!(parsed.is_ok());

}

#[test]

fn parses_valid_enclosed_chunk(enc in valid_enclosed()) {

let parsed = SentenceParser::parse(Rule::chunk, enc.as_str());

 prop_assert!(parsed.is_ok());

}

#[test]

fn rejects_mismatched_delim_chunk(enc in invalid_enclosed()) {

let parsed = SentenceParser::parse(Rule::chunk, enc.as_str());

 prop_assert!(parsed.is_err());

}

#[test]

fn rejects_missing_delim_chunk(enc in missing_closing_delimiter()) {

let parsed = SentenceParser::parse(Rule::chunk, enc.as_str());

 prop_assert!(parsed.is_err());

}

Run the tests to make sure they all pass.

Punctuation

Sentences end with punctuation, so next we’ll create a rule that matches punctuation.

punctuation = { "." | "!" | "?" }

This is a relatively simple rule, so the strategies are also simple. A valid punctuation

character is either . , ! , or ? , and anything else is an invalid punctuation character.

fn punctuation() -> impl Strategy<Value = String> {

 prop_oneof![

 Just(String::from(".")),

 Just(String::from("?")),

 Just(String::from("!")),

]

}

fn invalid_punctuation() -> impl Strategy<Value = String> {

 proptest::string::string_regex("[^\\.\\?!]").unwrap()

}

#[test]

fn parses_valid_punctuation(s in punctuation()) {

let parsed = SentenceParser::parse(Rule::punctuation, s.as_str());

 prop_assert!(parsed.is_ok());

}

#[test]

fn rejects_invalid_punctuation(s in invalid_punctuation()) {

let parsed = SentenceParser::parse(Rule::punctuation, s.as_str());

 prop_assert!(parsed.is_err());

}

These tests should pass without any trouble.

Sentence

We’re almost done! It’s finally time to put it all together into a sentence rule.

sentence = ${ SOI ~ chunk+ ~ punctuation ~ EOI }

The SOI and EOI in this rule make sure that the entire input is parsed so that inputs

like a b c.def aren’t valid sentences.

We’ll begin with the most basic type of valid sentence: one or more chunk s followed

by a valid punctuation . First let’s write a strategy that produces a sequence of

chunk s joined by spaces.

fn chunks() -> impl Strategy<Value = String> {

 proptest::collection::vec(chunk(), 1..10).prop_map(|cs| {

 cs.join(" ")

 })

}

Now use this chunks strategy to make a valid_sentence strategy.

fn valid_sentence() -> impl Strategy<Value = String> {

 (chunks(), punctuation()).prop_map(|(cs, p)| {

let mut sentence = String::new();

 sentence.push_str(cs.as_str());

 sentence.push_str(p.as_str());

 sentence

 })

}

Now write a test that attempts to parse a valid sentence.

#[test]

fn parses_valid_sentence(s in valid_sentence()) {

let parsed = SentenceParser::parse(Rule::sentence, s.as_str());

 prop_assert!(parsed.is_ok());

}

Run the test to make sure it…wait a minute, this test fails! Notice that the minimal

failing input, "(a) a." , is a valid sentence (by our definition). This means that we

must have misinformed the parser how to parse a sentence. After a little bit of

investigation you’ll remember that our sentence rule is atomic (it starts with $).

sentence = ${ SOI ~ chunk+ ~ punctuation ~ EOI }

As a reminder, this means that whitespace between rules is not consumed. When our

parser tries to parse "(a) a." what it really sees is

<chunk><whitespace><chunk><punctuation> . That <whitespace> doesn’t match

the chunk+ piece of the sentence rule, so parsing fails. To fix this we’ll need to

handle whitespace manually where there’s repetition.

words = ${ word ~ (" " ~ word)* }

sentence = ${ SOI ~ chunk ~ (" " ~ chunk)* ~ punctuation ~ EOI }

Now the test should pass.

There’s a couple of other tests we can write, all of which should still pass with the

current rules.

#[test]

fn rejects_missing_punctuation(s in chunks()) {

let parsed = SentenceParser::parse(Rule::sentence, s.as_str());

 prop_assert!(parsed.is_err());

}

#[test]

fn rejects_trailing_characters(s in valid_sentence(), t in "[\\sa-zA-Z]+") {

let input = [s.as_str(), t.as_str()].join(" ");

let parsed = SentenceParser::parse(Rule::sentence, input.as_str());

 prop_assert!(parsed.is_err());

}

#[test]

fn rejects_missing_space_between_chunks(

 w in words(),

 enc in valid_enclosed(),

 p in punctuation()

) {

let input = [w, enc, p].join("");

let parsed = SentenceParser::parse(Rule::sentence, input.as_str());

 prop_assert!(parsed.is_err());

}

Conclusion

At this point you should have a passing understanding of how to write property-based

tests. PBT isn’t always the answer, but the simple act of thinking about the abstract

properties of your code can help you better understand it. The code used in this

tutorial can be found on GitHub.

P.S. - You can follow me on BlueSky at @z-mitchell.bsky.social for Rust, Nix, and lukewarm takes.

P.P.S. - If you notice that something could be more accessible, please reach out and I'll do my best to

fix it!

https://bsky.app/profile/z-mitchell.bsky.social
https://bsky.app/profile/z-mitchell.bsky.social

