How (and why) nextest uses tokio

2022-10-03 (updated 11-03) - 19 min read

1. Introduction

Update 2022-11-03: This was originally the first in a series of two blog posts. I've now marked
this as a standalone post. Content originally slated for part 2 will now be published as
followup posts.

I'm the primary author and maintainer of cargo-nextest, a next-generation test runner for Rust
released earlier this year. (It reached a thousand stars on GitHub recently; go star it here!)

() stars < 2.5k

Nextest is faster than cargo test for most Rust projects, and provides a number of extra
features, such as test retries, reusing builds, and partitioning (sharding) test runs. To power
these features, nextest uses Tokio, the leading Rust async runtime for writing network
applications.

Wait, what? Nextest isn't a network app at all'. However, nextest has to juggle multiple
concurrent tests, each of which can be in the process of starting, printing output, failing, timing
out, being cancelled or even forcibly stopped. In this post, I'll try to convince you that an async
runtime is actually the perfect approach to handle a large number of heterogenous events like
this.

There’s more than one kind of distributed system

The challenges posed by interprocess communication within a system are really similar to
those posed by remote communication across systems. Your computer is a distributed system.
Just like most network services, nextest spends almost all of its time waiting rather than
computing.

In other words, nextest provides the prototypical use-case for asynchronous concurrency, one
of the two main paradigms for non-sequential code.

https://nexte.st/
https://nexte.st/
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://github.com/nextest-rs/nextest
https://nexte.st/book/benchmarks.html
https://nexte.st/book/benchmarks.html
https://nexte.st/book/benchmarks.html
https://nexte.st/book/benchmarks.html
https://nexte.st/book/retries
https://nexte.st/book/retries
https://nexte.st/book/reusing-builds
https://nexte.st/book/reusing-builds
https://nexte.st/book/partitioning
https://nexte.st/book/partitioning
https://tokio.rs/
https://tokio.rs/
http://catern.com/compdist.html
http://catern.com/compdist.html
https://sunshowers.io/posts/nextest-and-tokio/
https://sunshowers.io/posts/nextest-and-tokio/

|/O-bound Compute-bound

< >

Async concurrency (Tokio) Data parallelism (Rayon)

- The async concurrency style is best for I/O-bound applications, where most time is spent
waiting on other parts of the overall system to respond. An I/O-bound application becomes
faster if /O becomes faster—for example, if your network link becomes faster, or you
replace a spinning disk hard drive with a solid-state drive.

- On the other end of the spectrum, data parallelism with libraries like Rayon is best for
compute-bound applications, where you're running a lot of computations in parallel on a set
of input data. These become faster if you replace your CPU with a faster one.

Why is an async runtime like Tokio good for I/O-bound applications? The answer has to do
with heterogenous selects?.

What are heterogenous selects?

You might have heard of the select operation: in computer parlance, it means to observe two
or more operations, and then to proceed with the first one that completes.

The name of the operation comes from the Unix select syscall. With select and its
successors like epoll, you can typically only wait on one of several I/O read or write
operations (represented through file descriptors). But real-world I/O-bound programs need to
do much more than that! Here are some other kinds of operations they may need to wait on:

- Timeouts or recurring timers

- Channel reads and writes when using message-passing, including bounded channels with
backpressure

- Process exits

- Unix signals

I/O-bound programs often need to wait across several of these sources at the same time. For
example, it's common for services to make a network request, then select across:

- anetwork response
- atimeout

https://man7.org/linux/man-pages/man2/select.2.html
https://man7.org/linux/man-pages/man2/select.2.html
https://man7.org/linux/man-pages/man2/select.2.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://tokio.rs/tokio/tutorial/channels
https://tokio.rs/tokio/tutorial/channels

- atermination signal, so any pending network operations can be canceled

This is an example of a heterogenous select (or, spelled slightly differently, a heterogeneous
select): a select operation that can span several different kinds of sources.

We also run into portability considerations: select is Unix-specific, and epoll is for the most

part Linux-only>. Other operating systems have their own epoll-like abstractions, each with
their own peculiarities:

- BSD-like platforms have kqueue (FreeBSD, macOS).
- Windows has |/O completion ports.

Some platforms may also support selecting across some kinds of heterogenous sources. For
example, Linux has signalfd and timerfd. To the extent that these are supported, there are
significant differences in the APIs available on each platform. And all of them make selecting
across channels and other user code quite difficult.

The divergence in platform APIs and capabilities may not be a huge deal for certain kinds of
network services that only target one platform, but is a real problem for a cross-platform
developer tool like nextest.

So there are two separate but related sets of problems here:

1 The need to select over arbitrary kinds of heterogenous sources, not just I/O operations.
2 The need to do so in a cross-platform manner.

Async runtimes like Tokio solve both sets of problems in one go“. In fact, I'd like to make a bold
claim here:

The ability to do heterogenous selects is the point of async Rust.

Async runtimes vs async/await
At this point it's worth mentioning that there are two related, but distinct, things here:

1 An async runtime: a framework that manages an event loop, handling events from
heterogenous sources and associating them with individual tasks.

2 The async and await keywords, which provide an easy way to write tasks that wait
on events handled by an async runtime.

It is definitely possible to leverage async runtimes without ever using the async and

https://man7.org/linux/man-pages/man2/signalfd.2.html
https://man7.org/linux/man-pages/man2/signalfd.2.html
https://man7.org/linux/man-pages/man2/signalfd.2.html
https://man7.org/linux/man-pages/man2/timerfd_create.2.html
https://man7.org/linux/man-pages/man2/timerfd_create.2.html
https://man7.org/linux/man-pages/man2/timerfd_create.2.html
https://www.freebsd.org/cgi/man.cgi?kqueue
https://www.freebsd.org/cgi/man.cgi?kqueue
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/kqueue.2.html
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man2/kqueue.2.html
https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://docs.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports

await keywords—in fact, I've written large chunks of a production service in Rust that
used an async runtime before async/await was ever a thing.

However, without syntactic support it is often very difficult to do so, since you may need
to hand-write complicated state machines. The async and await keywords dramatically
simplify the experience of writing state machines. David Tolnay talks about this more in
his blog post. (The poll_next/EncodeState example in his blog post was part of the
aforementioned production service, and it was my code that he rewrote.)

2. The initial implementation

With this background, we're now ready to start looking at how nextest's current architecture
came about.

The first versions of nextest all ran tests using “normal” threads. Here's the general structure
they used for their execution model:

The run pool:

Tests were run via a thread pool. II

1 Nextest first built up a list of tests.
2 It then spun up a thread pool with the
number of tests®, called the run pool.
3 For each test in the list, nextest used a o t e g.t
thread in the run pool. The thread ran the ‘ 4
test using the duct library, then blocked C e)
until the test exited. (nextest used duct R e ==
for convenience—we could have used
std:: process :: Command instead, which i)
wouldn't have changed much.) o
4 To send information about test events
(the start, end, success/failure, and time

taken for individual tests) to the main
thread, nextest used a crossbeam MPSC

The main ways data moves around among
nextest's components.

channel®: we'll call this the test event
channel.

The signal thread:

To handle signals such as Ctrl-C cleanly, nextest spun up a separate thread, and if a signal is

https://docs.rs/dtolnay/latest/dtolnay/macro._01__await_a_minute.html#native-control-flow
https://docs.rs/dtolnay/latest/dtolnay/macro._01__await_a_minute.html#native-control-flow
https://docs.rs/dtolnay/latest/dtolnay/macro._01__await_a_minute.html#native-control-flow
https://docs.rs/dtolnay/latest/dtolnay/macro._01__await_a_minute.html#native-control-flow
https://nexte.st/book/how-it-works.html
https://nexte.st/book/how-it-works.html
https://nexte.st/book/how-it-works.html#the-nextest-model
https://nexte.st/book/how-it-works.html#the-nextest-model
https://docs.rs/duct/
https://docs.rs/duct/
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/

detected, wrote to another channel: the signal event channel.
The main thread:

The main thread was dedicated to monitoring the two event channels. This thread would select
across the test event and signal event channels:

» Click to expand code sample

- If this loop received a test event, it would bubble that up to the reporter (the component that
prints nextest's output). If a test failed, it would set a cancellation flag which would cause no
further tests to be scheduled.

- If the loop received a signal event, it would set the cancellation flag.

Importantly, crossbeam_channel :: select! only lets you select over crossbeam channels, not
heterogenous sources in general. Anything else, including pipe reads or timers, must be
translated over to crossbeam channels somehow.

The first issues with the model

One of the first demands placed on nextest
was the need to identify slow tests. Note
that duct's Handle :: wait method doesn't
have any notion of a timeout: it just blocks
until the process is completed.

Run pool i Wait pool

Start test process

Spawn thread

Wait with timeout

Luckily, crossbeam_channel has a
recv_timeout method. So the solution was
straightforward: set up another thread pool,
called the wait pool, which would wait on
test processes to exit.

Test completed

So now this becomes:
How nextest's original runner loop detected

1 Start the test process using a thread in slow tests.

the run pool.
2 Spawn a wait pool thread to wait on the

test.
3 Inthe run pool, wait on the thread in the wait pool with a timeout.

- If the test finishes before the timeout, mark it done.

- If the timeout is hit, mark the test slow and go back to waiting on the test.

Here's the code:

https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/macro.select.html
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/macro.select.html
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L267-L287
https://nexte.st/book/slow-tests
https://nexte.st/book/slow-tests
https://docs.rs/duct/0.13/duct/struct.Handle.html#method.wait
https://docs.rs/duct/0.13/duct/struct.Handle.html#method.wait
https://docs.rs/duct/0.13/duct/struct.Handle.html#method.wait
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/struct.Receiver.html#method.recv_timeout
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/struct.Receiver.html#method.recv_timeout
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/struct.Receiver.html#method.recv_timeout
https://docs.rs/crossbeam-channel/0.5/crossbeam_channel/struct.Receiver.html#method.recv_timeout
https://github.com/nextest-rs/nextest/blob/5b82369cb42209c7f513ee686faa3dd340d971b7/nextest-runner/src/runner.rs#L358-L389
https://github.com/nextest-rs/nextest/blob/5b82369cb42209c7f513ee686faa3dd340d971b7/nextest-runner/src/runner.rs#L358-L389

» Click to expand code sample

This works, but you can already see the cracks starting to show. To solve this issue we had to
introduce a whole new thread pool on top of the existing run pool.

Terminating tests using a polling loop

A few months after nextest was released, a user requested another feature: the ability to
terminate tests that take more than a certain amount of time.

Now, nextest could terminate tests immediately with the unblockable SIGKILL signal7 (aka
kill -9). Butit's generally a good idea to give tests a bit of a grace period. So we chose to
first send tests a SIGTERM signal, then wait a bit for them to clean up before sending SIGKILL.

To do this, we defined two timeouts:

|
Run pool E Wait pool

1 A slow timeout, after which tests are

| Spawn thread

Start test process

marked as slow. Nextest's default slow
timeout is 60 seconds.

2 A termination timeout, after which tests Wait with timeout
are killed. Nextest doesn't have a default
termination timeout, but a typical one
users might set is 5 minutes (300 =
seconds). mgtt

The test execution flow is then:

Yes

1 Start the test process using a thread in
the run pool.

1
I
|

Terminate with E
polling loop {

I

I

Test timed out

2 Spawn a wait pool thread to wait on the
test.
3 In the run pool, wait on the thread in the

wait pool with the slow timeout. Test completed
- If the test finishes before the slow .

timeout, mark it done. How nextest'’s original runner loop
- If the slow timeout is hit and the implemented test timeouts.

termination timeout hasn't been hit yet,
mark the test as slow and go back to waiting on it.
- If the termination timeout is hit, set up a termination loop.

And the termination loop:

https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html
https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html
https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html
https://www.gnu.org/software/libc/manual/html_node/Termination-Signals.html

1 Send the process SIGTERM.
2 Inaloop, for up to 10 seconds:
- Check if the test process exited.
- If it did, break out of the loop.
- Otherwise, wait 100ms and check the test's status again.
3 If the test hasn't exited by the end of the loop, send it SIGKILL.

Here's the code:

» Click to expand code sample

You can already start seeing the code becoming long and rather janky, with its 100ms polling
loop.

Detecting leaked handles

Some tests spawn server or other subprocesses, and sometimes those subprocesses don't
get cleaned up at the end of the test. In particular, nextest is concerned about processes that
inherit standard output and/or standard error. Here's an example test:

Htest]
fn test_subprocess_doesnt_exit() {

// Spawn a subprocess that sleeps for 2 minutes, then exits.

let mut cmd = std::process::Command::new("sleep");

cmd.arg("120");

// This sleep command inherits standard output and standard error from the
test.

cmd.spawn().unwrap();

Since sleep inherits standard output and standard error from the test, it keeps those file
descriptors open until it exits. Previously, nextest would simply wait until those subprocesses
exited. In the worst case, the subprocesses wouldn't exit at all: think of a server process that
gets started but never shut down. That can result in nextest simply hanging, which isn't great.

How can nextest detect these sorts of leaky tests? One solution is to wait for standard output
and standard error to be closed until a short duration (say 100ms) passes. While this is
conceptually simple, implementing it is surprisingly complicated. Waiting on one handle being
closed is nontrivial; waiting on two handles being closed (standard output and standard error)
adds an extra challenge.

| spent some time looking at how to implement it manually, and came away from it with the

https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L412-L473
https://github.com/nextest-rs/nextest/blob/ce98c9405bfe512e2f411d78bfe04468722ae69b/nextest-runner/src/runner.rs#L412-L473
https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
https://doc.rust-lang.org/std/process/struct.Stdio.html#method.inherit
https://nexte.st/book/leaky-tests.html
https://nexte.st/book/leaky-tests.html
https://nexte.st/book/leaky-tests.html
https://nexte.st/book/leaky-tests.html
https://nexte.st/book/leaky-tests.html

understanding that I'd have to maintain separate implementations for Windows and Unix. Not
only that, I'd just be duplicating a lot of the work Tokio had already done to abstract over
platform differences. So | started looking at porting over nextest to Tokio.

3. Using Tokio

| spent a weekend porting over nextest to use async Rust with Tokio. After a bit of iteration, |
settled on this general architecture:

1 Create a Tokio Runtime in the beginning. The Runtime lasts for as long as the runner loop
does.

2 Turn the list of tests into a Stream, then for each test, create a future that executes the test.
Use buffer unordered to control concurrency®.

3 Switch over crossbeam channels to tokio channels as needed, and
crossbeam_channel:: select! invocations to tokio::select!.

Here's the bit that selects over the test event and signal event channels:

» Click to expand code sample

This is really similar to the crossbeam-based implementation above, with just one real change:
The code tracks a signals_done state to see if the signal event channel has been dropped.
This is to ensure that the loop doesn't repeatedly get None values from the signal handler,
wasting cycles. (This is more important with futures that, once completed, cannot be waited on
further, as we'll see in the next section.)

Waiting on process completion with Tokio

Where this gets really interesting is with the loop nextest uses to wait for tests to complete. It
turns out that all the code we wrote above can be replaced with a set of Rust and Tokio
primitives, written in a roughly declarative style.

After starting the process, nextest sets up a timer, and futures to read from standard output
and standard error:

» Click to expand code sample

Some notes about the code above:

- On being polled, the futures repeatedly read standard output and standard error into their
corresponding buffers in 4 KiB chunks. They only exit when O bytes are read, which

https://github.com/nextest-rs/nextest/blob/8703af50b649fc882e601d4eb01f7c2c104c0395/nextest-runner/src/runner.rs#L325-L347
https://github.com/nextest-rs/nextest/blob/8703af50b649fc882e601d4eb01f7c2c104c0395/nextest-runner/src/runner.rs#L325-L347
https://github.com/nextest-rs/nextest/blob/e11c35547511e728a422cabdcd04ea542df3bef5/nextest-runner/src/runner.rs#L600-L648
https://github.com/nextest-rs/nextest/blob/e11c35547511e728a422cabdcd04ea542df3bef5/nextest-runner/src/runner.rs#L600-L648
https://docs.rs/tokio/latest/tokio/runtime/struct.Runtime.html
https://docs.rs/tokio/latest/tokio/runtime/struct.Runtime.html
https://docs.rs/tokio/latest/tokio/runtime/struct.Runtime.html
https://docs.rs/tokio/latest/tokio/runtime/struct.Runtime.html
https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
https://docs.rs/futures/0.3/futures/stream/trait.Stream.html
https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.buffer_unordered
https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.buffer_unordered
https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html#method.buffer_unordered
https://docs.rs/tokio/1/tokio/sync/mpsc/index.html
https://docs.rs/tokio/1/tokio/sync/mpsc/index.html
https://docs.rs/tokio/1/tokio/macro.select.html
https://docs.rs/tokio/1/tokio/macro.select.html
https://docs.rs/tokio/1/tokio/macro.select.html
https://docs.rs/tokio/1/tokio/macro.select.html

corresponds to the handle being closed.

- The code needs to maintain stdout_done and stderr_done flags: this is similar to
signals_done above, except this time it's necessary because async blocks cannot be
polled once completed: if done so, they panic with the message “async fn resumed after
completion”.

- The futures borrow data from the stack. This is possible thanks to async Rust's integration
with the borrow checker.

- The futures are pinned to the stack, which means that they cannot be moved. This is a
fundamental part of how zero-overhead async Rust works. An async block must be pinned
before it can be polled.

Remember how we talked about heterogenous selects in part 1 of this post? This is where we
start using them. Notice how crossbeam_channel:: select! only works on crossbeam
channels. On the other hand, Tokio's select works on arbitrary, heterogenous sources of
asynchronicity.

Here's how nextest now waits on tests:

Set up slow Set up stdout
Setup: Start test process up and stderr
timer
futures
‘\\ 1 4
b= 1 P

1 Start the test process, which sets up a \ .)
future that completes when the test exits. a———

2 Set up atimer for the slow timeout.

3 Set up futures to read from standard
output and standard error.

Read into
buffer

Then, select across the futures listed above
in a loop, using Tokio's ability to handle
heterogenous selects with tokio:: select!.

Break: detect leaks

If data is available via the standard output
or standard error futures: Break: test timed out

1 Read data into the corresponding buffer. How nextest's Tokio-based runner loop
2 Loop back and select again. executes tests.

If the timer fires:

1 If the terminate timeout is hit, terminate the test and exit the loop.
2 If not, mark as slow, loop back and select again.

If the process exits:

1 Exit the execution loop.

https://docs.rs/tokio/1/tokio/macro.pin.html
https://docs.rs/tokio/1/tokio/macro.pin.html
https://docs.rs/tokio/1/tokio/macro.pin.html
https://docs.rs/tokio/1/tokio/macro.pin.html
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html
https://rust-lang.github.io/async-book/04_pinning/01_chapter.html

2 Proceed to the leak detection loop below.

Here's the code:

» Click to expand code sample

And then, how does nextest detect leaked handles? After the main loop ends, nextest just runs
another little loop for that:

1 Set up a short (by default 100ms) leak
timer.

2 Select across the leak timer and the
standard output and error futures from
before, in a loop.

Detect leaks
Set up leak
timer
|

Pre-existing read
futures

If data is available via the standard output
or standard error futures:

Select

1 Read data into the corresponding buffer.
2 Loop back, and select again.

Test leaked handles

Read into
buffer

If both the standard output and standard
error futures have completed:

1 Note that the test didn't leak.
2 Conclude test execution.

Test didn’t leak

If the timer fires before both futures have How nextest's Tokio-based runner loop
completed: detects leaked handles in tests.

1 Note that the test leaked handles.
2 Conclude test execution.

Here's the code:

» Click to expand code sample

That's it! We've replaced all of that unwieldy code with a couple of declarative select! loops.

If it compiles, does it work?

One of the promises of Rust's type system is that it'll catch most kinds of bugs before
you ever run the program. In my experience, this promise is mostly upheld, even when
dealing with async code. For a few compile-time issues like pinning, it was easy to find

https://github.com/nextest-rs/nextest/blob/8703af50b649fc882e601d4eb01f7c2c104c0395/nextest-runner/src/runner.rs#L533-L570
https://github.com/nextest-rs/nextest/blob/8703af50b649fc882e601d4eb01f7c2c104c0395/nextest-runner/src/runner.rs#L533-L570
https://github.com/nextest-rs/nextest/blob/8703af50b649fc882e601d4eb01f7c2c104c0395/nextest-runner/src/runner.rs#L582-L609
https://github.com/nextest-rs/nextest/blob/8703af50b649fc882e601d4eb01f7c2c104c0395/nextest-runner/src/runner.rs#L582-L609

solutions.
| ran into two runtime issues:

1 A panic with the message “async fn resumed after completion”. The solution to this
was easy to find.

2 The main loop that selected across the test event and signal event channels hung
during longer test runs; this was caused by a biased statement. Removing the
biased fixed it, but | mostly found that out by trial and error. I'm not sure how to
debug this kind of issue in a principled manner.

4. Conclusion

There's a bit of a meme in the Rust world: that if you can “just use” threads, you should; and
that async code is really only “worth it” for network services that need to be massively
concurrent. (I don't mean to pick on the individual authors here. It's a general view in the Rust
community.)

While | agree that async Rust isn't easy, | believe nextest's experience using tokio directly
challenges that general view. The point of async, even more than the concurrency, is to make
it easy to operate across arbitrary sources of asynchronicity. This is exactly what nextest
needs to do. Any Rust program that is I/O-bound, or any program that needs to do
heterogenous selects, should strongly consider using an async runtime like Tokio.

Thanks

Thanks to Fiona, Inanna, Eliza, Brandon, Predrag, and Michael for reviewing drafts of this
article. And thank you for reading it to the end.

The flowcharts are available in this Google folder, and are licensed under CC BY 4.0.

Changelog

2022-10-06:

- Add a note that platform-specific APIs like signalfd and timerfd can provide
heterogenous selects to some extent, though not as much as Tokio can.

- Updated stdout_fut and stderr_fut implementations to match changes in #560.

- I'd forgotten to add Michael Gattozzi to the reviewers list. Fixed, sorry!

https://tokio.rs/tokio/tutorial/select#resuming-an-async-operation
https://tokio.rs/tokio/tutorial/select#resuming-an-async-operation
https://news.ycombinator.com/item?id=31601973
https://news.ycombinator.com/item?id=31601973
https://www.reddit.com/r/rust/comments/v6rx10/comment/ibh2nwz
https://www.reddit.com/r/rust/comments/v6rx10/comment/ibh2nwz
https://www.reddit.com/r/rust/comments/v6rx10/comment/ibh2nwz
https://www.reddit.com/r/rust/comments/v6rx10/comment/ibh2nwz
https://twitter.com/munin
https://twitter.com/munin
https://twitter.com/inanna_malick
https://twitter.com/inanna_malick
https://twitter.com/mycoliza/
https://twitter.com/mycoliza/
https://twitter.com/bmwill_
https://twitter.com/bmwill_
https://twitter.com/PredragGruevski
https://twitter.com/PredragGruevski
https://twitter.com/mgattozzi
https://twitter.com/mgattozzi
https://drive.google.com/drive/folders/1znKowkG_58v7oo4zoTxHPF0wBd6OkTyt?usp=sharing
https://drive.google.com/drive/folders/1znKowkG_58v7oo4zoTxHPF0wBd6OkTyt?usp=sharing
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://tokio.rs/tokio/tutorial/select#modifying-a-branch
https://tokio.rs/tokio/tutorial/select#modifying-a-branch
https://sunshowers.io/posts/nextest-and-tokio/#cutting-the-knot
https://sunshowers.io/posts/nextest-and-tokio/#cutting-the-knot
https://docs.rs/tokio/latest/tokio/macro.select.html#fairness
https://docs.rs/tokio/latest/tokio/macro.select.html#fairness
https://docs.rs/tokio/latest/tokio/macro.select.html#fairness
https://docs.rs/tokio/latest/tokio/macro.select.html#fairness
https://github.com/nextest-rs/nextest/pull/560
https://github.com/nextest-rs/nextest/pull/560

Other than its self-update functionality, which isn't relevant here. €
Full credit for the term and framing goes to Eliza Weisman. <2
Some other systems have added epoll for compatibility with Linux: for example, illumos. ¢«

The platform-specific implementations are usually abstracted away with a low-level library
like Mio. €

The runner loop needed a scoped thread pool because it relied on borrowed data—it used
rayon’'s ThreadPool for that purpose. €

MPSC stands for “multi-producer, single consumer”. This kind of channel lets many threads
(in this case, the threads running the tests) send data to a single “status” thread. €

Or its equivalent on Windows, TerminateProcess. <

Why buffer_unordered? Because we'd like tests to be started in lexicographic order, but
results to be reported in the order tests finish in. That is exactly the behavior
buffer_unordered provides.

One alternative was to spawn every test as a separate future and use a semaphore to
control concurrency, but that might have resulted in tests being started in arbitrary order. €

© Rain 2020-present. Licensed under CC BY-NC-SA 4.0 unless marked otherwise.

https://nexte.st/book/updating.html
https://nexte.st/book/updating.html
https://twitter.com/mycoliza
https://twitter.com/mycoliza
https://illumos.org/man/7/epoll
https://illumos.org/man/7/epoll
https://github.com/tokio-rs/mio
https://github.com/tokio-rs/mio
https://github.com/rayon-rs/rayon
https://github.com/rayon-rs/rayon
https://docs.rs/rayon/1/rayon/struct.ThreadPool.html
https://docs.rs/rayon/1/rayon/struct.ThreadPool.html
https://docs.rs/rayon/1/rayon/struct.ThreadPool.html
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminateprocess
https://docs.rs/tokio/1/tokio/sync/struct.Semaphore.html
https://docs.rs/tokio/1/tokio/sync/struct.Semaphore.html

