
Using Crates.io with Buck
Apr 27 2023

In a previous post (using-buck-to-buid-rust-projects), I aid out the

basics of buiding a Rust project with buck2 (https://buck2.buid/). We

compared and contrasted it with Cargo. But what about one of the

biggest and best features that Cargo has to offer, the abiity to use

other Rust packages from crates.io? They donʼt use buck, so how can

we integrate them into our buid?

A series

This post is part of a series:

• Using buck to buid Rust projects (using-buck-to-buid-rust-

projects)

• Using Crates.io with Buck (you are here)

• Updating Buck (updating-buck)

This post represents how to do this at the time that this was posted;

future posts may update or change something that happens here.

Hereʼs a hopefuy compete but possiby incompete ist of updates

and the posts that tak about it:

• build-script-build target is no onger generated, see “Updating

Buckˮ

Depending on semver

Letʼs use the semver package exampe as our program. I am choosing

this for a few reasons:

https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/#
https://steveklabnik.com/writing/using-cratesio-with-buck/#
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck

• I used to be invoved in maintaining it, and Iʼm sentimenta

• Itʼs authored by dtonay, who authors many great Rust crates.

• More specificay than that, his exceent cxx ibrary (https://

github.com/dtonay/cxx/) maintains buid rues for Cargo, Buck,

and Baze, and examining how he uses Buck in cxx heped me

write both the ast post and this one. I wanted to make sure to

shout that out.

• Itʼs pure Rust (this is easier than something that depends on C,

since as I mentioned Iʼm sti having an issue or two with getting my

own C toochain working so far).

• It has one optiona dependecy on serde, but no others. Again, this

is just easier, not a fundamenta imitation.

Hereʼs the exampe, from the page on crates.io (https://crates.io/

crates/semver):

use semver::{BuildMetadata, Prerelease, Version, VersionReq};

fn main() {

 let req = VersionReq::parse(">=1.2.3, <1.8.0").unwrap();

 // Check whether this requirement matches version 1.2.3-alpha.1 (no)

 let version = Version {

 major: 1,

 minor: 2,

 patch: 3,

 pre: Prerelease::new("alpha.1").unwrap(),

 build: BuildMetadata::EMPTY,

 };

 assert!(!req.matches(&version));

 // Check whether it matches 1.3.0 (yes it does)

 let version = Version::parse("1.3.0").unwrap();

https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver

 assert!(req.matches(&version));

}

Letʼs change src/bin/main.rs to contain this code. What do we need

to do to add this with Cargo?

buck-rust-hello〉cargo add semver

 Adding semver v1.0.17 to dependencies.

 Features:

 + std

 - serde

buck-rust-hello〉cargo run

 Compiling semver v1.0.17

 Compiling hello_world v0.1.0 (C:\Users\steve\Documents\GitHub\buck-rust-hel

 Finished dev [unoptimized + debuginfo] target(s) in 0.71s

 Running `target\debug\main.exe`

buck-rust-hello〉

Easy enough! We expect no output, becuase the asserts shoud pass.

Note that we didnʼt ask for the serde feature, so we arenʼt using it,

and therefore donʼt depend on anything other than semver .)

How Cargo handes this

Before we move on, etʼs tak for a moment about what Cargo actuay

does here.

First, cargo add has added this to our Cargo.toml :

[dependencies]

semver = "1.0.17"

This is the atest reease of semver at the time of this writing.

When we cargo build , Cargo wi figure out a of the crates we need.

It wi then check the cache for the source code for that crate, and if itʼs

not there, downoad it. On my system, this ives here:

 ~\.cargo\registry\src\github.com-1ecc6299db9ec823\semver-1.0.17\

This means we have a goba cache of source code.

Cargo wi then compie semver , as you can see in the output above. It

paces that output in the target directory, more specificay

.\target\debug\deps

This directory wi contain libsemver-ded1559592aad8f7.rlib ,

libsemver-ded1559592aad8f7.rmeta , and semver-

ded1559592aad8f7.d . These have hashes embedded in them so that if

we had mutipe versions of semver in our project, they can be

disambiguated. If youʼre not famiiar with rustc output:

• rib fies are simar to archive fies, ike Unix ar . The detais are not

standard, and may change at any time. Object code ives in here,

as we as other things.

• rmeta fies contain crate metadata. This can be used for cargo

check , for exampe.

• .d fies are a dependency fie. This format comes from gcc/make,

and is sorta standardized. This is in theory usefu for use with

other buid systems, but we wonʼt be using this today.

Cargo wi then buid our project, passing in libsemver-*.rlib as a

dependency.

If youʼre curious about the exact commands and fags, cargo build -

v wi show that. Make sure to cargo clean first, or ese youʼ get no

output, given that weʼve aready buit this project.

For exampe, hereʼs the rustc invocation that Cargo makes for buiding

this step:

rustc --crate-name main --edition=2021 src\bin\main.rs --error-format=json --j

Since we are not using Cargo, we need to repace a of that stuff, and

get Buck to generate that rustc ine, or at east, some equivaent of it.

Letʼs tak about the various things we need to do:

The mismatch

Letʼs start with one thing that is basicay the same: buck-out and

target are both directories in our project that cache the output of our

buid. Yeah the name and detais are different, but weʼre not going to

try and somehow unify these, as theyʼre both considered

impementaiton detais of the respective systems, and trying to get

them to share is a ot of work for not much gain.

Buck does not have a centra registry of packages that we can

downoad code from.

Buck is interested in reproducabe buids, and therefore, a goba cache

of source code doesnʼt make as much sense. You want the code stored

ocay, with your project. The dreaded (or beoved) vendoring.

Buck does not understand the crate index, Cargo configuration for a

given package, and other impementation detais. As a more genera

buid system, those are pretty much out of scope.

Luciky, other peope have done a ot of work here.

Reindeer

Enter Reindeer (https://github.com/facebookincubator/reindeer/).

Reindeer is a project that wi hep us bridge this gap. Hereʼs how this

wi work: Reindeer wi create and (mosty) manage a third-party

directory for us. It wi generate BUCK fies that we can then use to

depend on these externa crates. We can even choose to vendor our

sources or not.

You can insta reindeer through Cargo:

> cargo install --git https://github.com/facebookincubator/reindeer/ reindeer

Letʼs set this up. First off, we need to create some fies:

> mkdir third-party

> code third-party\Cargo.toml # or vim, or whatever

In that Cargo.toml , weʼ need to put this:

[workspace]

[package]

name = "rust-third-party"

version = "0.0.0"

publish = false

edition = "2021"

Dummy target to keep Cargo happy

[[bin]]

name = "fake"

https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/

path = "/dev/null"

[dependencies]

semver = "1.0.17"

Weʼre creating a fake package here, so nothing truy matters except

the [dependencies] section. Here we depend on semver as usua.

Weʼre aso going to configure Reindeer to not vendor our source code,

because thatʼs how I prefer to do things. Vendoring was the defaut

behavior, with non-vendoring being added very recenty, so if you

prefer to vendor, that workfow works very we

Anyway put this in third-party/reindeer.toml :

vendor = false

So run this inside of your third-party directory:

〉cd third-party

〉reindeer buckify

[WARN reindeer::fixups] semver-1.0.17 has a build script, but I don't know wh

Oh no, buid scripts! Yeah I said that I picked semver because it shoud

be easy, but it does have a buid script, which is another Cargo-

specific feature. Now, the semver crateʼs buid script is used as a

feature to support oder versions of the compier; a it does is detect

od versions and then spit out some configuration to make sure to not

use the newer features of the anguage. This is why this is a warning,

not an error; in this case, we donʼt actuay need the buid script since

we are using a new compier. So, we are going to skip this for now, but

weʼ come back and fix it.

At this point, reindeer has generated a BUCK fie for semver . Letʼs see

what targets we have now:

〉buck2 targets //...

Jobs completed: 4. Time elapsed: 0.0s.

root//:build

root//src/bin:hello_world

root//src/lib:hello_world

root//third-party:semver

root//third-party:semver-1.0.17

root//third-party:semver-1.0.17-build-script-build

We have a few new ones! One for semver , one for the specific version

of semver , and one for the buid script of semver . The genera semver

is an aias for semver-1.0.17 .

Do you know how to modify our buid so that buck buids successfuy?

Hereʼs the answer: change src\bin\BUCK :

rust_binary(

 name = "hello_world",

 srcs = ["main.rs"],

 crate_root = "main.rs",

 deps = [

 "//third-party:semver",

],

)

And now we can buid and run:

〉buck2 run //src/bin:hello_world

File changed: root//src/bin/BUCK

Build ID: b18ba58d-8a77-439a-9d95-6051f3cf21d4

Jobs completed: 26. Time elapsed: 1.9s. Cache hits: 0%. Commands: 3 (cached: 0

Success! Our program has no output, if the assertions faied we woud

have gotten something, but this is expected given the exampe code.

Now, whenever we need to add or remove a dependency, we can

modify third-party\Cargo.toml , re-run the buckify command, and

weʼre good.

We do have two different Cargo.toml s now. That is a bit of a bummer.

But at east it is easy to determine if thereʼs a probem: dependency

faiures are oud, and if youʼre buiding with both in CI, youʼ notice if

stuff goes wrong. There aso may be a soution to this Iʼm just not

aware of.

If youʼd ike to see the whoe thing at this point, this commit (https://

github.com/stevekabnik/buck-rust-heo/

commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f) shoud have

you covered.

This shoud get you going with buiding more advanced projects in Rust

using buck2. In the next post, weʼ tak about fixups, which youʼ need

for dependencies that are more compex than semver .

By the way, if youʼre interested in this stuff, Iʼve made a Discord for

buck fans (https://discord.gg/ZTEmwypZ6K. Come hang out, chat

about stuff, ask questions, itʼs gonna be a good time.

https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K

