Using Crates.io with Buck

Apr 27 2023

In a previous post (using-buck-to-build-rust-projects), | laid out the
basics of building a Rust project with buck2 (https://buck2.build/). We
compared and contrasted it with Cargo. But what about one of the
biggest and best features that Cargo has to offer, the ability to use
other Rust packages from crates.io? They don't use buck, so how can

we integrate them into our build?

A series

This post is part of a series:

e Using buck to build Rust projects (using-buck-to-build-rust-

projects)
¢ Using Crates.io with Buck (you are here)
e Updating Buck (updating-buck)
This post represents how to do this at the time that this was posted;
future posts may update or change something that happens here.

Here's a hopefully complete but possibly incomplete list of updates
and the posts that talk about it:

e build-script-build targetis no longer generated, see “Updating
Buck”

Depending on semver

Let's use the semver package example as our program. | am choosing
this for a few reasons:

https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://buck2.build/
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/using-buck-to-build-rust-projects
https://steveklabnik.com/writing/using-cratesio-with-buck/#
https://steveklabnik.com/writing/using-cratesio-with-buck/#
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck
https://steveklabnik.com/writing/using-cratesio-with-buck/updating-buck

| used to be involved in maintaining it, and I'm sentimental
¢ It's authored by dtolnay, who authors many great Rust crates.

e More specifically than that, his excellent cxx library (https://
github.com/dtolnay/cxx/) maintains build rules for Cargo, Buck,
and Bazel, and examining how he uses Buck in cxx helped me
write both the last post and this one. | wanted to make sure to

shout that out.

e |It's pure Rust (this is easier than something that depends on C,
since as | mentioned I'm still having an issue or two with getting my

own C toolchain working so far).

¢ It has one optional dependecy on serde, but no others. Again, this

is just easier, not a fundamental limitation.

Here's the example, from the page on crates.io (https://crates.io/

crates/semver):

use semver::{BuildMetadata, Prerelease, Version, VersionReq};

fn main() {
let req = VersionReq::parse(">=1.2.3, <1.8.0").unwrap();

// Check whether this requirement matches version 1.2.3-a

let version = Version {

major: 1,
minor: 2,
patch: 3,

pre: Prerelease::new("alpha.1").unwrap(),
build: BuildMetadata: :EMPTY,

Fi

assert!(!reqg.matches(&version));

// Check whether it matches 1.3.0 (yes it does)

let version = Version::parse("1.3.0").unwrap();

https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://github.com/dtolnay/cxx/
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver
https://crates.io/crates/semver

assert!(req.matches(&version));

Let's change src/bin/main.rs to contain this code. What do we need
to do to add this with Cargo?

buck-rust-hello) cargo add semver
Adding semver v1.0.17 to dependencies.
Features:
+ std
- serde
buck-rust-hello) cargo run
Compiling semver v1.0.17
Compiling hello_world v@.1.0 (C:\Users\steve\Documents\Git
Finished dev [unoptimized + debuginfo] target(s) in ©.71s
Running "target\debug\main.exe’
buck-rust-hello)

Easy enough! We expect no output, becuase the asserts should pass.
(Note that we didn't ask for the serde feature, so we aren't using it,

and therefore don't depend on anything other than semver .)

How Cargo handles this

Before we move on, let's talk for a moment about what Cargo actually

does here.

First, cargo add has added this to our Cargo.toml:

[dependencies]

semver = "1.0.17"

This is the latest release of semver at the time of this writing.

When we cargo build, Cargo will figure out all of the crates we need.
It will then check the cache for the source code for that crate, and if it's

not there, download it. On my system, this lives here:

~\.cargo\registry\src\github.com-1lecc6299db%9ec823\semver-1.0

This means we have a global cache of source code.

Cargo will then compile semver, as you can see in the output above. It

places that output in the target directory, more specifically

.\target\debug\deps

This directory will contain libsemver-ded1559592aad8f7.rlib,
libsemver-ded1559592aad8f7.rmeta, and semver-
ded1559592aad8f7.d . These have hashes embedded in them so that if
we had multiple versions of semver in our project, they can be

disambiguated. If you're not familiar with rustc output:

e rlib files are simlar to archive files, like Unix ar . The details are not
standard, and may change at any time. Object code lives in here,
as well as other things.

e rmeta files contain crate metadata. This can be used for cargo
check , for example.

e .d files are a dependency file. This format comes from gcc/make,
and is sorta standardized. This is in theory useful for use with

other build systems, but we won't be using this today.

Cargo will then build our project, passing in libsemver-*.rlib as a

dependency.

If you're curious about the exact commands and flags, cargo build -
v will show that. Make sure to cargo clean first, or else you'll get no

output, given that we've already built this project.

For example, here's the rustc invocation that Cargo makes for building

this step:

rustc ——crate—-name main ——edition=2021 src\bin\main.rs —--erro

Since we are not using Cargo, we need to replace all of that stuff, and

get Buck to generate that rustc line, or at least, some equivalent of it.

Let's talk about the various things we need to do:

The mismatch

Let's start with one thing that is basically the same: buck-out and
target are both directories in our project that cache the output of our
build. Yeah the name and details are different, but we're not going to
try and somehow unify these, as they're both considered
implementaiton details of the respective systems, and trying to get

them to share is a lot of work for not much gain.

Buck does not have a central registry of packages that we can

download code from.

Buck is interested in reproducable builds, and therefore, a global cache
of source code doesn't make as much sense. You want the code stored

locally, with your project. The dreaded (or beloved) vendoring.

Buck does not understand the crate index, Cargo configuration for a
given package, and other implementation details. As a more general

build system, those are pretty much out of scope.

Lucikly, other people have done a lot of work here.

Reindeer

Enter Reindeer (https://github.com/facebookincubator/reindeer/).
Reindeer is a project that will help us bridge this gap. Here's how this
will work: Reindeer will create and (mostly) manage a third-party
directory for us. It will generate BUCK files that we can then use to
depend on these external crates. We can even choose to vendor our

sources or not.

You can install reindeer through Cargo:

> cargo install —--git https://github.com/facebookincubator/re

Let's set this up. First off, we need to create some files:

> mkdir third-party
> code third-party\Cargo.toml # or vim, or whatever

In that Cargo.toml, we'll need to put this:

[workspacel

[package]
name = "rust-third-party"
"9.0.0"

false

version

publish
edition = "2021"

Dummy target to keep Cargo happy
[[bin]]

name = "fake"

https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/
https://github.com/facebookincubator/reindeer/

path = "/dev/null"

[dependencies]

semver = "1.0.17"

We're creating a fake package here, so nothing truly matters except

the [dependencies] section. Here we depend on semver as usual.

We're also going to configure Reindeer to not vendor our source code,
because that's how | prefer to do things. Vendoring was the default
behavior, with non-vendoring being added very recently, so if you
prefer to vendor, that workflow works very well

Anyway put this in third-party/reindeer.toml:

vendor = false

So run this inside of your third-party directory:

> cd third-party
> reindeer buckify

[WARN reindeer::fixups] semver-1.0.17 has a build script, bu

Oh no, build scripts! Yeah | said that | picked semver because it should
be easy, but it does have a build script, which is another Cargo-
specific feature. Now, the semver crate's build script is used as a
feature to support older versions of the compiler; all it does is detect
old versions and then spit out some configuration to make sure to not
use the newer features of the language. This is why this is a warning,
not an error; in this case, we don't actually need the build script since
we are using a new compiler. So, we are going to skip this for now, but

we'll come back and fix it.

At this point, reindeer has generated a BUCK file for semver. Let's see
what targets we have now:

> buck2 targets //...

Jobs completed: 4. Time elapsed: 0.0s.
root//:build

root//src/bin:hello_world
root//src/lib:hello_world

root//third-party:semver
root//third-party:semver-1.0.17
root//third-party:semver-1.0.17-build-script-build

We have a few new ones! One for semver, one for the specific version
of semver, and one for the build script of semver . The general semver

is an alias for semver-1.0.17.
Do you know how to modify our build so that buck builds successfully?

Here's the answer: change src\bin\BUCK:

rust_binary(
name = "hello_world",
srcs = ["main.rs"],
crate_root = "main.rs",
deps = [
"//third-party:semver",
1,

And now we can build and run:

> buck2 run //src/bin:hello_world
File changed: root//src/bin/BUCK
Build ID: b18bab58d-8a77-439a-9d95-6051f3cf21d4

Jobs completed: 26. Time elapsed: 1.9s. Cache hits: 0%. Comma

Success! Our program has no output, if the assertions failed we would
have gotten something, but this is expected given the example code.

Now, whenever we need to add or remove a dependency, we can
modify third-party\Cargo.toml, re-runthe buckify command, and
we're good.

We do have two different Cargo.toml s nhow. That is a bit of a bummer.
But at least it is easy to determine if there's a problem: dependency
failures are loud, and if you're building with both in CI, you'll notice if
stuff goes wrong. There also may be a solution to this I'm just not

aware of.

If you'd like to see the whole thing at this point, this commit (https://
github.com/steveklabnik/buck-rust-hello/
commit/2abdlada7dbbc7f89cd8678eacele07b3df2ae2f) should have
you covered.

This should get you going with building more advanced projects in Rust
using buck2. In the next post, we'll talk about fixups, which you'll need

for dependencies that are more complex than semver .

By the way, if you're interested in this stuff, I've made a Discord for
buck fans (https://discord.gg/ZTEmwypZ6K). Come hang out, chat

about stuff, ask questions, it's gonna be a good time.

https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://github.com/steveklabnik/buck-rust-hello/commit/2abd1ada7dbbc7f89cd8678eace1e07b3df2ae2f
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K
https://discord.gg/ZTEmwypZ6K

