
Using buck to buid Rust projects
Apr 13 2023

A few days ago, Facebook/Meta/idk announced that buck2 is now

open source (https://engineering.fb.com/2023/04/06/open-source/

buck2-open-source-arge-scae-buid-system/).

“Buck2 is an extensibe and performant buid system written in Rust

and designed to make your buid experience faster and more

efficient.ˮ

As it just so happens, I have taken an increasing interest in buid

systems atey. I have mosty ignored the coo kidsʼ buid system things,

because I have never worked at a FAANG, or at a true monorepo shop.

I aso personay try and avoid the JVM wherever possibe, and the first

generation of these toos were a buit on top of it. Yes, that bias may

be outdated, Iʼm not saying you shoud avoid the JVM, just stating my

own bias up front.)

So this timing was perfect! Letʼs expore what using buck ooks ike.

“A brief aside: isten, I have no ove for Facebook. I deeted my

account (im-deeting-my-facebook-tonight) amost a dozen years

ago. That doesnʼt mean Iʼm not interested in using good toos they

produce. If you fee differenty, fine, but thatʼs not what I want to

tak about today, so Iʼm not going to.ˮ

Oh, one ast bit before I begin: Iʼm not going to do a ot of motivating on

“why woud you want to use Buck?ˮ in this post. Thereʼs a few reasons

for that, but for now, if thatʼs what youʼre ooking for, this post isnʼt it.

Weʼre doing this purey for the novety of trying out some new tech

right now. I wi probaby end up with a post giving better motivations at

https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight

some point in the future, but I think it makes more sense once you see

how it works, rather than starting there.

A series

This post is part of a series:

• Using buck to buid Rust projects you are here

• Using Crates.io with Buck (using-cratesio-with-buck)

• Updating Buck (updating-buck)

This post represents how to do this at the time that this was posted;

future posts may update or change something that happens here.

Hereʼs a hopefuy compete but possiby incompete ist of updates

and the posts that tak about it:

• buck2 init aso creates a fie named .buckroot , see “Updating

Buckˮ

Getting started with buck2

The Getting Started page (https://buck2.buid/docs/getting_started/)

wi give you instructions on instaing buck. As of this moment, the

instructions are:

$ rustup install nightly-2023-01-24

$ cargo +nightly-2023-01-24 install --git https://github.com/facebook/buck2.gi

This is mega-convenient for me as a Rust user, but probaby not if you

donʼt have Rust instaed. That said, this is a first reease, and so I donʼt

expect anything fancier. This is what cargo install is good for!

https://steveklabnik.com/writing/using-buck-to-build-rust-projects#
https://steveklabnik.com/writing/using-buck-to-build-rust-projects#
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/

Letʼs make a new directory, hello :

$ mkdir buck-rust-hello

$ cd buck-rust-hello

To initiaize a project, we use this command:

$ buck2 init --git

Before we move forward, etʼs examine what this generated for us.

Initia project fies

We now have this stuff in our directory:

$ git add .

$ git status

On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: .buckconfig

 new file: .gitignore

 new file: .gitmodules

 new file: BUCK

 new file: prelude

 new file: toolchains/BUCK

Letʼs tak about each of these in turn.

.buckconfig

The .buckconfig fie is… a configuration fie for Buck, go figure. It

ooks ike this:

[repositories]

root = .

prelude = prelude

toolchains = toolchains

none = none

[repository_aliases]

config = prelude

fbcode = none

fbsource = none

buck = none

[parser]

target_platform_detector_spec = target:root//...->prelude//platforms:default

That none = none is kind of amusing. Regardess of that, this fie is

extremey important: it configures the entire thing. In a sense, itʼs ike

Cargo.toml : just ike a package is defined by the existence of a

Cargo.toml , a .buckconfig defines the existence of a… ce. Which

defines a package. Weʼ get there. Point is, this is the top eve

configuration. We say that the repository root is in the current

directory, weʼd ike to use the defaut preude and toochains.

I uh… I donʼt know what the none = none is for. It might just be a bug. I

havenʼt seen it in some of the other config fies Iʼve poked at. Letʼs just

eave that aone for now. I do have a suspicion though… and it invoves

the next section.

We aso have a tabe for repository aiases. I coudnʼt find any

documentation on this, but I woud imagine this means we coud use

the name config instead of prelude ater. Looks ike we donʼt have

any way to refer to fbcode and fbsource , which makes sense, and

same with buck .

I wonder if this is what the none = none is about above, defining a

sort of “none repositoryˮ that we can then aias these to.)

Finay, we have a parser tabe, with one entry, pointing out where a

thing exists. I know this configures Buckʼs parser, but other than that…

Iʼm sure Iʼ figure it out eventuay.

.gitmodules & prelude

We have a git submodue, pointing to https://github.com/facebook/

buck2-prelude.git , that ives at the prelude directory. If you poke

around in there, youʼ find a bunch of .bzl fies that impement usefu

features for us to use. Weʼ get into those in a moment, but the point is

that this is sort of ike a ‘standard ibraryʼ if you wi. You coud aso not

use it and define your own. If youʼre that kind of person.

.gitignore

A very simpe .gitignore wi be created, that contains one ine: /

buck-out . This is where buck stores artifacts produced by your buids,

so we donʼt want that checked into version contro.

BUCK

Now we get to the good stuff. Hereʼs the generated BUCK fie:

A list of available rules and their signatures can be found here: https://bu

genrule(

 name = "hello_world",

 out = "out.txt",

 cmd = "echo BUILT BY BUCK2> $OUT",

)

genrule is ike a function, provided by our preude. If youʼre curious,

the impementation is in prelude/genrule.bzl . This command, as you

may imagine, sets up a rue, named hello_world , that produces a fie

caed out.txt . It does this by running the cmd . Nice and

straightforward. Weʼ give that a try in a moment, but first, one ast fie:

toolchains/BUCK

This fie describes a toochain. Hereʼs the contents:

load("@prelude//toolchains:genrule.bzl", "system_genrule_toolchain")

system_genrule_toolchain(

 name = "genrule",

 visibility = ["PUBLIC"],

)

This oads a certain rue from the preude, and then defines this as a

pubic toochain. We can define as many toochains as we want here,

for exampe, if we wanted to buid both Rust and Python, we coud

define both toochains here for ater use.

The “genrueˮ toochain is used to generate fies from a she

command, as we saw before with our rue that produces out.txt . So,

in my understanding, here we are defining that we wish to actuay use

that. And then, in the BUCK fie, weʼre using this toochain to impement

our rue.

Invoking our first buid

Okay, etʼs actuay give this a shot. To instruct Buck to buid something,

we invoke it with the “target patternˮ as an argument. Letʼs ask Buck

what targets it knows how to buid. To do this:

C:\Users\steve\Documents\GitHub\buck-rust-hello〉buck2 targets //...

Build ID: cd778a29-2ba4-484b-8956-dc67f6fc0625

Jobs completed: 4. Time elapsed: 0.0s.

root//:hello_world

The //... is a “target pattern.ˮ The /... means “a buid targets in

buid fies in subdirectories ,ˮ and / means our root directory, so //...

means “a targets in a buid fies in a subdirectories.ˮ By passing this

target to buck2 targets , we can see every target in the project. This

shows our one target weʼve defined, root://:hello_world . This name

was defined in our BUCK fie above. If you change that to

genrule(

 name = "lol",

then buck2 targets //... woud show root://:lol .

Letʼs actuay buid our target:

〉buck2 build //:hello_world

File changed: root//BUCK

Build ID: 73f4b797-2238-47bc-8e43-7ffcb2b7d9b7

Jobs completed: 36. Time elapsed: 0.0s. Cache hits: 0%. Commands: 1 (cached: 0

BUILD SUCCEEDED

Okay the buid succeeded, but where is our out.txt ? We can ask

buck!

〉buck2 build //:hello_world --show-output

Build ID: 7ce93845-ab1e-4b0a-9274-51fed9f9e295

Jobs completed: 3. Time elapsed: 0.0s.

BUILD SUCCEEDED

root//:hello_world buck-out\v2\gen\root\fb50fd37ce946800__hello_world__\out\o

It ives in a deepy nested subdirectory of buck-out , a new top-eve

directory that was created for us. If you remember from before, this

directory is ignored in our .gitignore .

If we ook at the fie, you can see it contains the text we wanted it to

contain.

Letʼs buid a second time!

〉buck2 build //:hello_world

File changed: root//.git/index.lock

File changed: root//.git

File changed: root//.git/modules/prelude/index.lock

31 additional file change events

Build ID: c00e4bfa-a1f8-40c7-a61c-2a394dca5da5

Jobs completed: 5. Time elapsed: 0.0s.

BUILD SUCCEEDED

Buck has noticed that weʼve changed some fies, but since our rue

doesnʼt depend on any of them, weʼre good to go.

Buiding some Rust code

Okay, echo to a fie is fun, but etʼs actuay buid some Rust. Create a

fie, hello.rs :

fn main() {

 println!("Hello, world!");

}

and then update the BUCK fie to this:

rust_binary(

 name = "hello_world",

 srcs = ["hello.rs"],

 crate_root = "hello.rs",

)

This says “hey, weʼre buiding a Rust binary, it has this target name,

these source fies, and the crate root ives here.ˮ Given we ony have

one fie, thereʼs some reptition. It happens. Letʼs buid:

〉buck2 build //:hello_world

File changed: root//BUCK

Error running analysis for `root//:hello_world (prelude//platforms:default#fb5

Caused by:

 0: Error looking up configured node root//:hello_world (prelude//platforms

 1: Error looking up configured node toolchains//:cxx (prelude//platforms:d

 2: looking up unconfigured target node `toolchains//:cxx`

 3: Unknown target `cxx` from package `toolchains//`.

 Did you mean one of the 1 targets in toolchains//:BUCK?

Build ID: f126ce07-efe8-41d3-8aae-8b7d31a4dafc

Jobs completed: 4. Time elapsed: 0.0s.

BUILD FAILED

Oops! We didnʼt set up a rust toochain! Letʼs do that now. Edit

toolchains/BUCK :

load("@prelude//toolchains:rust.bzl", "system_rust_toolchain"

system_rust_toolchain(

 name = "rust",

 default_edition = "2021",

 visibility = ["PUBLIC"],

)

And… when we buid again, the same error. Now. I am not 100% sure

whatʼs going on here, but this is what we need to do:

load("@prelude//toolchains:rust.bzl", "system_rust_toolchain"

load("@prelude//toolchains:genrule.bzl", "system_genrule_toolchain"

load("@prelude//toolchains:cxx.bzl", "system_cxx_toolchain")

load("@prelude//toolchains:python.bzl", "system_python_bootstrap_toolchain"

system_genrule_toolchain(

 name = "genrule",

 visibility = ["PUBLIC"],

)

system_rust_toolchain(

 name = "rust",

 default_edition = "2021",

 visibility = ["PUBLIC"],

)

system_cxx_toolchain(

 name = "cxx",

 visibility = ["PUBLIC"],

)

system_python_bootstrap_toolchain(

 name = "python_bootstrap",

 visibility = ["PUBLIC"],

)

I beieve that this is because, to compie the Rust compier, we need

Python and a C compier. We, I did beieve that, but after digging

into things some more, itʼs that the Rust toochain from the preude

depends on the CXX toochain in the preude, because the Rust

toochain invokes the C compier to invoke the inker. Iʼm sti not 100%

sure why Python needs to be in there. Anyway.

Now, when I run, I got this:

〉buck2 build //:hello_world -v 3

Action failed: prelude//python_bootstrap/tools:win_python_wrapper (symlinked_d

Internal error: symlink(original=../../../../../../../../../prelude/python_boo

Build ID: 57a66885-f7e7-474b-a782-b49fc4425be9

Jobs completed: 14. Time elapsed: 0.0s.

BUILD FAILED

Failed to build 'prelude//python_bootstrap/tools:win_python_wrapper (prelude//

I got this becuase Iʼm on Windows, and Windows restricts the abiity to

create syminks by defaut. Turning on “Deveoper Modeˮ (which Iʼm

surprised that I havenʼt had to turn on so far yet), I get further:

<whole bunch of output>

 = note: 'clang++' is not recognized as an internal or external command,

 operable program or batch file.

Hereʼs that “invokes the compier to get the inkerˮ thing I was referring

to above.

Now… by defaut, the Rust support is for the GNU version of the

Windows toochain. I never use that. Upstream has said that they want

everything to be supported, so that change wi come at some point,

maybe by the time you read this! But in the meantime, I coud get my

(pure Rust) projects buiding with two sma patches:

diff --git a/prelude/toolchains/cxx.bzl b/prelude/toolchains/cxx.bzl

index c57b7b8..dc14ca7 100644

--- a/prelude/toolchains/cxx.bzl

+++ b/prelude/toolchains/cxx.bzl

@@ -39,7 +39,7 @@ def _system_cxx_toolchain_impl(ctx):

 CxxToolchainInfo(

 mk_comp_db = ctx.attrs.make_comp_db,

 linker_info = LinkerInfo(

- linker = RunInfo(args = ["clang++"]),

+ linker = RunInfo(args = ["link"]),

 linker_flags = ["-fuse-ld=lld"] + ctx.attrs.link_flags,

 archiver = RunInfo(args = ["ar", "rcs"]),

 archiver_type = archiver_type,

diff --git a/prelude/toolchains/rust.bzl b/prelude/toolchains/rust.bzl

index 8172090..4545d55 100644

--- a/prelude/toolchains/rust.bzl

+++ b/prelude/toolchains/rust.bzl

@@ -23,7 +23,7 @@ _DEFAULT_TRIPLE = select({

 # default when we're able; but for now buck2 doesn't work with the MS

 # toolchain yet.

 "config//cpu:arm64": "aarch64-pc-windows-gnu",

- "config//cpu:x86_64": "x86_64-pc-windows-gnu",

+ "config//cpu:x86_64": "x86_64-pc-windows-msvc",

 }),

 })

Now a buid works!

〉buck2 build //:hello_world

File changed: root//BUCK

File changed: root//.git/index.lock

File changed: root//.git

6 additional file change events

Build ID: 65fc80aa-7bfa-433a-bfa7-57919147b550

Jobs completed: 65. Time elapsed: 1.0s. Cache hits: 0%. Commands: 1 (cached: 0

BUILD SUCCEEDED

We can run it to see the output:

〉buck2 run //:hello_world

Build ID: 78b0ca23-2c7c-4c02-a161-bba15e3b38bd

Jobs completed: 3. Time elapsed: 0.0s.

hello world

Same idea as cargo run .

Speaking of cargo run , what might this ook ike with Cargo? We, we

can create a Cargo.toml :

[package]

name = "hello_world"

version = "0.1.0"

edition = "2021"

[[bin]]

name = "hello_world"

path = "hello.rs"

and try it out. Oh, and youʼ probaby want to put target into your

.gitignore .

Letʼs buid. The “benchmarkˮ command in nushe is sort of ike time

on a UNIX system:

〉benchmark { cargo build }

 Compiling hello_world v0.1.0 (C:\Users\steve\Documents\GitHub\buck-rust-hel

 Finished dev [unoptimized + debuginfo] target(s) in 0.34s

416ms 490us 100ns

〉benchmark { cargo build }

 Finished dev [unoptimized + debuginfo] target(s) in 0.00s

77ms 317us 200ns

Not too bad, a bit under haf a second for the initia buid, and near

immediate on a subsequent buid. What about buck?

〉benchmark { buck2 build //:hello_world -v 3 }

Running action: <snip>

Build ID: 47ebd9f1-3394-4f72-a0fb-02c936035d2b

Jobs completed: 58. Time elapsed: 0.8s. Cache hits: 0%. Commands: 1 (cached: 0

BUILD SUCCEEDED

945ms 557us

〉benchmark { buck2 build //:hello_world -v 3 }

Build ID: 5eed24e8-a540-454f-861a-855464aba3c9

Jobs completed: 3. Time elapsed: 0.0s.

BUILD SUCCEEDED

78ms 274us 100ns

Not too shabby; Buck is a teeny bit sower on the initia buid, but when

stuff is cached, both are the same speed. A of this is fast enough to

quaify as “basicay instant.ˮ

Adding a ibrary

Letʼs up the compexity a bit, by adding a ibrary that we want to

depend on. Hereʼs a lib.rs :

pub fn print_hello() {

 println!("Hello, world!");

}

We want to change our top-eve BUCK to add this:

+rust_library(

+ name = "print_hello",

+ srcs = ["lib.rs"],

+ edition = "2021",

+ visibility = ["PUBLIC"],

+)

+

 rust_binary(

 name = "hello_world",

 srcs = ["hello.rs"],

 crate_root = "hello.rs",

+ deps = [

+ ":print_hello",

+],

)

Here, we make a new ibrary, print_hello , and then make our binary

depend on it.

Letʼs change the code in main.rs to use the ibrary:

fn main() {

 println!("hello world");

 print_hello::print_hello();

}

And thatʼs it! Letʼs examine our targets:

〉buck2 targets //...

Build ID: 4646f2e7-0ea3-4d59-8590-3da0708ce96e

Jobs completed: 4. Time elapsed: 0.0s.

root//:hello_world

root//:print_hello

Theyʼre both there! We can now buid one, the other, or everything:

build everything

〉buck2 build //...

build just the library

〉buck2 build //:print_hello

build 'just' the binary, this will of course end up building the library too

〉buck2 build //:print_hello

Letʼs make sure it sti prints our output:

〉buck2 run //:hello_world

Build ID: d76c80fb-dd77-463a-86a1-b6443cea10f6

Jobs completed: 3. Time elapsed: 0.0s.

Hello, world!

Nice.

Letʼs compare that to Cargo. Modify Cargo.toml :

[lib]

name = "print_hello"

path = "lib.rs"

and buid:

〉cargo run

 Compiling hello_world v0.1.0 (C:\Users\steve\Documents\GitHub\buck-rust-hel

 Finished dev [unoptimized + debuginfo] target(s) in 0.42s

 Running `target\debug\hello_world.exe`

Hello, world!

Nice.

more cargo-ish

Before we move forward, this isnʼt exacty an appes to appes

comparison; weʼve been doing a ot of configuration for Cargo that we

normay woudnʼt have to do, and aso, what if you aready have a

Cargo project, but you want to try out Buck with it?

Do this:

> mkdir src

> mv hello.rs src/main.rs

> mv lib.rs src/main.rs

And deete the configuration from Cargo.toml , eaving just the

package tabe. Finay, we need to change src/main.rs , given that

weʼre using the defaut crate name for the ibrary crate, which is

hello_world and not print_hello :

fn main() {

 hello_world::print_hello();

}

After this, cargo build works just fine. But what about Buck?

So. We have a bit of weirdness here, and Iʼm not sure if itʼs actuay

work-around-abe in Buck or not, since Iʼm sti earning this mysef. But

if we do the basic transation, weʼ get an error. Letʼs try it. This is how

you modify the BUCK fie:

rust_library(

 name = "hello_world",

 srcs = glob(["src/**/*.rs"]),

 edition = "2021",

 visibility = ["PUBLIC"],

)

rust_binary(

 name = "hello_world",

 srcs = ["src/main.rs"],

 crate_root = "src/main.rs",

 deps = [

 ":print_hello",

],

)

Cargo produces a binary and a ibrary, both caed hello_world , but

buck doesnʼt ike that:

〉buck2 run //:hello_world

Error evaluating build file: `root//:BUCK`

Caused by:

 Traceback (most recent call last):

 * BUCK:8, in <module>

 rust_binary(

 error: Attempted to register target root//:hello_world twice, re-run the c

 --> BUCK:8:1

 |

 8 | / rust_binary(

 9 | | name = "hello_world",

 10 | | srcs = ["src/main.rs"],

 11 | | crate_root = "src/main.rs",

 12 | | deps = [

 13 | | ":print_hello",

 14 | |],

 15 | |)

 | |_^

 |

Build ID: d6a8925d-0180-4308-bcb9-fbc888e7eca1

Jobs completed: 4. Time elapsed: 0.0s.

BUILD FAILED

Itʼs ike hey! You have two targets named hello_world ! Thatʼs

confusing! It aso reveas a difference between Buck and Cargo. With

Cargo, if you remember our configuration, we had to point it to the

crate root. From there, Cargo just eans on rustc to oad up a of the

other fies that may be required if you have a bunch of modues. But

with Buck, we need to te it up front which fies we use. So as you can

see above:

 srcs = glob(["src/**/*.rs"]),

We can use the glob command to gob up a of our fies, which is

nice, but itʼs… itʼs actuay wrong. We want to gob everything except

main.rs . If main.rs were to change, this woud try and re-buid both

the binary and the ibrary, in my understanding. So thatʼs annoying.

Itʼs not just annoying for Buck, though. Having both a src/main.rs and

a src/lib.rs has ed to so much confusion from beginners over the

years. At some point, someone puts mod lib; into src/main.rs and

everything goes to he. The origina intention of this ayout, to make

simpe things simpe, is a good idea, but I think that sady, we missed

the mark here. Luckiy, Cargo aso supports a bin directory:

> mkdir src/bin

> mv src/main.rs src/bin

We can sti cargo run and cargo build and this a works just fine.

This doesnʼt fix our gob issue, though, because src/bin is sti inside

of src .

I think, in the abstract, Iʼd prefer a ayout ike src/{lib,bin} . You want

things to not reay be nested. So etʼs do that. Both Cargo and Buck

can hande it! Itʼs just not as nice as being purey defaut in Cargo,

since that convention is so strong.

if you didn't do this above

> mkdir src/bin

> mv src/main.rs src/bin

> mkdir src/lib

> mv src/lib.rs src/lib/print_hello.rs

We have to change src/bin/main.rs to use hello_world again

fn main() {

 hello_world::print_hello();

}

And we have to re-add some configuration into Cargo.toml :

[lib]

path = "src/lib/print_hello.rs"

Everything shoud buid just fine. But what about Buck?

So, once you start getting into subdirectories, you can aso start using

mutipe BUCK fies. So we can empty out our root BUCK fie Iʼm

eaving it existing but empty, if you want to deete it you can but youʼ

recreate it in the next part anyway), and create two new ones. Hereʼs

src/lib/BUCK :

rust_library(

 name = "hello_world",

 srcs = glob(["**/*.rs"]),

 crate_root = "print_hello.rs",

 edition = "2021",

 visibility = ["PUBLIC"],

)

and src/bin/BUCK :

rust_binary(

 name = "hello_world",

 srcs = ["main.rs"],

 crate_root = "main.rs",

 deps = [

 ":hello_world",

],

)

We added in a crate_root to the ibrary as we. Okay, etʼs try this:

〉buck2 run //:hello_world

File changed: root//src/lib/BUCK

Unknown target `hello_world` from package `root//`.

Did you mean one of the 0 targets in root//:BUCK?

Build ID: d5059fc9-8001-47c4-ba5a-6ba605a4182c

Jobs completed: 2. Time elapsed: 0.0s.

BUILD FAILED

Oops! Since we moved fies around, the names of our targets have

changed. Letʼs examine them:

〉buck2 targets //...

Build ID: c4165964-cb87-49b4-8afe-4a3fc2c526bc

Jobs completed: 4. Time elapsed: 0.0s.

root//src/bin:hello_world

root//src/lib:hello_world

We had ony seen very basic target patterns, but this is enough to

show off:

root/src/bin:hello_world

can be read as

“The “heo_wordˮ target defined in /src/bin/BUCK .ˮ

Our target names changing aso means we made one mistake in our

new BUCK fies. Letʼs give it a try:

〉buck2 run //src/bin:hello_world

Error running analysis for `root//src/bin:hello_world (prelude//platforms:defa

Caused by:

 0: Error looking up configured node root//src/bin:hello_world (prelude//pl

 1: Cyclic computation detected when computing key `root//src/bin:hello_wor

Build ID: 930ab541-c2dd-44f5-aef1-f6658a2b7c53

Jobs completed: 2. Time elapsed: 0.0s.

BUILD FAILED

Right. Our binary depends on :hello_world , which it is itsef named

hello_world , so thereʼs a probem. But thatʼs just it, we donʼt want to

depend on any od hello_world , we want to depend on our ibary. Can

you write out the target pattern that shoud go in src/bin/BUCK ?

It ooks ike this:

 deps = [

 "//src/lib:hello_world",

],

“The hello_world target in /src/lib/BUCK . Perfect. And now it

works!

〉buck2 run //src/bin:hello_world

File changed: root//src/bin/BUCK

Build ID: c6d2fdaa-298a-425a-9091-d3f6b38c4336

Jobs completed: 12. Time elapsed: 0.5s. Cache hits: 0%. Commands: 1 (cached: 0

Hello, world!

It kinda stinks to have to type a of that out. Luckiy, Buck supports

aiases for target patterns. Take our top-eve BUCK fie, and add this:

alias(

 name = "build",

 actual = "//src/bin:hello_world",

 visibility = ["PUBLIC"],

)

And now we can use it:

〉buck2 build

Build ID: a87ed1e2-cfab-47b0-830e-407217997fd7

Jobs completed: 2. Time elapsed: 0.0s.

BUILD SUCCEEDED

Fun.

Okay! This is getting a bit ong, so etʼs end there. We have more to

earn before buck can actuay repace Cargo in our norma

deveopment workfow, but I hope this heped you see how you coud

get started with Buck if you wanted to.

If you want to check out this on your own, Iʼve pubished this on

GitHub: https://github.com/stevekabnik/buck-rust-heo/

tree/024ef54ba45627e87a65aaf2f69c6661198c336c (https://

github.com/stevekabnik/buck-rust-heo/

tree/024ef54ba45627e87a65aaf2f69c6661198c336c)

Next up, weʼ be tacking other features, ike “using crates from

crates.io.ˮ No promises on when thatʼ get pubished though!

https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c

