
Using buck to buid Rust projects
Apr 13 2023

A few days ago, Facebook/Meta/idk announced that buck2 is now

open source (https://engineering.fb.com/2023/04/06/open-source/

buck2-open-source-arge-scae-buid-system/).

“Buck2 is an extensibe and performant buid system written in Rust

and designed to make your buid experience faster and more

efficient.ˮ

As it just so happens, I have taken an increasing interest in buid

systems atey. I have mosty ignored the coo kidsʼ buid system things,

because I have never worked at a FAANG, or at a true monorepo shop.

I aso personay try and avoid the JVM wherever possibe, and the first

generation of these toos were a buit on top of it. Yes, that bias may

be outdated, Iʼm not saying you shoud avoid the JVM, just stating my

own bias up front.)

So this timing was perfect! Letʼs expore what using buck ooks ike.

“A brief aside: isten, I have no ove for Facebook. I deeted my

account (im-deeting-my-facebook-tonight) amost a dozen years

ago. That doesnʼt mean Iʼm not interested in using good toos they

produce. If you fee differenty, fine, but thatʼs not what I want to

tak about today, so Iʼm not going to.ˮ

Oh, one ast bit before I begin: Iʼm not going to do a ot of motivating on

“why woud you want to use Buck?ˮ in this post. Thereʼs a few reasons

for that, but for now, if thatʼs what youʼre ooking for, this post isnʼt it.

Weʼre doing this purey for the novety of trying out some new tech

right now. I wi probaby end up with a post giving better motivations at

https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight
https://steveklabnik.com/writing/im-deleting-my-facebook-tonight

some point in the future, but I think it makes more sense once you see

how it works, rather than starting there.

A series

This post is part of a series:

• Using buck to buid Rust projects you are here

• Using Crates.io with Buck (using-cratesio-with-buck)

• Updating Buck (updating-buck)

This post represents how to do this at the time that this was posted;

future posts may update or change something that happens here.

Hereʼs a hopefuy compete but possiby incompete ist of updates

and the posts that tak about it:

• buck2 init aso creates a fie named .buckroot , see “Updating

Buckˮ

Getting started with buck2

The Getting Started page (https://buck2.buid/docs/getting_started/)

wi give you instructions on instaing buck. As of this moment, the

instructions are:

$ rustup install nightly-2023-01-24

$ cargo +nightly-2023-01-24 install --git https://github.com/facebook/buck2.gi

This is mega-convenient for me as a Rust user, but probaby not if you

donʼt have Rust instaed. That said, this is a first reease, and so I donʼt

expect anything fancier. This is what cargo install is good for!

https://steveklabnik.com/writing/using-buck-to-build-rust-projects#
https://steveklabnik.com/writing/using-buck-to-build-rust-projects#
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/using-cratesio-with-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://steveklabnik.com/writing/updating-buck
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/
https://buck2.build/docs/getting_started/

Letʼs make a new directory, hello :

$ mkdir buck-rust-hello

$ cd buck-rust-hello

To initiaize a project, we use this command:

$ buck2 init --git

Before we move forward, etʼs examine what this generated for us.

Initia project fies

We now have this stuff in our directory:

$ git add .

$ git status

On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: .buckconfig

 new file: .gitignore

 new file: .gitmodules

 new file: BUCK

 new file: prelude

 new file: toolchains/BUCK

Letʼs tak about each of these in turn.

.buckconfig

The .buckconfig fie is… a configuration fie for Buck, go figure. It

ooks ike this:

[repositories]

root = .

prelude = prelude

toolchains = toolchains

none = none

[repository_aliases]

config = prelude

fbcode = none

fbsource = none

buck = none

[parser]

target_platform_detector_spec = target:root//...->prelude//platforms:default

That none = none is kind of amusing. Regardess of that, this fie is

extremey important: it configures the entire thing. In a sense, itʼs ike

Cargo.toml : just ike a package is defined by the existence of a

Cargo.toml , a .buckconfig defines the existence of a… ce. Which

defines a package. Weʼ get there. Point is, this is the top eve

configuration. We say that the repository root is in the current

directory, weʼd ike to use the defaut preude and toochains.

I uh… I donʼt know what the none = none is for. It might just be a bug. I

havenʼt seen it in some of the other config fies Iʼve poked at. Letʼs just

eave that aone for now. I do have a suspicion though… and it invoves

the next section.

We aso have a tabe for repository aiases. I coudnʼt find any

documentation on this, but I woud imagine this means we coud use

the name config instead of prelude ater. Looks ike we donʼt have

any way to refer to fbcode and fbsource , which makes sense, and

same with buck .

I wonder if this is what the none = none is about above, defining a

sort of “none repositoryˮ that we can then aias these to.)

Finay, we have a parser tabe, with one entry, pointing out where a

thing exists. I know this configures Buckʼs parser, but other than that…

Iʼm sure Iʼ figure it out eventuay.

.gitmodules & prelude

We have a git submodue, pointing to https://github.com/facebook/

buck2-prelude.git , that ives at the prelude directory. If you poke

around in there, youʼ find a bunch of .bzl fies that impement usefu

features for us to use. Weʼ get into those in a moment, but the point is

that this is sort of ike a ‘standard ibraryʼ if you wi. You coud aso not

use it and define your own. If youʼre that kind of person.

.gitignore

A very simpe .gitignore wi be created, that contains one ine: /

buck-out . This is where buck stores artifacts produced by your buids,

so we donʼt want that checked into version contro.

BUCK

Now we get to the good stuff. Hereʼs the generated BUCK fie:

A list of available rules and their signatures can be found here: https://bu

genrule(

 name = "hello_world",

 out = "out.txt",

 cmd = "echo BUILT BY BUCK2> $OUT",

)

genrule is ike a function, provided by our preude. If youʼre curious,

the impementation is in prelude/genrule.bzl . This command, as you

may imagine, sets up a rue, named hello_world , that produces a fie

caed out.txt . It does this by running the cmd . Nice and

straightforward. Weʼ give that a try in a moment, but first, one ast fie:

toolchains/BUCK

This fie describes a toochain. Hereʼs the contents:

load("@prelude//toolchains:genrule.bzl", "system_genrule_toolchain")

system_genrule_toolchain(

 name = "genrule",

 visibility = ["PUBLIC"],

)

This oads a certain rue from the preude, and then defines this as a

pubic toochain. We can define as many toochains as we want here,

for exampe, if we wanted to buid both Rust and Python, we coud

define both toochains here for ater use.

The “genrueˮ toochain is used to generate fies from a she

command, as we saw before with our rue that produces out.txt . So,

in my understanding, here we are defining that we wish to actuay use

that. And then, in the BUCK fie, weʼre using this toochain to impement

our rue.

Invoking our first buid

Okay, etʼs actuay give this a shot. To instruct Buck to buid something,

we invoke it with the “target patternˮ as an argument. Letʼs ask Buck

what targets it knows how to buid. To do this:

C:\Users\steve\Documents\GitHub\buck-rust-hello〉buck2 targets //...

Build ID: cd778a29-2ba4-484b-8956-dc67f6fc0625

Jobs completed: 4. Time elapsed: 0.0s.

root//:hello_world

The //... is a “target pattern.ˮ The /... means “a buid targets in

buid fies in subdirectories ,ˮ and / means our root directory, so //...

means “a targets in a buid fies in a subdirectories.ˮ By passing this

target to buck2 targets , we can see every target in the project. This

shows our one target weʼve defined, root://:hello_world . This name

was defined in our BUCK fie above. If you change that to

genrule(

 name = "lol",

then buck2 targets //... woud show root://:lol .

Letʼs actuay buid our target:

〉buck2 build //:hello_world

File changed: root//BUCK

Build ID: 73f4b797-2238-47bc-8e43-7ffcb2b7d9b7

Jobs completed: 36. Time elapsed: 0.0s. Cache hits: 0%. Commands: 1 (cached: 0

BUILD SUCCEEDED

Okay the buid succeeded, but where is our out.txt ? We can ask

buck!

〉buck2 build //:hello_world --show-output

Build ID: 7ce93845-ab1e-4b0a-9274-51fed9f9e295

Jobs completed: 3. Time elapsed: 0.0s.

BUILD SUCCEEDED

root//:hello_world buck-out\v2\gen\root\fb50fd37ce946800__hello_world__\out\o

It ives in a deepy nested subdirectory of buck-out , a new top-eve

directory that was created for us. If you remember from before, this

directory is ignored in our .gitignore .

If we ook at the fie, you can see it contains the text we wanted it to

contain.

Letʼs buid a second time!

〉buck2 build //:hello_world

File changed: root//.git/index.lock

File changed: root//.git

File changed: root//.git/modules/prelude/index.lock

31 additional file change events

Build ID: c00e4bfa-a1f8-40c7-a61c-2a394dca5da5

Jobs completed: 5. Time elapsed: 0.0s.

BUILD SUCCEEDED

Buck has noticed that weʼve changed some fies, but since our rue

doesnʼt depend on any of them, weʼre good to go.

Buiding some Rust code

Okay, echo to a fie is fun, but etʼs actuay buid some Rust. Create a

fie, hello.rs :

fn main() {

 println!("Hello, world!");

}

and then update the BUCK fie to this:

rust_binary(

 name = "hello_world",

 srcs = ["hello.rs"],

 crate_root = "hello.rs",

)

This says “hey, weʼre buiding a Rust binary, it has this target name,

these source fies, and the crate root ives here.ˮ Given we ony have

one fie, thereʼs some reptition. It happens. Letʼs buid:

〉buck2 build //:hello_world

File changed: root//BUCK

Error running analysis for `root//:hello_world (prelude//platforms:default#fb5

Caused by:

 0: Error looking up configured node root//:hello_world (prelude//platforms

 1: Error looking up configured node toolchains//:cxx (prelude//platforms:d

 2: looking up unconfigured target node `toolchains//:cxx`

 3: Unknown target `cxx` from package `toolchains//`.

 Did you mean one of the 1 targets in toolchains//:BUCK?

Build ID: f126ce07-efe8-41d3-8aae-8b7d31a4dafc

Jobs completed: 4. Time elapsed: 0.0s.

BUILD FAILED

Oops! We didnʼt set up a rust toochain! Letʼs do that now. Edit

toolchains/BUCK :

load("@prelude//toolchains:rust.bzl", "system_rust_toolchain"

system_rust_toolchain(

 name = "rust",

 default_edition = "2021",

 visibility = ["PUBLIC"],

)

And… when we buid again, the same error. Now. I am not 100% sure

whatʼs going on here, but this is what we need to do:

load("@prelude//toolchains:rust.bzl", "system_rust_toolchain"

load("@prelude//toolchains:genrule.bzl", "system_genrule_toolchain"

load("@prelude//toolchains:cxx.bzl", "system_cxx_toolchain")

load("@prelude//toolchains:python.bzl", "system_python_bootstrap_toolchain"

system_genrule_toolchain(

 name = "genrule",

 visibility = ["PUBLIC"],

)

system_rust_toolchain(

 name = "rust",

 default_edition = "2021",

 visibility = ["PUBLIC"],

)

system_cxx_toolchain(

 name = "cxx",

 visibility = ["PUBLIC"],

)

system_python_bootstrap_toolchain(

 name = "python_bootstrap",

 visibility = ["PUBLIC"],

)

I beieve that this is because, to compie the Rust compier, we need

Python and a C compier. We, I did beieve that, but after digging

into things some more, itʼs that the Rust toochain from the preude

depends on the CXX toochain in the preude, because the Rust

toochain invokes the C compier to invoke the inker. Iʼm sti not 100%

sure why Python needs to be in there. Anyway.

Now, when I run, I got this:

〉buck2 build //:hello_world -v 3

Action failed: prelude//python_bootstrap/tools:win_python_wrapper (symlinked_d

Internal error: symlink(original=../../../../../../../../../prelude/python_boo

Build ID: 57a66885-f7e7-474b-a782-b49fc4425be9

Jobs completed: 14. Time elapsed: 0.0s.

BUILD FAILED

Failed to build 'prelude//python_bootstrap/tools:win_python_wrapper (prelude//

I got this becuase Iʼm on Windows, and Windows restricts the abiity to

create syminks by defaut. Turning on “Deveoper Modeˮ (which Iʼm

surprised that I havenʼt had to turn on so far yet), I get further:

<whole bunch of output>

 = note: 'clang++' is not recognized as an internal or external command,

 operable program or batch file.

Hereʼs that “invokes the compier to get the inkerˮ thing I was referring

to above.

Now… by defaut, the Rust support is for the GNU version of the

Windows toochain. I never use that. Upstream has said that they want

everything to be supported, so that change wi come at some point,

maybe by the time you read this! But in the meantime, I coud get my

(pure Rust) projects buiding with two sma patches:

diff --git a/prelude/toolchains/cxx.bzl b/prelude/toolchains/cxx.bzl

index c57b7b8..dc14ca7 100644

--- a/prelude/toolchains/cxx.bzl

+++ b/prelude/toolchains/cxx.bzl

@@ -39,7 +39,7 @@ def _system_cxx_toolchain_impl(ctx):

 CxxToolchainInfo(

 mk_comp_db = ctx.attrs.make_comp_db,

 linker_info = LinkerInfo(

- linker = RunInfo(args = ["clang++"]),

+ linker = RunInfo(args = ["link"]),

 linker_flags = ["-fuse-ld=lld"] + ctx.attrs.link_flags,

 archiver = RunInfo(args = ["ar", "rcs"]),

 archiver_type = archiver_type,

diff --git a/prelude/toolchains/rust.bzl b/prelude/toolchains/rust.bzl

index 8172090..4545d55 100644

--- a/prelude/toolchains/rust.bzl

+++ b/prelude/toolchains/rust.bzl

@@ -23,7 +23,7 @@ _DEFAULT_TRIPLE = select({

 # default when we're able; but for now buck2 doesn't work with the MS

 # toolchain yet.

 "config//cpu:arm64": "aarch64-pc-windows-gnu",

- "config//cpu:x86_64": "x86_64-pc-windows-gnu",

+ "config//cpu:x86_64": "x86_64-pc-windows-msvc",

 }),

 })

Now a buid works!

〉buck2 build //:hello_world

File changed: root//BUCK

File changed: root//.git/index.lock

File changed: root//.git

6 additional file change events

Build ID: 65fc80aa-7bfa-433a-bfa7-57919147b550

Jobs completed: 65. Time elapsed: 1.0s. Cache hits: 0%. Commands: 1 (cached: 0

BUILD SUCCEEDED

We can run it to see the output:

〉buck2 run //:hello_world

Build ID: 78b0ca23-2c7c-4c02-a161-bba15e3b38bd

Jobs completed: 3. Time elapsed: 0.0s.

hello world

Same idea as cargo run .

Speaking of cargo run , what might this ook ike with Cargo? We, we

can create a Cargo.toml :

[package]

name = "hello_world"

version = "0.1.0"

edition = "2021"

[[bin]]

name = "hello_world"

path = "hello.rs"

and try it out. Oh, and youʼ probaby want to put target into your

.gitignore .

Letʼs buid. The “benchmarkˮ command in nushe is sort of ike time

on a UNIX system:

〉benchmark { cargo build }

 Compiling hello_world v0.1.0 (C:\Users\steve\Documents\GitHub\buck-rust-hel

 Finished dev [unoptimized + debuginfo] target(s) in 0.34s

416ms 490us 100ns

〉benchmark { cargo build }

 Finished dev [unoptimized + debuginfo] target(s) in 0.00s

77ms 317us 200ns

Not too bad, a bit under haf a second for the initia buid, and near

immediate on a subsequent buid. What about buck?

〉benchmark { buck2 build //:hello_world -v 3 }

Running action: <snip>

Build ID: 47ebd9f1-3394-4f72-a0fb-02c936035d2b

Jobs completed: 58. Time elapsed: 0.8s. Cache hits: 0%. Commands: 1 (cached: 0

BUILD SUCCEEDED

945ms 557us

〉benchmark { buck2 build //:hello_world -v 3 }

Build ID: 5eed24e8-a540-454f-861a-855464aba3c9

Jobs completed: 3. Time elapsed: 0.0s.

BUILD SUCCEEDED

78ms 274us 100ns

Not too shabby; Buck is a teeny bit sower on the initia buid, but when

stuff is cached, both are the same speed. A of this is fast enough to

quaify as “basicay instant.ˮ

Adding a ibrary

Letʼs up the compexity a bit, by adding a ibrary that we want to

depend on. Hereʼs a lib.rs :

pub fn print_hello() {

 println!("Hello, world!");

}

We want to change our top-eve BUCK to add this:

+rust_library(

+ name = "print_hello",

+ srcs = ["lib.rs"],

+ edition = "2021",

+ visibility = ["PUBLIC"],

+)

+

 rust_binary(

 name = "hello_world",

 srcs = ["hello.rs"],

 crate_root = "hello.rs",

+ deps = [

+ ":print_hello",

+],

)

Here, we make a new ibrary, print_hello , and then make our binary

depend on it.

Letʼs change the code in main.rs to use the ibrary:

fn main() {

 println!("hello world");

 print_hello::print_hello();

}

And thatʼs it! Letʼs examine our targets:

〉buck2 targets //...

Build ID: 4646f2e7-0ea3-4d59-8590-3da0708ce96e

Jobs completed: 4. Time elapsed: 0.0s.

root//:hello_world

root//:print_hello

Theyʼre both there! We can now buid one, the other, or everything:

build everything

〉buck2 build //...

build just the library

〉buck2 build //:print_hello

build 'just' the binary, this will of course end up building the library too

〉buck2 build //:print_hello

Letʼs make sure it sti prints our output:

〉buck2 run //:hello_world

Build ID: d76c80fb-dd77-463a-86a1-b6443cea10f6

Jobs completed: 3. Time elapsed: 0.0s.

Hello, world!

Nice.

Letʼs compare that to Cargo. Modify Cargo.toml :

[lib]

name = "print_hello"

path = "lib.rs"

and buid:

〉cargo run

 Compiling hello_world v0.1.0 (C:\Users\steve\Documents\GitHub\buck-rust-hel

 Finished dev [unoptimized + debuginfo] target(s) in 0.42s

 Running `target\debug\hello_world.exe`

Hello, world!

Nice.

more cargo-ish

Before we move forward, this isnʼt exacty an appes to appes

comparison; weʼve been doing a ot of configuration for Cargo that we

normay woudnʼt have to do, and aso, what if you aready have a

Cargo project, but you want to try out Buck with it?

Do this:

> mkdir src

> mv hello.rs src/main.rs

> mv lib.rs src/main.rs

And deete the configuration from Cargo.toml , eaving just the

package tabe. Finay, we need to change src/main.rs , given that

weʼre using the defaut crate name for the ibrary crate, which is

hello_world and not print_hello :

fn main() {

 hello_world::print_hello();

}

After this, cargo build works just fine. But what about Buck?

So. We have a bit of weirdness here, and Iʼm not sure if itʼs actuay

work-around-abe in Buck or not, since Iʼm sti earning this mysef. But

if we do the basic transation, weʼ get an error. Letʼs try it. This is how

you modify the BUCK fie:

rust_library(

 name = "hello_world",

 srcs = glob(["src/**/*.rs"]),

 edition = "2021",

 visibility = ["PUBLIC"],

)

rust_binary(

 name = "hello_world",

 srcs = ["src/main.rs"],

 crate_root = "src/main.rs",

 deps = [

 ":print_hello",

],

)

Cargo produces a binary and a ibrary, both caed hello_world , but

buck doesnʼt ike that:

〉buck2 run //:hello_world

Error evaluating build file: `root//:BUCK`

Caused by:

 Traceback (most recent call last):

 * BUCK:8, in <module>

 rust_binary(

 error: Attempted to register target root//:hello_world twice, re-run the c

 --> BUCK:8:1

 |

 8 | / rust_binary(

 9 | | name = "hello_world",

 10 | | srcs = ["src/main.rs"],

 11 | | crate_root = "src/main.rs",

 12 | | deps = [

 13 | | ":print_hello",

 14 | |],

 15 | |)

 | |_^

 |

Build ID: d6a8925d-0180-4308-bcb9-fbc888e7eca1

Jobs completed: 4. Time elapsed: 0.0s.

BUILD FAILED

Itʼs ike hey! You have two targets named hello_world ! Thatʼs

confusing! It aso reveas a difference between Buck and Cargo. With

Cargo, if you remember our configuration, we had to point it to the

crate root. From there, Cargo just eans on rustc to oad up a of the

other fies that may be required if you have a bunch of modues. But

with Buck, we need to te it up front which fies we use. So as you can

see above:

 srcs = glob(["src/**/*.rs"]),

We can use the glob command to gob up a of our fies, which is

nice, but itʼs… itʼs actuay wrong. We want to gob everything except

main.rs . If main.rs were to change, this woud try and re-buid both

the binary and the ibrary, in my understanding. So thatʼs annoying.

Itʼs not just annoying for Buck, though. Having both a src/main.rs and

a src/lib.rs has ed to so much confusion from beginners over the

years. At some point, someone puts mod lib; into src/main.rs and

everything goes to he. The origina intention of this ayout, to make

simpe things simpe, is a good idea, but I think that sady, we missed

the mark here. Luckiy, Cargo aso supports a bin directory:

> mkdir src/bin

> mv src/main.rs src/bin

We can sti cargo run and cargo build and this a works just fine.

This doesnʼt fix our gob issue, though, because src/bin is sti inside

of src .

I think, in the abstract, Iʼd prefer a ayout ike src/{lib,bin} . You want

things to not reay be nested. So etʼs do that. Both Cargo and Buck

can hande it! Itʼs just not as nice as being purey defaut in Cargo,

since that convention is so strong.

if you didn't do this above

> mkdir src/bin

> mv src/main.rs src/bin

> mkdir src/lib

> mv src/lib.rs src/lib/print_hello.rs

We have to change src/bin/main.rs to use hello_world again

fn main() {

 hello_world::print_hello();

}

And we have to re-add some configuration into Cargo.toml :

[lib]

path = "src/lib/print_hello.rs"

Everything shoud buid just fine. But what about Buck?

So, once you start getting into subdirectories, you can aso start using

mutipe BUCK fies. So we can empty out our root BUCK fie Iʼm

eaving it existing but empty, if you want to deete it you can but youʼ

recreate it in the next part anyway), and create two new ones. Hereʼs

src/lib/BUCK :

rust_library(

 name = "hello_world",

 srcs = glob(["**/*.rs"]),

 crate_root = "print_hello.rs",

 edition = "2021",

 visibility = ["PUBLIC"],

)

and src/bin/BUCK :

rust_binary(

 name = "hello_world",

 srcs = ["main.rs"],

 crate_root = "main.rs",

 deps = [

 ":hello_world",

],

)

We added in a crate_root to the ibrary as we. Okay, etʼs try this:

〉buck2 run //:hello_world

File changed: root//src/lib/BUCK

Unknown target `hello_world` from package `root//`.

Did you mean one of the 0 targets in root//:BUCK?

Build ID: d5059fc9-8001-47c4-ba5a-6ba605a4182c

Jobs completed: 2. Time elapsed: 0.0s.

BUILD FAILED

Oops! Since we moved fies around, the names of our targets have

changed. Letʼs examine them:

〉buck2 targets //...

Build ID: c4165964-cb87-49b4-8afe-4a3fc2c526bc

Jobs completed: 4. Time elapsed: 0.0s.

root//src/bin:hello_world

root//src/lib:hello_world

We had ony seen very basic target patterns, but this is enough to

show off:

root/src/bin:hello_world

can be read as

“The “heo_wordˮ target defined in /src/bin/BUCK .ˮ

Our target names changing aso means we made one mistake in our

new BUCK fies. Letʼs give it a try:

〉buck2 run //src/bin:hello_world

Error running analysis for `root//src/bin:hello_world (prelude//platforms:defa

Caused by:

 0: Error looking up configured node root//src/bin:hello_world (prelude//pl

 1: Cyclic computation detected when computing key `root//src/bin:hello_wor

Build ID: 930ab541-c2dd-44f5-aef1-f6658a2b7c53

Jobs completed: 2. Time elapsed: 0.0s.

BUILD FAILED

Right. Our binary depends on :hello_world , which it is itsef named

hello_world , so thereʼs a probem. But thatʼs just it, we donʼt want to

depend on any od hello_world , we want to depend on our ibary. Can

you write out the target pattern that shoud go in src/bin/BUCK ?

It ooks ike this:

 deps = [

 "//src/lib:hello_world",

],

“The hello_world target in /src/lib/BUCK . Perfect. And now it

works!

〉buck2 run //src/bin:hello_world

File changed: root//src/bin/BUCK

Build ID: c6d2fdaa-298a-425a-9091-d3f6b38c4336

Jobs completed: 12. Time elapsed: 0.5s. Cache hits: 0%. Commands: 1 (cached: 0

Hello, world!

It kinda stinks to have to type a of that out. Luckiy, Buck supports

aiases for target patterns. Take our top-eve BUCK fie, and add this:

alias(

 name = "build",

 actual = "//src/bin:hello_world",

 visibility = ["PUBLIC"],

)

And now we can use it:

〉buck2 build

Build ID: a87ed1e2-cfab-47b0-830e-407217997fd7

Jobs completed: 2. Time elapsed: 0.0s.

BUILD SUCCEEDED

Fun.

Okay! This is getting a bit ong, so etʼs end there. We have more to

earn before buck can actuay repace Cargo in our norma

deveopment workfow, but I hope this heped you see how you coud

get started with Buck if you wanted to.

If you want to check out this on your own, Iʼve pubished this on

GitHub: https://github.com/stevekabnik/buck-rust-heo/

tree/024ef54ba45627e87a65aaf2f69c6661198c336c (https://

github.com/stevekabnik/buck-rust-heo/

tree/024ef54ba45627e87a65aaf2f69c6661198c336c)

Next up, weʼ be tacking other features, ike “using crates from

crates.io.ˮ No promises on when thatʼ get pubished though!

https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c
https://github.com/steveklabnik/buck-rust-hello/tree/024ef54ba45627e87a65aaf2f69c6661198c336c

