
Binding Rust to other languages
safely and productively
ÉMILE GRÉGOIRE AUGUST 10, 2020

When we made the decision to write our next generation of libraries in
Rust, we knew we needed a solid approach for binding them to other
languages. It may be some time before we have customers purchasing
our libraries to use them in a Rust-only codebase. The majority of our
customers will want to use the libraries in C/C++, .NET, or Java.

Writing the core implementation in Rust means more productivity, fewer
errors, and certain safety guarantees compared to writing it in C++. This
is incredibly valuable and worth the effort of building a binding solution.

From our clients perspective though, Rust can represent more of a
hurdle. Binding any kind of native code into a higher level framework like
Java or .NET is non-trivial and fraught with error. If we didn’t take an
extremely disciplined and maintainable approach to building such
bindings, we might lose all the stability, safety, and performance benefits
of writing our libraries in Rust in the first place.

Additionally, the bindings needed to feel as if they were written entirely in
the target language. They needed to follow the proper conventions,
naming, and patterns for that language.

Past Experience
We have extensive experience in providing bindings to native libraries
and have learned some important lessons from it.



OpenDNP3, a library written in modern C++, exposes Java and .NET
bindings. To ease the pain of interacting with Java Native Interface (JNI),
we wrote a code generator in Java to generate error prone parts of the
bindings and add type safety using the C++ type system. This code
generator has proven to be extremely valuable, saving us a lot of time.
However, there was still a lot of code to write by hand, and this resulted in
many minor issues over the years. Also, the code generator was tightly
coupled to OpenDNP3 and could only assist with the Java bindings.

The lessons we have learned from OpenDNP3 project are:

• Users are interested in using bindings, C# and Java mostly commonly.
• Writing a code generator for the repetitive and error-prone pieces of the

binding code increases productivity and decreases maintenance.
• It would be nice if the code generator could model the entire external API to

avoid having gaps between what’s available in each target language.
• Considering the effort required to design and implement the code generator,

the generator should be reusable across multiple projects to maximize our
ROI.

Existing Solutions
There are already some solutions available to generate bindings in Rust.
Unfortunately, each solution targets only a single language or has other
serious drawbacks. For example, cbindgen generates C and not-so-
natural C++ headers by parsing Rust code. Dotnet-bindgen generates
C# bindings using P/Invoke. Each solution requires its own annotations
and process to generate the code. This translates to many potential
sources of inconsistency and errors, not to mention the time required to
maintain each binding technology.

There are some projects to help writing the C FFI binding by eliminating
some of the required glue-code. One interesting project is safer_ffi. This
only solves part of the problem as it doesn’t generate the bindings in
languages other than C.

Then of course there’s the venerable SWIG project. Swig parses your C
headers along with additional metadata from an “interface file”. It can
generate bindings in many target languages. The downside is that there
is no integration with Rust and the generated bindings are not idiomatic.
We would end up with a product where the developer feels like they are
programming C in a higher-level language. SWIG doesn’t always make
the best decisions, and we wanted tight control over the binding code
that is emitted.

Goals
For our new projects, we decided to create a unified solution that we
could reuse across multiple protocol stacks. With a single tool, we
wanted to be able to generate bindings for multiple projects for multiple
target languages.

The goals for this project were the following:

• Provide safe and idiomatic bindings to C and common object-oriented

https://github.com/dnp3/opendnp3
https://github.com/dnp3/opendnp3
https://github.com/eqrion/cbindgen
https://github.com/eqrion/cbindgen
https://github.com/Joey9801/dotnet-bindgen
https://github.com/Joey9801/dotnet-bindgen
https://getditto.github.io/safer_ffi/
https://getditto.github.io/safer_ffi/
http://swig.org/index.php
http://swig.org/index.php


languages.
• Minimize the amount of manually written code required to create bindings.
• Maximize the ROI of the generator by using the same code generator in every

library we develop.

The only stable ABI that exists between Rust and any other language is
the C ABI. We needed an approach that would allow us to simultaneously
describe the C ABI, and how it maps to an abstract OO API.

The work�ow
The expected workflow is the following:

1. The core domain library (e.g. a protocol stack) is written in idiomatic safe
Rust with no consideration for how this API will map to C.

2. You then write an abstract model of an ideal C API for this library using a tool
that we call oo_bindgen. This model also includes how the C API maps to an
abstract object-oriented language. This model is then used to generate the
C API (in Rust), C headers, and bindings for Java, .NET Core, etc.

3. You write the Rust code that binds the C API to the core library.
4. The core library, the FFI shim, and the C API are complied into a single shared

library consumable from any language that understands the C ABI.

Each target language has its own backend generator that can emit all
the required artifacts:

• For C, only headers are required, typically a single header file, e.g. “library.h”
• For .NET, this means emitting .cs files which internally use PInvoke to call the C

ABI.
• For Java, this means emitting .java files which internally use JNI to call the C

ABI.

From our perspective, this approach helps us focus on the really
important part: the actual protocol stack. The effort required to write the
schema and the glue-code is small compared to development of the
underlying library. The advantages are numerous:

• We can support additional backend languages for ALL of our libraries by
simply creating a new backend generator. If a client wants to be able to use
our libraries in Go or Python at some point, there’s only a single thing we need
to write to make that possible.

• We don’t repeat ourselves. We can even generate documentation stubs in
the model that are then rendered using the appropriate tags for the target
language!

https://github.com/stepfunc/oo_bindgen/
https://github.com/stepfunc/oo_bindgen/
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html


• We ensure consistency between the actual C ABI, and our how our bindings
call into the ABI.

• We ensure that our bindings always expose identical feature sets since they
are rendered from the same model.

We have taken a O(N*M) problem where N is the number of libraries we
have and M is the number of binding languages, and decoupled it into
two problems of O(N) and O(M) instead.

Idiomatic Bindings
From the user perspective, the library looks and feels like any other library
written in their language of choice. This proved to be one of the more
challenging aspects of this endeavor, and is harder to achieve than one
would first think.

For simple libraries, the existing code generators might be sufficient.
However, our protocol stacks revolve around lots of asynchronicity. How
one handles asynchronous operations varies greatly from on language
to another.

For example, in C, asynchronous operation usually involves a function
pointer with a context argument (i.e. void*) that gets called whenever
the operation is complete. The following code sample is from the C API
for our DNP3 library. It starts a read request and receives the result
asynchronously via a callback.

// Callback method

void on_read_complete(read_result_t result, void* ctx)

{

printf("ReadResult: %s\n", ReadResult_to_string(result));

}

// Create the request

request_t* request = request_new();

request_add_all_objects_header(request, Variation_Group10Var0);

request_add_all_objects_header(request, Variation_Group40Var0);

// Create the callback

read_task_callback_t cb =

{

.on_complete = &on_read_complete,

.ctx = NULL,

};

// Send the request, and receive the result asynchronously via the 

callback

association_read(association, request, cb);

// Delete the request, it's copied internally

request_destroy(request);

However, in C#, best practice nowadays is to use C#’s excellent async/
await functionality which revolves around functions returning values of
type Task<T>. Our code generator for C# transforms the C callback API
into .NET Tasks which can then be awaited.



// Create the request

var request = new Request();

request.AddAllObjectsHeader(Variation.Group10Var0);

request.AddAllObjectsHeader(Variation.Group40Var0);

// Send the request asynchronously

var result = await association.Read(request);

// Print the result

Console.WriteLine($"Result: {result}");

In Java, asynchronous operations are idiomatically represented by a
CompletionStage that can be composed to chain asynchronous
computations together and schedule them on a thread pool. The same
example in Java would look like this:

// Create the request

Request request = new Request();

request.addAllObjectsHeader(Variation.GROUP10_VAR0);

request.addAllObjectsHeader(Variation.GROUP40_VAR0);

// Send the request asynchronously and print the result when it completes

association.read(request).thenAccept(

result -> System.out.println("Result: " + result)

);

A development team can be working on either end of the wire and our
products will be easy to integrate. For example, your team might be
integrating a new protocol into your supervisory system running on
Microsoft .NET or be writing the firmware of a resource-constrained field
device in C, and they both can efficiently use the same underlying library
with all the safety and performance benefits Rust has to offer.

Binding with Con�dence
Because the code generator does all the hard work and is shared across
all our projects, we expect it to lower the risk of bugs between the target
language and the core library.

To further make sure that our binding code is safe and robust, we
develop an extensive test suite that gets executed in all target
languages on as many target platforms as possible.

RUST BINDINGS

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html
https://stepfunc.io/tags/rust
https://stepfunc.io/tags/rust
https://stepfunc.io/tags/bindings
https://stepfunc.io/tags/bindings


Reliable and secure
software for critical
infrastructure

stepfunc

stepfunction_io

Address
395 SW Bluff Drive

Suite 10

Bend, OR 97702

info@stepfunc.io

+1-919-428-1002

Navigation
Products

Services

Blog

About Us

Contact

https://stepfunc.io/
https://stepfunc.io/
https://stepfunc.io/
https://stepfunc.io/
https://stepfunc.io/
https://stepfunc.io/
https://github.com/stepfunc
https://github.com/stepfunc
https://github.com/stepfunc
https://twitter.com/stepfunction_io
https://twitter.com/stepfunction_io
https://twitter.com/stepfunction_io
mailto:info@stepfunc.io
mailto:info@stepfunc.io
tel:+1-919-428-1002
tel:+1-919-428-1002
tel:+1-919-428-1002
https://stepfunc.io/products/
https://stepfunc.io/products/
https://stepfunc.io/services/
https://stepfunc.io/services/
https://stepfunc.io/blog/
https://stepfunc.io/blog/
https://stepfunc.io/about/
https://stepfunc.io/about/
https://stepfunc.io/contact/
https://stepfunc.io/contact/

