
Rust Tooling: 8 tools that will increase your
productivity | Shuttle

When it comes to Rust, there’s an extensive ecosystem of libraries and packages to get you where

you need to be. We’ve compiled a list of our favorite tools (written in Rust, of course!) to help you

speed up your Rust-based productivity, whether they’re small plugins to help round o� a rough

edge you’ve been having or to help enhance your debugging skills. This article dives into some of

these crates and how they can help you ship faster.

Cargo plugins

Cargo has an extensive list of plugins that you can use to be able to speed up certain parts of

development — for example, cutting out unused dependencies. They can be used as CLI

commands, as well as CI actions (when installed into a CI workflow like GitHub Actions). Here is a

list of the ones that we’ve found to be really useful:

cargo-machete

cargo-machete is a Cargo plugin for cutting out unused dependencies from your project. To

install it, you can use cargo install cargo-machete then use cargo machete in a Rust

project directory.

The return code indicates whether unused dependencies have been found:

0 if cargo-machete found no unused dependencies,

1 if it found at least one unused dependency,

2 if there was an error during processing (in which case there's no indication whether any unused

dependency was found or not).

That’s it! That’s the crate.

cargo-nextest

cargo-nextest describes itself as a “next-generation Rust test runner”. To install, you need to

run cargo install cargo-nextest.

After cding into a Rust project (or workspace), you can run all tests with cargo nextest run;

or list all of them using cargo nextest list. Running tests will produce an output that looks

like this (taken from the docs page):

https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://github.com/bnjbvr/cargo-machete
https://nexte.st/
https://nexte.st/
https://nexte.st/

The main di�erence between this test runner and the regular cargo test is that cargo-

nextest will detect leaky and flaky tests. If you have a test that spawns a child subprocess that

fails to clean up on a failed test, cargo-nextest will label it appropriately for you. Additionally,

although you can configure things like delay and backo� (for tests using rate limited APIs, for

example), environment variables and more by using the cargo-nextest configuration file!

This is quite an extensive tool; if you’d like to learn more about cargo-nextest, you can find

their docs page here.

cargo-make

cargo-make aims to be an extensive Rust-written task runner that additionally lets you define

workflows to execute your tasks. You can install it using cargo install cargo-make.

To get started with, we’ll create a Makefile.toml file that formats and runs the clippy linter:

[tasks.format]
install_crate = "rustfmt"
command = "cargo"
args = ["fmt", "--", "--emit=files"]

[tasks.lint]
install_crate = "rust-clippy"
command = "cargo"
args = ["clippy"]

https://nexte.st/index.html
https://nexte.st/index.html
https://github.com/sagiegurari/cargo-make
https://github.com/sagiegurari/cargo-make
https://github.com/sagiegurari/cargo-make

[tasks.fmtclip]
dependencies = [

"format",
"lint"

]

Now if we use cargo make fmtclip, it will automatically run cargo fmt and cargo

clippyfor us without needing anything!

We can additionally add environment variables to our commands through the usual way

(providing them before the command). For example, if we have a Makefile.toml that looks like

this:

here we can also additionally set manual overrides for environment
variables
[env]
ECHO_CMD = "echo"

[tasks.expand]
command = "${ECHO_CMD}"
args = [

"VALUE: ${VALUE}"
]

If we run VALUE=HELLO_WORLD cargo make expand, it should print out VALUE:

HELLO_WORLD to the terminal!

cargo-make is quite useful when it comes to Rusty command runners - try it out!

cargo-audit

cargo-audit is a simple Cargo tool for detecting vulnerable Rust crates. You can install it with

cargo install cargo-audit, use cargo audit and you’re done! Any vulnerable crates will

appear below, like so:

https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://github.com/RustSec/rustsec/tree/main/cargo-audit

While not an “all-in-one” crate, cargo-audit fulfills a simple yet important role in making sure

that vulnerable crates can be found and patched.

Testcontainers

Testing with added infrastructure can be quite tricky. testcontainers aims to solve this by

providing an open-source framework for providing local, lightweight containers for your

application that can be immediately thrown away after use. It also has a Rust SDK!

We can add it to a project to get started:

cargo add testcontainers

Then we will need to add another dependency called testcontainers-modules alongside the

feature we want (for the container we want to use). For this example, let’s use a Postgres database:

cargo add testcontainers-modules -F postgres

When we’re testing our application, we instantiate the test_containers client and run a

Postgres instance by adding the following code to our tests:

#[cfg(test)]
mod tests {
use testcontainers_modules::{postgres::Postgres,
testcontainers::clients::Cli};

#[test]
fn connect_to_database() {
// startup the module
let docker = Cli::default();
let node = docker.run(Postgres::default());

// prepare connection string
let connection_string = &format!(

"postgres://postgres:postgres@127.0.0.1:{}/postgres",
 node.get_host_port_ipv4(5432)

);

// the rest of your code goes here

https://testcontainers.com/
https://testcontainers.com/
https://testcontainers.com/
https://github.com/testcontainers/testcontainers-rs
https://github.com/testcontainers/testcontainers-rs
https://github.com/testcontainers/testcontainers-rs-modules-community
https://github.com/testcontainers/testcontainers-rs-modules-community
https://github.com/testcontainers/testcontainers-rs-modules-community

}
}

When you run this test, it will create a Postgres container for you (through Docker) and then you

can give yourself the connection string by using the above format. From there, you can connect to

your Postgres instance and execute any testing you need. Once the test is done, the container gets

removed - this is to provide code isolation (so that your tests don’t rely on other tests succeeding).

tokio-console

tokio-console is a debugger for Rust async programs that use Tokio. To get started, add the

console-subscriber crate to your project and add the following line which will initialise the

subscriber and allow tokio-console to connect to it:

console_subscriber::init();

Note that currently, in order to collect task data from Tokio, the tokio_unstable cfg option

must be enabled. You can either do this through Rustflags, or by adding it as an argument in your

.cargo/config.toml file:

[build]
rustflags = ["--cfg", "tokio_unstable"]

Then you want to install tokio-console with cargo install tokio-console and use

tokio console from your terminal. By default it will attempt to connect on port 6669, but you

can change this by passing in the URL string you want the console to connect to:

cargo run -- http://localhost:8000

On a successful connection, it should display something like this:

https://github.com/tokio-rs/console
https://github.com/tokio-rs/console
https://github.com/tokio-rs/console

tokio-console is part of a wider e�ort to significantly improve Rust async debugging! We are

highly looking forward to seeing how this area grows. If you’re interested in learning more about

tokio-console you can find out more here.

cargo-flamegraph

cargo-flamegraph is a program for generating flamegraphs, written in Rust! Flamegraphs are a

visualisation of distributed request traces and were originally written in Perl but have now been

ported to Rust.

By using a flamegraph, it’s much easier to see where a bug (for example, race conditions) may be

originating from or where you might have a memory leak. Issues like unusually high latency or

errors that are di�cult to debug through regular logging can be solved much more easily this way

as you can see a visual representation of the call stack.

You can install cargo-flamegraph with cargo install flamegraph. There are some

underlying requirements to be able to use cargo-flamegraph; you will want to take a look at the

repo here to make sure you have the right dependencies.

Once done, you can use cargo flamegraph to generate a flamegraph - you can view the

resulting svg file by using your favourite browser, or an SVG viewer program. It should look

something like this:

Interested in getting flamegraphs for web services? You can also use the tracing_flame

package, which you can find more about here. It hooks up to the tracing ecosystem, which allows

for instrumentation within your web application. We also have an article about tracing here.

rust-analyzer

https://github.com/tokio-rs/console
https://github.com/tokio-rs/console
https://github.com/flamegraph-rs/flamegraph
https://github.com/flamegraph-rs/flamegraph
https://github.com/flamegraph-rs/flamegraph
https://github.com/flamegraph-rs/flamegraph
https://github.com/flamegraph-rs/flamegraph
https://docs.rs/tracing-flame/latest/tracing_flame/
https://docs.rs/tracing-flame/latest/tracing_flame/
https://www.shuttle.dev/blog/2024/01/09/getting-started-tracing-rust
https://www.shuttle.dev/blog/2024/01/09/getting-started-tracing-rust

Of course, no Rust tooling list is complete without rust-analyzer! rust-analyzer is a

Language Server Protocol (LSP) that integrates with any editor that supports it and allows your

editor to proactively point out errors for you by maintaining a connection with the LSP server. You

can install it by either using rustup component add rust-analyzer, or it may be provided

alternatively through an Extensions menu (for example, VSCode Extensions).

While rust-analyzer does use quite a lot of memory (up to about 10 gigabytes of RAM!), it is

very well worth having if your setup can handle it. Live debugging without required compilation, as

well as autocomplete can make your life much easier.

Finishing up

Thanks for reading! As the Rust ecosystem expands, there are more and more tools coming to life

which you can use to supercharge your workflow. We’re looking forward to seeing what the future

of the best Rust tooling looks like.

Further reading:

Learn how to deploy a Rust API with Axum, Postgres and Shuttle here

Get started with logging in Rust here

https://www.shuttle.dev/blog/2024/01/31/write-a-rest-api-rust
https://www.shuttle.dev/blog/2024/01/31/write-a-rest-api-rust
https://www.shuttle.dev/blog/2023/09/20/logging-in-rust
https://www.shuttle.dev/blog/2023/09/20/logging-in-rust

