
The Soundness Pledge
Jan 18, 2020

Lately there has been considerable drama around Actix-web, for which I’ll point to Steve

Klabnik’s A sad day for Rust to explain. This post is an opportunity to share some

thoughts I’ve had about soundness, Rust, and open source community.

I believe one of the most important contributions of Rust is the cultural ideal of perfect

soundness: that code using a sound library, no matter how devious, is unable to trigger

undefined behavior (which is often thought of in terms of crashes but can be far more

insidious). Any deviation from this is a bug. The Rust language itself clearly subscribes to

this ideal, even as it sometimes falls short of attaining it (at this writing, there are 44 I-

unsound bugs, the oldest of which is more than 6 years old).

Many in the Rust community subscribe to this, but some don’t. I’m not arguing that one is

right and the other is wrong. Rather, the main argument in this post will be that there is a

need for better communication, to make clear one’s thinking on this point. I believe many

of the problems in the Actix drama were caused by miscommunication and a mismatch in

expectations.

Unsoundness is bad, unsafe is a sharp tool
I think David Tolnay’s blog post on soundness bugs draws a very important distinction

between “unsafe” as it is used in Rust, and “unsound”. Essentially, “sound” means that all

possible uses of a library avoid undefined behavior. This is quite a high standard, and in

many cases goes beyond what’s necessary to deliver working code. Even so, it is the

standard that the Rust language (including standard library) and many libraries aspire to.

The unsafe keyword has a specific meaning: it is a sign that more reasoning is needed

to prove that use of the code is safe. Outside unsafe blocks, the compiler essentially uses

information encoded in the type system to prove that use of the code is safe. Inside

unsafe blocks, certain things are permitted that are ordinarily prohibited, for example

reading and writing of raw pointers. For readers who don’t know Rust well, I recommend

reading the Unsafe Rust chapter of the Rust book; otherwise a lot of this discussion is

likely to be confusing.

There’s a tendency in some parts of the Rust community to consider unsafe itself as

bad, but I think that’s missing some subtlety. Certainly in code that could just as easily be

Raph Levien’s blog About

https://words.steveklabnik.com/a-sad-day-for-rust
https://words.steveklabnik.com/a-sad-day-for-rust
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://github.com/rust-lang/rust/labels/I-unsound%20%F0%9F%92%A5
https://github.com/rust-lang/rust/labels/I-unsound%20%F0%9F%92%A5
https://github.com/rust-lang/rust/labels/I-unsound%20%F0%9F%92%A5
https://github.com/rust-lang/rust/labels/I-unsound%20%F0%9F%92%A5
https://docs.rs/dtolnay/0.0.7/dtolnay/macro._03__soundness_bugs.html
https://docs.rs/dtolnay/0.0.7/dtolnay/macro._03__soundness_bugs.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://raphlinus.github.io/
https://raphlinus.github.io/about/
https://raphlinus.github.io/about/
https://raphlinus.github.io/

written in safe Rust, using unsafe for some perceived performance gain, or, worse, as a

way of silencing complaints from the borrow checker, is a bad sign. But for many uses,

especially integration with libraries or runtimes designed for other languages, it is

essential, and it’s important to use it well. Other valid use cases include SIMD and the

implementation of foundational data structures; the Rust standard library has a good

collection, but is not intended to be comprehensive of all possible use cases.

Sometimes it’s fairly easy to avoid soundness bugs: just don’t use “unsafe” anywhere in

the code, and don’t depend on any other library with a soundness bug. For certain classes

of problems, this is practical. Often it’s framed as a tradeoff between performance and

safety, but I haven’t seen a lot of evidence that this is really the tradeoff. In most cases I’ve

seen, Rust gives you the tools to achieve both, but it sometimes does require extra work.

Many of the safety guarantees in Rust come at no runtime cost. A few others (notably

array bounds checks) have some cost, but ordinary performance tuning techniques are

often effective even within the safe fragment. One data point of evidence for this is

pulldown-cmark, which now has best-in-class performance, but no use of unsafe (there is

an optional SIMD optimization, but performance is hardly different than the default

configuration, thanks to extensive tuning by Marcus Klaas de Vries).

The right way to think of unsafe is as a sharp tool: to be treated with respect, wielded by

those who have some knowledge about how to do it well, and not to be overused. We’re

not aiming for a world in which scissors have been replaced by those plastic things that

can’t actually cut paper.

Binding with complex runtimes
Some applications of Rust are binaries where all of the code is Rust, or perhaps there are

a couple of C or C++ libraries for specific functions. For these, reasoning about soundness

is reasonably straightforward.

Another interest class is binding Rust to existing complex runtimes, in which I include

(scripting) languages, UI toolkits, and other related things; I believe the soundness issues

are similar.

For binding with a scripting language, a reasonable definition of soundness is that no

code written in that language should be able to trigger UB in Rust code. This is quite

difficult to acheive in practice, because languages are rarely designed with soundness in

mind. A good example is rlua, the README of which contains a good discussion of the

safety goals and some indications how hard they are to achieve. Another good snapshot

of an inherently difficult soundness issue is PyO3#687. These links show significant effort

and thoughtfulness of how to achieve soundness in a difficult environment.

The story of rlua raises a very interesting point: the Lua language was fundamentally not

designed with safety in mind, and allows a number of operations that are inherently quite

https://github.com/raphlinus/pulldown-cmark
https://github.com/raphlinus/pulldown-cmark
https://github.com/kyren/rlua
https://github.com/kyren/rlua
https://github.com/PyO3/pyo3/issues/687
https://github.com/PyO3/pyo3/issues/687
https://github.com/kyren/rlua/issues/116
https://github.com/kyren/rlua/issues/116

dangerous. There’s really only so far a wrapper can go in trying to ensure soundness. The

author’s more recent thinking is to expose the Lua::new constructor as unsafe and

make it clear to the client that they are ultimately responsible for not loading Lua code

that can provoke safety problems. This seems a reasonable approach, and I think speaks

to a general principle: when it is not possible to guarantee soundness, it is often best to

expose the functionality through an unsafe interface.

The same principle underlies the philosophical differences between the Ash and vulkano

crates for providing Vulkan wrappers. The Vulkan API is fundamentally unsafe, and while

vulkano goes to great lengths to try to wrap that and provide a safe interface, that creates

a number of compromises, which is problematic because the point of Vulkan is

performance. For more context, see this description of design decisions for vulkano and

this Reddit discussion presenting Ash motivations. While both approaches are reasonable,

of the two Vulkano has found it considerably more difficult to deliver on its promises, with

persistent safety issues in spite of its stated goals, and other compromises that most

Rust graphics programmers I’ve talked to find unappealing.

A closely related issue relevant to my own work is providing safe bindings for platform UI

capabilities. For macOS, this is roughly the same as Objective-C language bindings. For

Windows, it involves a great deal of wrapping of COM objects. Microsoft has a good blog

post detailing some of their own work and the challenges: Designing a COM library for

Rust. Another detailed argument is a github issue entitled COM trait methods should

probably always be unsafe. That is perhaps overly pessimistic, but speaks to the difficulty

of the problem.

I’ll give a simple illustrative example of how safely wrapping a COM interface can be

tricky: ID3DBlob, which is used to hold the results of shader compilation, among other

things. The underlying COM interface has two methods, which expose a length and a

pointer to the blob contents. An obvious interface would be something like this:

#[derive(Clone)]
struct D3DBlob(ComPtr<ID3DBlob>);

impl D3DBlob {
fn get_mut(&mut self) -> &mut [u8] {

unsafe {
slice::from_raw_parts_mut(self.0.GetBufferPointer(), self.0

}
}

}

Can you spot the soundness issue? It’s the fact that it’s possible both to clone and to get

mutable access, therefore you can get two mutable references to the same contents.

Leaving out one or the other would restore soundness, but both of these operations make

https://github.com/kyren/rlua/issues/116
https://github.com/kyren/rlua/issues/116
https://www.reddit.com/r/rust/comments/eq11t3/a_sad_day_for_rust/fep8ojm/
https://www.reddit.com/r/rust/comments/eq11t3/a_sad_day_for_rust/fep8ojm/
https://github.com/MaikKlein/ash
https://github.com/MaikKlein/ash
https://github.com/vulkano-rs/vulkano
https://github.com/vulkano-rs/vulkano
https://github.com/tomaka/vulkano/blob/6f2ee218887f6eb08a61b67387ad9a048cd59088/DESIGN.md
https://github.com/tomaka/vulkano/blob/6f2ee218887f6eb08a61b67387ad9a048cd59088/DESIGN.md
https://www.reddit.com/r/rust/comments/5kc01i/update_report_ash_a_lightweight_vulkan_wrapper/
https://www.reddit.com/r/rust/comments/5kc01i/update_report_ash_a_lightweight_vulkan_wrapper/
https://github.com/vulkano-rs/vulkano/labels/type%3A%20safety
https://github.com/vulkano-rs/vulkano/labels/type%3A%20safety
https://msrc-blog.microsoft.com/2019/10/08/designing-a-com-library-for-rust/
https://msrc-blog.microsoft.com/2019/10/08/designing-a-com-library-for-rust/
https://msrc-blog.microsoft.com/2019/10/08/designing-a-com-library-for-rust/
https://msrc-blog.microsoft.com/2019/10/08/designing-a-com-library-for-rust/
https://github.com/microsoft/com-rs/issues/97
https://github.com/microsoft/com-rs/issues/97
https://github.com/microsoft/com-rs/issues/97
https://github.com/microsoft/com-rs/issues/97
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ff728743(v%3Dvs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/ff728743(v%3Dvs.85)

sense - you want a mutable reference when filling a buffer from some source, and you

might want to clone to distribute the buffer to multiple threads.

A sophisticated approach to wrapping might use a form of session type, like this:

struct D3DBlobMutable(ComPtr<ID3DBlob>);

#[derive(Clone)]
struct D3DBlob(ComPtr<ID3DBlob>);

impl D3DBlobMutable {
fn freeze(self) -> D3DBlob {

D3DBlob(self.0)
}

fn get_mut(&mut self) -> &mut [u8] { ... }
}

impl D3DBlob {
fn get(&self) -> &[u8] { ... }

}

This is a simple example. I’ve come across a lot more interesting stuff, involving

temporary objects that have an implicit lifetime dependency, callbacks with interesting

pointer lifetime requirements, and more. Many of these have resulted in unsoundness in

published “safe” wrapper crates.

Because of the difficulties I’ve outlined above, my own preferred style is increasingly to

wrap platform functions using an unsafe API, then verify that uses of these functions are

conservative. In druid in particular, the druid-shell layer (which abstracts platform

capabilities but is not a simple wrapper) has significant amounts of unsafe code, while the

druid layer above it (UI logic) has absolutely none. I don’t know of a better way to manage

this.

Mitigating unsoundness
There are a combination of practices that can be used to mitigate unsoundness. Many of

these are borrowed from the C++ world, where effectively every line of code is unsafe.

The first line of defense is code review. Here, the unsafe keyword helps because it

narrows the focus onto sections of code that are potentially unsound. A codebase with a

few small, isolated unsafe sections is much easier to audit than one which uses it

pervasively. There are tireless volunteers in the Rust community, most notably Shnatsel,

who analyze code for unsoundness and propose fixes.

https://docs.microsoft.com/en-us/windows/win32/api/d2d1/nn-d2d1-id2d1pathgeometry
https://docs.microsoft.com/en-us/windows/win32/api/d2d1/nn-d2d1-id2d1pathgeometry
https://docs.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextanalysissource-getlocalename
https://docs.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextanalysissource-getlocalename
https://docs.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextanalysissource-getlocalename
https://docs.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextanalysissource-getlocalename
https://github.com/Shnatsel
https://github.com/Shnatsel

There are also a number of tools available, including sanitizers and MIRI. The latter is

especially good at reporting “technical” violations, as it has a deeper understanding of

Rust semantics than the LLVM-based tools. However, these tools can only report

violations on code paths that trigger them, and many of the soundness violations occur

on exceptional paths. For these, fuzzing can help.

Even so, the ideal of soundness covers all uses, no matter how devious. It is possible,

even likely, that dynamically testing running code will fail to uncover potential soundness

issues that could arise from using the code in ways likely not anticipated by the library

author. In fact, for these use cases there is likely some controversy about whether fixing

the soundness issues is even worthwhile.

An exciting research area for the future is formal techniques for proving Rust programs

correct, such as Ralf Jung’s work. This is most likely to yield positive results for lower level

data structures; it should finally be possible to implement a doubly-linked list efficiently

and without anxiety.

Dependencies
Unfortunately, the soundness of a crate is really the worst of the crate itself and all

transitive dependencies. Further, the number of transitive dependencies can become quite

large; a typical application will have several hundred. There are a number of efforts to try

to audit dependencies for various issues, including the use of unsafe but also license

compatibility, etc. The crev project is particularly interesting, as it focuses on human

review, but cryptographically strong verification that the review is what it claims to be.

The pledge
I propose the following as the basic form of the soundness pledge:

“The intent of this crate is to be free of soundness bugs. The developers will do their best

to avoid them, and welcome help in analyzing and fixing them.”

I think many, if not most, Rust libraries would subscribe to such a pledge, but also that

there is a sizable minority who would not. And that’s fine. It’s definitely a tradeoff, and

there is effort involved in achieving these goals. Or, perhaps the library author doesn’t

agree with my assertion that it’s possible to attain top-tier performance using only safe

Rust. Most Rust libraries are provided with as a volunteer effort.

Any library taking this pledge would basically need to ensure that all its dependencies

have done so, or establish an equivalent level of trust through other means.

As mentioned above, I think it’s fine for a library not to subscribe to this pledge. Then,

third-party auditors will know not to waste their time seeking soundness problems, and

https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://www.ralfj.de/blog/
https://www.ralfj.de/blog/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://github.com/crev-dev/cargo-crev
https://github.com/crev-dev/cargo-crev

potential users will know what to expect. Both those who value performance over safety,

and safety over performance, will see a clear statement of priorities that can inform their

decision whether to take on the dependency.

Skin in the game
Higher levels of the soundness pledge might involve some form of commitment of effort

to attain the goal: independent review, extensive use of fuzzers and sanitizers, and,

hopefully at some point, formal proofs of soundness.

This is a whole ’nother discussion, but I think these higher commitments of effort should

come with some kind of material incentive. Though there are exceptions, most open

source Rust development is done as a volunteer effort, a labor of love. It is not fun

responding to reports of vulnerabilities in one’s code, or having a feeling of responsibility

for security issues in users of the code. I think there are opportunities here to make the

incentives match up more closely with the value provided.

Implications outside Rust
I’ve been talking extensively about Rust here for obvious reasons, but I believe reasoning

about soundness and safety is valuable in other languages as well. Some other language

cultures are way ahead of the game, particularly Java and JVM languages (provided you

don’t do JNI, ugh!), as the language itself provides very strong soundness guarantees,

even in the face of race conditions and the like.

It is possible to write safe C and C++ code. It just takes a lot of effort, using the tools I’ve

outlined above such as sanitizers. Certain codebases might already be considered

honorary pledges, I’m thinking SQLite, as their testing methodology in particular is likely to

catch most of the soundness bugs that motivate the use of safe Rust.

But ultimately I think some of the most productive interactions around soundness may

result from the attempt to write safe Rust wrappers for other runtimes. I have to wonder

how different Vulkan might be if it had been informed by an effort to build safe Rust

wrappers without significant runtime costs, and how much that might have made it easier

to base WebGPU on it.

Similarly for COM. Many soundness issues are discussed in informal documentation,

such as whether a method is “thread-safe” or not. The Rust concepts of Send and Sync

are much more precise ways of talking about behavior in multithreaded concepts, and

together with questions of whether Clone is allowed and which methods are &self vs

&mut self , plus the cases where it’s impossible to avoid the need for unsafe , the type

signature for a Rust wrapper tells you a lot about how to safely use a COM interface. Just

doing an audit of various COM libraries to document the corresponding safe Rust types

https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html
https://doc.rust-lang.org/nomicon/send-and-sync.html
https://doc.rust-lang.org/nomicon/send-and-sync.html

would be a major effort, but one that I think could pay off.

Conclusion
While almost everyone would agree that soundness is better than unsoundness, different

people will have different priorities for how important it is, especially as a tradeoff for

coding effort and performance. Most of the Rust community highly values soundness, but

even within the community there is significant variation. I’ve proposed a “pledge,” a

statement of intent really, which I hope could be used to clearly communicate the level of

priority for Rust projects.

Right now, I’m inviting discussion rather than proposing it as a formal badge. Perhaps it’s

not really a good idea, or has downsides I don’t foresee, or perhaps the idea needs

tweaking. But I think it’s worth talking about.

Discussion on /r/rust and Lobsters.

Raph Levien’s blog

raph.levien@gmail.com

raphlinus

raph

Blog of Raph Levien.

Raph Levien’s blog

https://www.reddit.com/r/rust/comments/eqcefv/the_soundness_pledge/
https://www.reddit.com/r/rust/comments/eqcefv/the_soundness_pledge/
https://lobste.rs/s/ksjy7n/soundness_pledge
https://lobste.rs/s/ksjy7n/soundness_pledge
mailto:raph.levien@gmail.com
mailto:raph.levien@gmail.com
https://github.com/raphlinus
https://github.com/raphlinus
https://github.com/raphlinus
https://github.com/raphlinus
https://github.com/raphlinus
https://github.com/raphlinus
https://github.com/raphlinus
https://mastodon.online/@raph
https://mastodon.online/@raph
https://mastodon.online/@raph
https://mastodon.online/@raph
https://mastodon.online/@raph
https://mastodon.online/@raph
https://mastodon.online/@raph
https://mastodon.online/@raph

