
Allocator
Designs
Jan 20, 2020

This post explains how to implement heap allocators from scratch. It presents and discusses

different allocator designs, including bump allocation, linked list allocation, and fixed-size

block allocation. For each of the three designs, we will create a basic implementation that

can be used for our kernel.

This blog is openly developed on GitHub. If you have any problems or questions, please

open an issue there. You can also leave comments at the bottom. The complete source code

for this post can be found in the post-11 branch.

▸ Table
of
Contents

Introduction
In the previous post, we added basic support for heap allocations to our kernel. For that, we

created a new memory region in the page tables and used the linked_list_allocator crate to

manage that memory. While we have a working heap now, we left most of the work to the

allocator crate without trying to understand how it works.

In this post, we will show how to create our own heap allocator from scratch instead of

relying on an existing allocator crate. We will discuss different allocator designs, including a

simplistic bump
allocator and a basic fixed-size
block
allocator, and use this knowledge to

implement an allocator with improved performance (compared to the linked_list_allocator

crate).

Design
Goals

The responsibility of an allocator is to manage the available heap memory. It needs to return

unused memory on alloc calls and keep track of memory freed by dealloc so that it can

be reused again. Most importantly, it must never hand out memory that is already in use

somewhere else because this would cause undefined behavior.

Apart from correctness, there are many secondary design goals. For example, the allocator

should effectively utilize the available memory and keep fragmentation low. Furthermore, it

should work well for concurrent applications and scale to any number of processors. For

maximal performance, it could even optimize the memory layout with respect to the CPU

Writing
an
OS
in
Rust Philipp Oppermann's blog

« All Posts

https://github.com/phil-opp/blog_os
https://github.com/phil-opp/blog_os
https://github.com/phil-opp/blog_os/tree/post-11
https://github.com/phil-opp/blog_os/tree/post-11
https://github.com/phil-opp/blog_os/tree/post-11
https://os.phil-opp.com/heap-allocation/
https://os.phil-opp.com/heap-allocation/
https://os.phil-opp.com/heap-allocation/#creating-a-kernel-heap
https://os.phil-opp.com/heap-allocation/#creating-a-kernel-heap
https://os.phil-opp.com/heap-allocation/#using-an-allocator-crate
https://os.phil-opp.com/heap-allocation/#using-an-allocator-crate
https://os.phil-opp.com/heap-allocation/#using-an-allocator-crate
https://os.phil-opp.com/heap-allocation/#using-an-allocator-crate
https://os.phil-opp.com/heap-allocation/#using-an-allocator-crate
https://en.wikipedia.org/wiki/Fragmentation_(computing)
https://en.wikipedia.org/wiki/Fragmentation_(computing)
https://en.wikipedia.org/wiki/Fragmentation_(computing)
https://os.phil-opp.com/
https://os.phil-opp.com/
https://os.phil-opp.com/
https://os.phil-opp.com/

caches to improve cache locality and avoid false sharing.

These requirements can make good allocators very complex. For example, jemalloc has over

30.000 lines of code. This complexity is often undesired in kernel code, where a single bug

can lead to severe security vulnerabilities. Fortunately, the allocation patterns of kernel code

are often much simpler compared to userspace code, so that relatively simple allocator

designs often suffice.

In the following, we present three possible kernel allocator designs and explain their

advantages and drawbacks.

Bump
Allocator
The most simple allocator design is a bump
allocator (also known as stack
allocator). It

allocates memory linearly and only keeps track of the number of allocated bytes and the

number of allocations. It is only useful in very specific use cases because it has a severe

limitation: it can only free all memory at once.

Idea

The idea behind a bump allocator is to linearly allocate memory by increasing (“bumping”) a

next variable, which points to the start of the unused memory. At the beginning, next is

equal to the start address of the heap. On each allocation, next is increased by the

allocation size so that it always points to the boundary between used and unused memory:

Heap Start Heap End

next

Heap Start Heap End

next

Heap Start Heap End

next

The next pointer only moves in a single direction and thus never hands out the same

memory region twice. When it reaches the end of the heap, no more memory can be

allocated, resulting in an out-of-memory error on the next allocation.

A bump allocator is often implemented with an allocation counter, which is increased by 1 on

each alloc call and decreased by 1 on each dealloc call. When the allocation counter

reaches zero, it means that all allocations on the heap have been deallocated. In this case,

the next pointer can be reset to the start address of the heap, so that the complete heap

https://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/
https://www.geeksforgeeks.org/locality-of-reference-and-cache-operation-in-cache-memory/
https://mechanical-sympathy.blogspot.de/2011/07/false-sharing.html
https://mechanical-sympathy.blogspot.de/2011/07/false-sharing.html
http://jemalloc.net/
http://jemalloc.net/

memory is available for allocations again.

Implementation

We start our implementation by declaring a new allocator��bump submodule:

// in src/allocator.rs

pub mod bump;

The content of the submodule lives in a new src/allocator/bump.rs file, which we create with

the following content:

// in src/allocator/bump.rs

pub struct BumpAllocator {
 heap_start: usize,
 heap_end: usize,
 next: usize,
 allocations: usize,
}

impl BumpAllocator {
/// Creates a new empty bump allocator.
pub const fn new() �� Self {

 BumpAllocator {
 heap_start: 0,
 heap_end: 0,
 next: 0,
 allocations: 0,
 }
 }

/// Initializes the bump allocator with the given heap bounds.
///
/// This method is unsafe because the caller must ensure that the given
/// memory range is unused. Also, this method must be called only once.
pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {

 self.heap_start = heap_start;
 self.heap_end = heap_start + heap_size;
 self.next = heap_start;
 }
}

The heap_start and heap_end fields keep track of the lower and upper bounds of the heap

memory region. The caller needs to ensure that these addresses are valid, otherwise the

allocator would return invalid memory. For this reason, the init function needs to be

unsafe to call.

The purpose of the next field is to always point to the first unused byte of the heap, i.e., the

start address of the next allocation. It is set to heap_start in the init function because at

the beginning, the entire heap is unused. On each allocation, this field will be increased by

the allocation size (“bumped”) to ensure that we don’t return the same memory region twice.

The allocations field is a simple counter for the active allocations with the goal of resetting

the allocator after the last allocation has been freed. It is initialized with 0.

We chose to create a separate init function instead of performing the initialization directly

in new in order to keep the interface identical to the allocator provided by the

linked_list_allocator crate. This way, the allocators can be switched without additional

code changes.

Implementing
GlobalAlloc

As explained in the previous post, all heap allocators need to implement the GlobalAlloc

trait, which is defined like this:

pub unsafe trait GlobalAlloc {
unsafe fn alloc(&self, layout: Layout) �� *mut u8;
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout);

unsafe fn alloc_zeroed(&self, layout: Layout) �� *mut u8 { ��� }
unsafe fn realloc(

&self,
 ptr: *mut u8,
 layout: Layout,
 new_size: usize
) �� *mut u8 { ��� }
}

Only the alloc and dealloc methods are required; the other two methods have default

implementations and can be omitted.

First
Implementation
Attempt

Let’s try to implement the alloc method for our BumpAllocator :

// in src/allocator/bump.rs

use alloc��alloc��{GlobalAlloc, Layout};

unsafe impl GlobalAlloc for BumpAllocator {
unsafe fn alloc(&self, layout: Layout) �� *mut u8 {

// TODO alignment and bounds check

https://os.phil-opp.com/heap-allocation/#the-allocator-interface
https://os.phil-opp.com/heap-allocation/#the-allocator-interface
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html

let alloc_start = self.next;
 self.next = alloc_start + layout.size();
 self.allocations += 1;
 alloc_start as *mut u8
 }

unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
 todo!();
 }
}

First, we use the next field as the start address for our allocation. Then we update the next

field to point to the end address of the allocation, which is the next unused address on the

heap. Before returning the start address of the allocation as a *mut u8 pointer, we increase

the allocations counter by 1.

Note that we don’t perform any bounds checks or alignment adjustments, so this

implementation is not safe yet. This does not matter much because it fails to compile anyway

with the following error:

error[E0594]: cannot assign to `self.next` which is behind a `&` reference
 ��� src/allocator/bump.rs:29:9
 |
29 | self.next = alloc_start + layout.size();
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `self` is a `&` reference, so the data it refers to ca

(The same error also occurs for the self.allocations += 1 line. We omitted it here for brevity.)

The error occurs because the alloc and dealloc methods of the GlobalAlloc trait only

operate on an immutable &self reference, so updating the next and allocations fields is

not possible. This is problematic because updating next on every allocation is the essential

principle of a bump allocator.

GlobalAlloc
and
Mutability

Before we look at a possible solution to this mutability problem, let’s try to understand why

the GlobalAlloc trait methods are defined with &self arguments: As we saw in the previous

post, the global heap allocator is defined by adding the #[global_allocator] attribute to a

static that implements the GlobalAlloc trait. Static variables are immutable in Rust, so

there is no way to call a method that takes &mut self on the static allocator. For this reason,

all the methods of GlobalAlloc only take an immutable &self reference.

Fortunately, there is a way to get a &mut self reference from a &self reference: We can use

synchronized interior mutability by wrapping the allocator in a spin��Mutex spinlock. This

type provides a lock method that performs mutual exclusion and thus safely turns a &self

reference to a &mut self reference. We’ve already used the wrapper type multiple times in

https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.alloc
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.alloc
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.alloc
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc
https://os.phil-opp.com/heap-allocation/#the-global-allocator-attribute
https://os.phil-opp.com/heap-allocation/#the-global-allocator-attribute
https://os.phil-opp.com/heap-allocation/#the-global-allocator-attribute
https://os.phil-opp.com/heap-allocation/#the-global-allocator-attribute
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://doc.rust-lang.org/book/ch15-05-interior-mutability.html
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Mutual_exclusion

our kernel, for example for the VGA text buffer.

A
Locked
Wrapper
Type

With the help of the spin��Mutex wrapper type, we can implement the GlobalAlloc trait for

our bump allocator. The trick is to implement the trait not for the BumpAllocator directly, but

for the wrapped spin��Mutex<BumpAllocator> type:

unsafe impl GlobalAlloc for spin��Mutex<BumpAllocator> {…}

Unfortunately, this still doesn’t work because the Rust compiler does not permit trait

implementations for types defined in other crates:

error[E0117]: only traits defined in the current crate can be implemented for arbitrary types
 ��� src/allocator/bump.rs:28:1
 |
28 | unsafe impl GlobalAlloc for spin��Mutex<BumpAllocator> {
 | ����������������������������--------------------------
 | | |
 | | `spin��mutex��Mutex` is not defined in the current crate
 | impl doesn't use only types from inside the current crate
 |
 = note: define and implement a trait or new type instead

To fix this, we need to create our own wrapper type around spin��Mutex :

// in src/allocator.rs

/// A wrapper around spin��Mutex to permit trait implementations.
pub struct Locked<A> {
 inner: spin��Mutex<A>,
}

impl<A> Locked<A> {
pub const fn new(inner: A) �� Self {

 Locked {
 inner: spin��Mutex��new(inner),
 }
 }

pub fn lock(&self) �� spin��MutexGuard<A> {
 self.inner.lock()
 }
}

The type is a generic wrapper around a spin��Mutex<A> . It imposes no restrictions on the

wrapped type A , so it can be used to wrap all kinds of types, not just allocators. It provides

https://os.phil-opp.com/vga-text-mode/#spinlocks
https://os.phil-opp.com/vga-text-mode/#spinlocks

a simple new constructor function that wraps a given value. For convenience, it also

provides a lock function that calls lock on the wrapped Mutex . Since the Locked type is

general enough to be useful for other allocator implementations too, we put it in the parent

allocator module.

Implementation
for
Locked<BumpAllocator>

The Locked type is defined in our own crate (in contrast to spin��Mutex), so we can use it to

implement GlobalAlloc for our bump allocator. The full implementation looks like this:

// in src/allocator/bump.rs

use super��{align_up, Locked};
use alloc��alloc��{GlobalAlloc, Layout};
use core��ptr;

unsafe impl GlobalAlloc for Locked<BumpAllocator> {
unsafe fn alloc(&self, layout: Layout) �� *mut u8 {

let mut bump = self.lock(); // get a mutable reference

let alloc_start = align_up(bump.next, layout.align());
let alloc_end = match alloc_start.checked_add(layout.size()) {

 Some(end) �� end,
 None �� return ptr��null_mut(),
 };

if alloc_end > bump.heap_end {
 ptr��null_mut() // out of memory
 } else {
 bump.next = alloc_end;
 bump.allocations += 1;
 alloc_start as *mut u8
 }
 }

unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
let mut bump = self.lock(); // get a mutable reference

 bump.allocations -= 1;
if bump.allocations �� 0 {

 bump.next = bump.heap_start;
 }
 }
}

The first step for both alloc and dealloc is to call the Mutex��lock method through the

inner field to get a mutable reference to the wrapped allocator type. The instance remains

https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock

locked until the end of the method, so that no data race can occur in multithreaded contexts

(we will add threading support soon).

Compared to the previous prototype, the alloc implementation now respects alignment

requirements and performs a bounds check to ensure that the allocations stay inside the

heap memory region. The first step is to round up the next address to the alignment

specified by the Layout argument. The code for the align_up function is shown in a

moment. We then add the requested allocation size to alloc_start to get the end address of

the allocation. To prevent integer overflow on large allocations, we use the checked_add

method. If an overflow occurs or if the resulting end address of the allocation is larger than

the end address of the heap, we return a null pointer to signal an out-of-memory situation.

Otherwise, we update the next address and increase the allocations counter by 1 like

before. Finally, we return the alloc_start address converted to a *mut u8 pointer.

The dealloc function ignores the given pointer and Layout arguments. Instead, it just

decreases the allocations counter. If the counter reaches 0 again, it means that all

allocations were freed again. In this case, it resets the next address to the heap_start

address to make the complete heap memory available again.

Address
Alignment

The align_up function is general enough that we can put it into the parent allocator

module. A basic implementation looks like this:

// in src/allocator.rs

/// Align the given address `addr` upwards to alignment `align`.
fn align_up(addr: usize, align: usize) �� usize {

let remainder = addr % align;
if remainder �� 0 {

 addr // addr already aligned
 } else {
 addr - remainder + align
 }
}

The function first computes the remainder of the division of addr by align . If the remainder

is 0 , the address is already aligned with the given alignment. Otherwise, we align the

address by subtracting the remainder (so that the new remainder is 0) and then adding the

alignment (so that the address does not become smaller than the original address).

Note that this isn’t the most efficient way to implement this function. A much faster

implementation looks like this:

/// Align the given address `addr` upwards to alignment `align`.
///

https://doc.rust-lang.org/std/primitive.usize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.usize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.usize.html#method.checked_add
https://en.wikipedia.org/wiki/Euclidean_division
https://en.wikipedia.org/wiki/Euclidean_division

/// Requires that `align` is a power of two.
fn align_up(addr: usize, align: usize) �� usize {
 (addr + align - 1) & !(align - 1)
}

This method requires align to be a power of two, which can be guaranteed by utilizing the

GlobalAlloc trait (and its Layout parameter). This makes it possible to create a bitmask to

align the address in a very efficient way. To understand how it works, let’s go through it step

by step, starting on the right side:

• Since align is a power of two, its binary representation has only a single bit set (e.g.

0b000100000). This means that align - 1 has all the lower bits set (e.g. 0b00011111).

• By creating the bitwise NOT through the ! operator, we get a number that has all the

bits set except for the bits lower than align (e.g. 0b…111111111100000).

• By performing a bitwise AND on an address and !(align - 1) , we align the address

downwards. This works by clearing all the bits that are lower than align .

• Since we want to align upwards instead of downwards, we increase the addr by

align - 1 before performing the bitwise AND . This way, already aligned addresses

remain the same while non-aligned addresses are rounded to the next alignment

boundary.

Which variant you choose is up to you. Both compute the same result, only using different

methods.

Using
It

To use the bump allocator instead of the linked_list_allocator crate, we need to update the

ALLOCATOR static in allocator.rs :

// in src/allocator.rs

use bump��BumpAllocator;

#[global_allocator]
static ALLOCATOR: Locked<BumpAllocator> = Locked��new(BumpAllocator��new());

Here it becomes important that we declared BumpAllocator��new and Locked��new as const

functions. If they were normal functions, a compilation error would occur because the

initialization expression of a static must be evaluable at compile time.

We don’t need to change the ALLOCATOR.lock().init(HEAP_START, HEAP_SIZE) call in our

init_heap function because the bump allocator provides the same interface as the allocator

provided by the linked_list_allocator .

Now our kernel uses our bump allocator! Everything should still work, including the

https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://en.wikipedia.org/wiki/Mask_(computing)
https://en.wikipedia.org/wiki/Mask_(computing)
https://en.wikipedia.org/wiki/Binary_number#Representation
https://en.wikipedia.org/wiki/Binary_number#Representation
https://en.wikipedia.org/wiki/Bitwise_operation#NOT
https://en.wikipedia.org/wiki/Bitwise_operation#NOT
https://en.wikipedia.org/wiki/Bitwise_operation#NOT
https://en.wikipedia.org/wiki/Bitwise_operation#NOT
https://en.wikipedia.org/wiki/Bitwise_operation#AND
https://en.wikipedia.org/wiki/Bitwise_operation#AND
https://en.wikipedia.org/wiki/Bitwise_operation#AND
https://en.wikipedia.org/wiki/Bitwise_operation#AND
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions

heap_allocation tests that we created in the previous post:

> cargo test --test heap_allocation
[…]
Running 3 tests
simple_allocation��� [ok]
large_vec��� [ok]
many_boxes��� [ok]

Discussion

The big advantage of bump allocation is that it’s very fast. Compared to other allocator

designs (see below) that need to actively look for a fitting memory block and perform various

bookkeeping tasks on alloc and dealloc , a bump allocator can be optimized to just a few

assembly instructions. This makes bump allocators useful for optimizing the allocation

performance, for example when creating a virtual DOM library.

While a bump allocator is seldom used as the global allocator, the principle of bump

allocation is often applied in the form of arena allocation, which basically batches individual

allocations together to improve performance. An example of an arena allocator for Rust is

contained in the toolshed crate.

The
Drawback
of
a
Bump
Allocator

The main limitation of a bump allocator is that it can only reuse deallocated memory after all

allocations have been freed. This means that a single long-lived allocation suffices to prevent

memory reuse. We can see this when we add a variation of the many_boxes test:

// in tests/heap_allocation.rs

#[test_case]
fn many_boxes_long_lived() {

let long_lived = Box��new(1); // new
for i in 0��HEAP_SIZE {

let x = Box��new(i);
 assert_eq!(*x, i);
 }
 assert_eq!(*long_lived, 1); // new
}

Like the many_boxes test, this test creates a large number of allocations to provoke an out-of-

memory failure if the allocator does not reuse freed memory. Additionally, the test creates a

long_lived allocation, which lives for the whole loop execution.

When we try to run our new test, we see that it indeed fails:

https://os.phil-opp.com/heap-allocation/#adding-a-test
https://os.phil-opp.com/heap-allocation/#adding-a-test
https://os.phil-opp.com/heap-allocation/#adding-a-test
https://os.phil-opp.com/heap-allocation/#adding-a-test
https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html
https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html
https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
https://hacks.mozilla.org/2019/03/fast-bump-allocated-virtual-doms-with-rust-and-wasm/
https://mgravell.github.io/Pipelines.Sockets.Unofficial/docs/arenas.html
https://mgravell.github.io/Pipelines.Sockets.Unofficial/docs/arenas.html
https://docs.rs/toolshed/0.8.1/toolshed/index.html
https://docs.rs/toolshed/0.8.1/toolshed/index.html
https://docs.rs/toolshed/0.8.1/toolshed/index.html

> cargo test --test heap_allocation
Running 4 tests
simple_allocation��� [ok]
large_vec��� [ok]
many_boxes��� [ok]
many_boxes_long_lived��� [failed]

Error: panicked at 'allocation error: Layout { size_: 8, align_: 8 }', src/lib.rs:86:5

Let’s try to understand why this failure occurs in detail: First, the long_lived allocation is

created at the start of the heap, thereby increasing the allocations counter by 1. For each

iteration of the loop, a short-lived allocation is created and directly freed again before the

next iteration starts. This means that the allocations counter is temporarily increased to 2 at

the beginning of an iteration and decreased to 1 at the end of it. The problem now is that the

bump allocator can only reuse memory after all allocations have been freed, i.e., when the

allocations counter falls to 0. Since this doesn’t happen before the end of the loop, each

loop iteration allocates a new region of memory, leading to an out-of-memory error after a

number of iterations.

Fixing
the
Test?

There are two potential tricks that we could utilize to fix the test for our bump allocator:

• We could update dealloc to check whether the freed allocation was the last allocation

returned by alloc by comparing its end address with the next pointer. In case they’re

equal, we can safely reset next back to the start address of the freed allocation. This

way, each loop iteration reuses the same memory block.

• We could add an alloc_back method that allocates memory from the end of the heap

using an additional next_back field. Then we could manually use this allocation method

for all long-lived allocations, thereby separating short-lived and long-lived allocations

on the heap. Note that this separation only works if it’s clear beforehand how long each

allocation will live. Another drawback of this approach is that manually performing

allocations is cumbersome and potentially unsafe.

While both of these approaches work to fix the test, they are not a general solution since they

are only able to reuse memory in very specific cases. The question is: Is there a general

solution that reuses all freed memory?

Reusing
All
Freed
Memory?

As we learned in the previous post, allocations can live arbitrarily long and can be freed in an

arbitrary order. This means that we need to keep track of a potentially unbounded number of

non-continuous, unused memory regions, as illustrated by the following example:

next heap endheap start

1

https://os.phil-opp.com/heap-allocation/#dynamic-memory
https://os.phil-opp.com/heap-allocation/#dynamic-memory

allocated

time

1

2

3

4

5

The graphic shows the heap over the course of time. At the beginning, the complete heap is

unused, and the next address is equal to heap_start (line 1). Then the first allocation occurs

(line 2). In line 3, a second memory block is allocated and the first allocation is freed. Many

more allocations are added in line 4. Half of them are very short-lived and already get freed in

line 5, where another new allocation is also added.

Line 5 shows the fundamental problem: We have five unused memory regions with different

sizes, but the next pointer can only point to the beginning of the last region. While we could

store the start addresses and sizes of the other unused memory regions in an array of size 4

for this example, this isn’t a general solution since we could easily create an example with 8,

16, or 1000 unused memory regions.

Normally, when we have a potentially unbounded number of items, we can just use a heap-

allocated collection. This isn’t really possible in our case, since the heap allocator can’t

depend on itself (it would cause endless recursion or deadlocks). So we need to find a

different solution.

Linked
List
Allocator
A common trick to keep track of an arbitrary number of free memory areas when

implementing allocators is to use these areas themselves as backing storage. This utilizes

the fact that the regions are still mapped to a virtual address and backed by a physical frame,

but the stored information is not needed anymore. By storing the information about the freed

region in the region itself, we can keep track of an unbounded number of freed regions

without needing additional memory.

The most common implementation approach is to construct a single linked list in the freed

memory, with each node being a freed memory region:

heap endheap start

size next pointer
head

Each list node contains two fields: the size of the memory region and a pointer to the next

unused memory region. With this approach, we only need a pointer to the first unused region

(called head) to keep track of all unused regions, regardless of their number. The resulting

data structure is often called a free
list.

As you might guess from the name, this is the technique that the linked_list_allocator crate

uses. Allocators that use this technique are also often called pool
allocators.

Implementation

In the following, we will create our own simple LinkedListAllocator type that uses the above

approach for keeping track of freed memory regions. This part of the post isn’t required for

future posts, so you can skip the implementation details if you like.

The
Allocator
Type

We start by creating a private ListNode struct in a new allocator��linked_list submodule:

// in src/allocator.rs

pub mod linked_list;

// in src/allocator/linked_list.rs

struct ListNode {
 size: usize,
 next: Option<&'static mut ListNode>,
}

Like in the graphic, a list node has a size field and an optional pointer to the next node,

represented by the Option<&'static mut ListNode> type. The &'static mut type semantically

describes an owned object behind a pointer. Basically, it’s a Box without a destructor that

frees the object at the end of the scope.

We implement the following set of methods for ListNode :

// in src/allocator/linked_list.rs

impl ListNode {
const fn new(size: usize) �� Self {

 ListNode { size, next: None }
 }

fn start_addr(&self) �� usize {
 self as *const Self as usize
 }

https://en.wikipedia.org/wiki/Free_list
https://en.wikipedia.org/wiki/Free_list
https://en.wikipedia.org/wiki/Free_list
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/alloc/boxed/index.html
https://doc.rust-lang.org/alloc/boxed/index.html
https://doc.rust-lang.org/alloc/boxed/index.html

fn end_addr(&self) �� usize {
 self.start_addr() + self.size
 }
}

The type has a simple constructor function named new and methods to calculate the start

and end addresses of the represented region. We make the new function a const function,

which will be required later when constructing a static linked list allocator.

With the ListNode struct as a building block, we can now create the LinkedListAllocator

struct:

// in src/allocator/linked_list.rs

pub struct LinkedListAllocator {
 head: ListNode,
}

impl LinkedListAllocator {
/// Creates an empty LinkedListAllocator.
pub const fn new() �� Self {

Self {
 head: ListNode��new(0),
 }
 }

/// Initialize the allocator with the given heap bounds.
///
/// This function is unsafe because the caller must guarantee that the given
/// heap bounds are valid and that the heap is unused. This method must be
/// called only once.
pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {

unsafe {
 self.add_free_region(heap_start, heap_size);
 }
 }

/// Adds the given memory region to the front of the list.
unsafe fn add_free_region(&mut self, addr: usize, size: usize) {

 todo!();
 }
}

The struct contains a head node that points to the first heap region. We are only interested

in the value of the next pointer, so we set the size to 0 in the ListNode��new function.

Making head a ListNode instead of just a &'static mut ListNode has the advantage that the

https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions

implementation of the alloc method will be simpler.

Like for the bump allocator, the new function doesn’t initialize the allocator with the heap

bounds. In addition to maintaining API compatibility, the reason is that the initialization

routine requires writing a node to the heap memory, which can only happen at runtime. The

new function, however, needs to be a const function that can be evaluated at compile time

because it will be used for initializing the ALLOCATOR static. For this reason, we again provide

a separate, non-constant init method.

The init method uses an add_free_region method, whose implementation will be shown in

a moment. For now, we use the todo! macro to provide a placeholder implementation that

always panics.

The
add_free_region
Method

The add_free_region method provides the fundamental push operation on the linked list. We

currently only call this method from init , but it will also be the central method in our

dealloc implementation. Remember, the dealloc method is called when an allocated

memory region is freed again. To keep track of this freed memory region, we want to push it

to the linked list.

The implementation of the add_free_region method looks like this:

// in src/allocator/linked_list.rs

use super��align_up;
use core��mem;

impl LinkedListAllocator {
/// Adds the given memory region to the front of the list.
unsafe fn add_free_region(&mut self, addr: usize, size: usize) {

// ensure that the freed region is capable of holding ListNode
 assert_eq!(align_up(addr, mem��align_of��<ListNode>()), addr);
 assert!(size �� mem��size_of��<ListNode>());

// create a new list node and append it at the start of the list
let mut node = ListNode��new(size);

 node.next = self.head.next.take();
let node_ptr = addr as *mut ListNode;
unsafe {

 node_ptr.write(node);
 self.head.next = Some(&mut *node_ptr)
 }
 }
}

The method takes the address and size of a memory region as an argument and adds it to

https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/reference/items/functions.html#const-functions
https://doc.rust-lang.org/core/macro.todo.html
https://doc.rust-lang.org/core/macro.todo.html
https://doc.rust-lang.org/core/macro.todo.html

the front of the list. First, it ensures that the given region has the necessary size and

alignment for storing a ListNode . Then it creates the node and inserts it into the list through

the following steps:

Step

1

2

0

heap endheap start

size next pointer
head

heap endheap start

size next pointer
head node:

freed

heap endheap start

size next pointer
head

Operations

Step 0 shows the state of the heap before add_free_region is called. In step 1, the method is

called with the memory region marked as freed in the graphic. After the initial checks, the

method creates a new node on its stack with the size of the freed region. It then uses the

Option��take method to set the next pointer of the node to the current head pointer,

thereby resetting the head pointer to None .

In step 2, the method writes the newly created node to the beginning of the freed memory

region through the write method. It then points the head pointer to the new node. The

resulting pointer structure looks a bit chaotic because the freed region is always inserted at

the beginning of the list, but if we follow the pointers, we see that each free region is still

reachable from the head pointer.

The
find_region
Method

The second fundamental operation on a linked list is finding an entry and removing it from

the list. This is the central operation needed for implementing the alloc method. We

implement the operation as a find_region method in the following way:

// in src/allocator/linked_list.rs

https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/std/primitive.pointer.html#method.write
https://doc.rust-lang.org/std/primitive.pointer.html#method.write
https://doc.rust-lang.org/std/primitive.pointer.html#method.write

impl LinkedListAllocator {
/// Looks for a free region with the given size and alignment and removes
/// it from the list.
///
/// Returns a tuple of the list node and the start address of the allocation.
fn find_region(&mut self, size: usize, align: usize)

 �� Option<(&'static mut ListNode, usize)>
 {

// reference to current list node, updated for each iteration
let mut current = &mut self.head;
// look for a large enough memory region in linked list
while let Some(ref mut region) = current.next {

if let Ok(alloc_start) = Self��alloc_from_region(®ion, size, align) {
// region suitable for allocation �� remove node from list
let next = region.next.take();
let ret = Some((current.next.take().unwrap(), alloc_start));

 current.next = next;
return ret;

 } else {
// region not suitable �� continue with next region

 current = current.next.as_mut().unwrap();
 }
 }

// no suitable region found
 None
 }
}

The method uses a current variable and a while let loop to iterate over the list elements.

At the beginning, current is set to the (dummy) head node. On each iteration, it is then

updated to the next field of the current node (in the else block). If the region is suitable for

an allocation with the given size and alignment, the region is removed from the list and

returned together with the alloc_start address.

When the current.next pointer becomes None , the loop exits. This means we iterated over

the whole list but found no region suitable for an allocation. In that case, we return None .

Whether a region is suitable is checked by the alloc_from_region function, whose

implementation will be shown in a moment.

Let’s take a more detailed look at how a suitable region is removed from the list:

Step

heap endheap start

Operations

regioncurrent

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops

1

2

0

size

next pointer
head

current.next region.next

heap endheap start

size

next pointer

regioncurrent

head ret next

heap endheap start

size

next pointer

regioncurrent

head ret

Step 0 shows the situation before any pointer adjustments. The region and current regions

and the region.next and current.next pointers are marked in the graphic. In step 1, both

the region.next and current.next pointers are reset to None by using the Option��take

method. The original pointers are stored in local variables called next and ret .

In step 2, the current.next pointer is set to the local next pointer, which is the original

region.next pointer. The effect is that current now directly points to the region after

region , so that region is no longer an element of the linked list. The function then returns

the pointer to region stored in the local ret variable.

The
alloc_from_region
Function

The alloc_from_region function returns whether a region is suitable for an allocation with a

given size and alignment. It is defined like this:

// in src/allocator/linked_list.rs

impl LinkedListAllocator {
/// Try to use the given region for an allocation with given size and
/// alignment.
///
/// Returns the allocation start address on success.
fn alloc_from_region(region: &ListNode, size: usize, align: usize)

 �� Result<usize, ()>
 {

let alloc_start = align_up(region.start_addr(), align);
let alloc_end = alloc_start.checked_add(size).ok_or(())��

https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take

if alloc_end > region.end_addr() {
// region too small
return Err(());

 }

let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 && excess_size < mem��size_of��<ListNode>() {

// rest of region too small to hold a ListNode (required because the
// allocation splits the region in a used and a free part)
return Err(());

 }

// region suitable for allocation
 Ok(alloc_start)
 }
}

First, the function calculates the start and end address of a potential allocation, using the

align_up function we defined earlier and the checked_add method. If an overflow occurs or if

the end address is behind the end address of the region, the allocation doesn’t fit in the

region and we return an error.

The function performs a less obvious check after that. This check is necessary because most

of the time an allocation does not fit a suitable region perfectly, so that a part of the region

remains usable after the allocation. This part of the region must store its own ListNode after

the allocation, so it must be large enough to do so. The check verifies exactly that: either the

allocation fits perfectly (excess_size �� 0) or the excess size is large enough to store a

ListNode .

Implementing
GlobalAlloc

With the fundamental operations provided by the add_free_region and find_region methods,

we can now finally implement the GlobalAlloc trait. As with the bump allocator, we don’t

implement the trait directly for the LinkedListAllocator but only for a wrapped

Locked<LinkedListAllocator> . The Locked wrapper adds interior mutability through a spinlock,

which allows us to modify the allocator instance even though the alloc and dealloc

methods only take &self references.

The implementation looks like this:

// in src/allocator/linked_list.rs

use super��Locked;
use alloc��alloc��{GlobalAlloc, Layout};
use core��ptr;

unsafe impl GlobalAlloc for Locked<LinkedListAllocator> {

https://doc.rust-lang.org/std/primitive.usize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.usize.html#method.checked_add
https://doc.rust-lang.org/std/primitive.usize.html#method.checked_add

unsafe fn alloc(&self, layout: Layout) �� *mut u8 {
// perform layout adjustments
let (size, align) = LinkedListAllocator��size_align(layout);
let mut allocator = self.lock();

if let Some((region, alloc_start)) = allocator.find_region(size, align) {
let alloc_end = alloc_start.checked_add(size).expect("overflow");
let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 {

unsafe {
 allocator.add_free_region(alloc_end, excess_size);
 }
 }
 alloc_start as *mut u8
 } else {
 ptr��null_mut()
 }
 }

unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
// perform layout adjustments
let (size, _) = LinkedListAllocator��size_align(layout);

unsafe { self.lock().add_free_region(ptr as usize, size) }
 }
}

Let’s start with the dealloc method because it is simpler: First, it performs some layout

adjustments, which we will explain in a moment. Then, it retrieves a &mut LinkedListAllocator

reference by calling the Mutex��lock function on the Locked wrapper. Lastly, it calls the

add_free_region function to add the deallocated region to the free list.

The alloc method is a bit more complex. It starts with the same layout adjustments and

also calls the Mutex��lock function to receive a mutable allocator reference. Then it uses the

find_region method to find a suitable memory region for the allocation and remove it from

the list. If this doesn’t succeed and None is returned, it returns null_mut to signal an error as

there is no suitable memory region.

In the success case, the find_region method returns a tuple of the suitable region (no longer

in the list) and the start address of the allocation. Using alloc_start , the allocation size, and

the end address of the region, it calculates the end address of the allocation and the excess

size again. If the excess size is not null, it calls add_free_region to add the excess size of the

memory region back to the free list. Finally, it returns the alloc_start address casted as a

*mut u8 pointer.

Layout
Adjustments

https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock
https://docs.rs/spin/0.5.0/spin/struct.Mutex.html#method.lock

So what are these layout adjustments that we make at the beginning of both alloc and

dealloc ? They ensure that each allocated block is capable of storing a ListNode . This is

important because the memory block is going to be deallocated at some point, where we

want to write a ListNode to it. If the block is smaller than a ListNode or does not have the

correct alignment, undefined behavior can occur.

The layout adjustments are performed by the size_align function, which is defined like this:

// in src/allocator/linked_list.rs

impl LinkedListAllocator {
/// Adjust the given layout so that the resulting allocated memory
/// region is also capable of storing a `ListNode`.
///
/// Returns the adjusted size and alignment as a (size, align) tuple.
fn size_align(layout: Layout) �� (usize, usize) {

let layout = layout
 .align_to(mem��align_of��<ListNode>())
 .expect("adjusting alignment failed")
 .pad_to_align();

let size = layout.size().max(mem��size_of��<ListNode>());
 (size, layout.align())
 }
}

First, the function uses the align_to method on the passed Layout to increase the

alignment to the alignment of a ListNode if necessary. It then uses the pad_to_align method

to round up the size to a multiple of the alignment to ensure that the start address of the next

memory block will have the correct alignment for storing a ListNode too. In the second step,

it uses the max method to enforce a minimum allocation size of mem��size_of��<ListNode> .

This way, the dealloc function can safely write a ListNode to the freed memory block.

Using
it

We can now update the ALLOCATOR static in the allocator module to use our new

LinkedListAllocator :

// in src/allocator.rs

use linked_list��LinkedListAllocator;

#[global_allocator]
static ALLOCATOR: Locked<LinkedListAllocator> =
 Locked��new(LinkedListAllocator��new());

Since the init function behaves the same for the bump and linked list allocators, we don’t

https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.align_to
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.align_to
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.align_to
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.pad_to_align
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.pad_to_align
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.pad_to_align
https://doc.rust-lang.org/std/cmp/trait.Ord.html#method.max
https://doc.rust-lang.org/std/cmp/trait.Ord.html#method.max
https://doc.rust-lang.org/std/cmp/trait.Ord.html#method.max

need to modify the init call in init_heap .

When we now run our heap_allocation tests again, we see that all tests pass now, including

the many_boxes_long_lived test that failed with the bump allocator:

> cargo test --test heap_allocation
simple_allocation��� [ok]
large_vec��� [ok]
many_boxes��� [ok]
many_boxes_long_lived��� [ok]

This shows that our linked list allocator is able to reuse freed memory for subsequent

allocations.

Discussion

In contrast to the bump allocator, the linked list allocator is much more suitable as a general-

purpose allocator, mainly because it is able to directly reuse freed memory. However, it also

has some drawbacks. Some of them are only caused by our basic implementation, but there

are also fundamental drawbacks of the allocator design itself.

Merging
Freed
Blocks

The main problem with our implementation is that it only splits the heap into smaller blocks

but never merges them back together. Consider this example:

1

heap endheap start

size next pointerhead

2

heap endheap start

size next pointerhead

3

heap endheap start

size next pointerhead

In the first line, three allocations are created on the heap. Two of them are freed again in line

2 and the third is freed in line 3. Now the complete heap is unused again, but it is still split

into four individual blocks. At this point, a large allocation might not be possible anymore

because none of the four blocks is large enough. Over time, the process continues, and the

heap is split into smaller and smaller blocks. At some point, the heap is so fragmented that

even normal sized allocations will fail.

To fix this problem, we need to merge adjacent freed blocks back together. For the above

example, this would mean the following:

2a

heap endheap start

size next pointerhead

3a

heap endheap start

size next pointerhead

1

heap endheap start

size next pointerhead

2

heap endheap start

size next pointerhead

3

heap endheap start

size next pointerhead

Like before, two of the three allocations are freed in line 2 . Instead of keeping the

fragmented heap, we now perform an additional step in line 2a to merge the two rightmost

blocks back together. In line 3 , the third allocation is freed (like before), resulting in a

completely unused heap represented by three distinct blocks. In an additional merging step

in line 3a , we then merge the three adjacent blocks back together.

The linked_list_allocator crate implements this merging strategy in the following way:

Instead of inserting freed memory blocks at the beginning of the linked list on deallocate , it

always keeps the list sorted by start address. This way, merging can be performed directly on

the deallocate call by examining the addresses and sizes of the two neighboring blocks in

the list. Of course, the deallocation operation is slower this way, but it prevents the heap

fragmentation we saw above.

Performance

As we learned above, the bump allocator is extremely fast and can be optimized to just a few

assembly operations. The linked list allocator performs much worse in this category. The

problem is that an allocation request might need to traverse the complete linked list until it

finds a suitable block.

Since the list length depends on the number of unused memory blocks, the performance can

vary extremely for different programs. A program that only creates a couple of allocations will

experience relatively fast allocation performance. For a program that fragments the heap with

many allocations, however, the allocation performance will be very bad because the linked

list will be very long and mostly contain very small blocks.

It’s worth noting that this performance issue isn’t a problem caused by our basic

implementation but a fundamental problem of the linked list approach. Since allocation

performance can be very important for kernel-level code, we explore a third allocator design

in the following that trades improved performance for reduced memory utilization.

Fixed-Size
Block
Allocator
In the following, we present an allocator design that uses fixed-size memory blocks for

fulfilling allocation requests. This way, the allocator often returns blocks that are larger than

needed for allocations, which results in wasted memory due to internal fragmentation. On the

other hand, it drastically reduces the time required to find a suitable block (compared to the

linked list allocator), resulting in much better allocation performance.

Introduction

The idea behind a fixed-size
block
allocator is the following: Instead of allocating exactly as

much memory as requested, we define a small number of block sizes and round up each

allocation to the next block size. For example, with block sizes of 16, 64, and 512 bytes, an

allocation of 4 bytes would return a 16-byte block, an allocation of 48 bytes a 64-byte block,

and an allocation of 128 bytes a 512-byte block.

Like the linked list allocator, we keep track of the unused memory by creating a linked list in

the unused memory. However, instead of using a single list with different block sizes, we

create a separate list for each size class. Each list then only stores blocks of a single size.

For example, with block sizes of 16, 64, and 512, there would be three separate linked lists in

memory:

heap start

head_16
head_64
head_512

https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation

.

Instead of a single head pointer, we have the three head pointers head_16 , head_64 , and

head_512 that each point to the first unused block of the corresponding size. All nodes in a

single list have the same size. For example, the list started by the head_16 pointer only

contains 16-byte blocks. This means that we no longer need to store the size in each list

node since it is already specified by the name of the head pointer.

Since each element in a list has the same size, each list element is equally suitable for an

allocation request. This means that we can very efficiently perform an allocation using the

following steps:

• Round up the requested allocation size to the next block size. For example, when an

allocation of 12 bytes is requested, we would choose the block size of 16 in the above

example.

• Retrieve the head pointer for the list, e.g., for block size 16, we need to use head_16 .

• Remove the first block from the list and return it.

Most notably, we can always return the first element of the list and no longer need to traverse

the full list. Thus, allocations are much faster than with the linked list allocator.

Block
Sizes
and
Wasted
Memory

Depending on the block sizes, we lose a lot of memory by rounding up. For example, when a

512-byte block is returned for a 128-byte allocation, three-quarters of the allocated memory

is unused. By defining reasonable block sizes, it is possible to limit the amount of wasted

memory to some degree. For example, when using the powers of 2 (4, 8, 16, 32, 64, 128, …)

as block sizes, we can limit the memory waste to half of the allocation size in the worst case

and a quarter of the allocation size in the average case.

It is also common to optimize block sizes based on common allocation sizes in a program.

For example, we could additionally add block size 24 to improve memory usage for programs

that often perform allocations of 24 bytes. This way, the amount of wasted memory can often

be reduced without losing the performance benefits.

Deallocation

Much like allocation, deallocation is also very performant. It involves the following steps:

• Round up the freed allocation size to the next block size. This is required since the

compiler only passes the requested allocation size to dealloc , not the size of the block

that was returned by alloc . By using the same size-adjustment function in both

alloc and dealloc , we can make sure that we always free the correct amount of

memory.

• Retrieve the head pointer for the list.

• Add the freed block to the front of the list by updating the head pointer.

Most notably, no traversal of the list is required for deallocation either. This means that the

time required for a dealloc call stays the same regardless of the list length.

Fallback
Allocator

Given that large allocations (>2 KB) are often rare, especially in operating system kernels, it

might make sense to fall back to a different allocator for these allocations. For example, we

could fall back to a linked list allocator for allocations greater than 2048 bytes in order to

reduce memory waste. Since only very few allocations of that size are expected, the linked

list would stay small and the (de)allocations would still be reasonably fast.

Creating
new
Blocks

Above, we always assumed that there are always enough blocks of a specific size in the list

to fulfill all allocation requests. However, at some point, the linked list for a given block size

becomes empty. At this point, there are two ways we can create new unused blocks of a

specific size to fulfill an allocation request:

• Allocate a new block from the fallback allocator (if there is one).

• Split a larger block from a different list. This best works if block sizes are powers of two.

For example, a 32-byte block can be split into two 16-byte blocks.

For our implementation, we will allocate new blocks from the fallback allocator since the

implementation is much simpler.

Implementation

Now that we know how a fixed-size block allocator works, we can start our implementation.

We won’t depend on the implementation of the linked list allocator created in the previous

section, so you can follow this part even if you skipped the linked list allocator

implementation.

List
Node

We start our implementation by creating a ListNode type in a new

allocator��fixed_size_block module:

// in src/allocator.rs

pub mod fixed_size_block;

// in src/allocator/fixed_size_block.rs

struct ListNode {
 next: Option<&'static mut ListNode>,
}

This type is similar to the ListNode type of our linked list allocator implementation, with the

difference that we don’t have a size field. It isn’t needed because every block in a list has

the same size with the fixed-size block allocator design.

Block
Sizes

Next, we define a constant BLOCK_SIZES slice with the block sizes used for our

implementation:

// in src/allocator/fixed_size_block.rs

/// The block sizes to use.
///
/// The sizes must each be power of 2 because they are also used as
/// the block alignment (alignments must be always powers of 2).
const BLOCK_SIZES: &[usize] = &[8, 16, 32, 64, 128, 256, 512, 1024, 2048];

As block sizes, we use powers of 2, starting from 8 up to 2048. We don’t define any block

sizes smaller than 8 because each block must be capable of storing a 64-bit pointer to the

next block when freed. For allocations greater than 2048 bytes, we will fall back to a linked

list allocator.

To simplify the implementation, we define the size of a block as its required alignment in

memory. So a 16-byte block is always aligned on a 16-byte boundary and a 512-byte block

is aligned on a 512-byte boundary. Since alignments always need to be powers of 2, this

rules out any other block sizes. If we need block sizes that are not powers of 2 in the future,

we can still adjust our implementation for this (e.g., by defining a second BLOCK_ALIGNMENTS

array).

The
Allocator
Type

Using the ListNode type and the BLOCK_SIZES slice, we can now define our allocator type:

// in src/allocator/fixed_size_block.rs

pub struct FixedSizeBlockAllocator {
 list_heads: [Option<&'static mut ListNode>; BLOCK_SIZES.len()],
 fallback_allocator: linked_list_allocator��Heap,
}

The list_heads field is an array of head pointers, one for each block size. This is

implemented by using the len() of the BLOCK_SIZES slice as the array length. As a fallback

allocator for allocations larger than the largest block size, we use the allocator provided by

the linked_list_allocator . We could also use the LinkedListAllocator we implemented

ourselves instead, but it has the disadvantage that it does not merge freed blocks.

For constructing a FixedSizeBlockAllocator , we provide the same new and init functions

that we implemented for the other allocator types too:

// in src/allocator/fixed_size_block.rs

impl FixedSizeBlockAllocator {
/// Creates an empty FixedSizeBlockAllocator.
pub const fn new() �� Self {

const EMPTY: Option<&'static mut ListNode> = None;
 FixedSizeBlockAllocator {
 list_heads: [EMPTY; BLOCK_SIZES.len()],
 fallback_allocator: linked_list_allocator��Heap��empty(),
 }
 }

/// Initialize the allocator with the given heap bounds.
///
/// This function is unsafe because the caller must guarantee that the given
/// heap bounds are valid and that the heap is unused. This method must be
/// called only once.
pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {

unsafe { self.fallback_allocator.init(heap_start, heap_size); }
 }
}

The new function just initializes the list_heads array with empty nodes and creates an

empty linked list allocator as fallback_allocator . The EMPTY constant is needed to tell the

Rust compiler that we want to initialize the array with a constant value. Initializing the array

directly as [None; BLOCK_SIZES.len()] does not work, because then the compiler requires

Option<&'static mut ListNode> to implement the Copy trait, which it does not. This is a

current limitation of the Rust compiler, which might go away in the future.

The unsafe init function only calls the init function of the fallback_allocator without

doing any additional initialization of the list_heads array. Instead, we will initialize the lists

lazily on alloc and dealloc calls.

For convenience, we also create a private fallback_alloc method that allocates using the

fallback_allocator :

// in src/allocator/fixed_size_block.rs

use alloc��alloc��Layout;
use core��ptr;

impl FixedSizeBlockAllocator {
/// Allocates using the fallback allocator.
fn fallback_alloc(&mut self, layout: Layout) �� *mut u8 {

match self.fallback_allocator.allocate_first_fit(layout) {
 Ok(ptr) �� ptr.as_ptr(),

https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.empty
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.empty
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.empty
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.init
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.init
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.init

 Err(_) �� ptr��null_mut(),
 }
 }
}

The Heap type of the linked_list_allocator crate does not implement GlobalAlloc (as it’s

not possible without locking). Instead, it provides an allocate_first_fit method that has a

slightly different interface. Instead of returning a *mut u8 and using a null pointer to signal an

error, it returns a Result<NonNull<u8>, ()> . The NonNull type is an abstraction for a raw

pointer that is guaranteed to not be a null pointer. By mapping the Ok case to the

NonNull��as_ptr method and the Err case to a null pointer, we can easily translate this back

to a *mut u8 type.

Calculating
the
List
Index

Before we implement the GlobalAlloc trait, we define a list_index helper function that

returns the lowest possible block size for a given Layout :

// in src/allocator/fixed_size_block.rs

/// Choose an appropriate block size for the given layout.
///
/// Returns an index into the `BLOCK_SIZES` array.
fn list_index(layout: &Layout) �� Option<usize> {

let required_block_size = layout.size().max(layout.align());
BLOCK_SIZES.iter().position(|&s| s �� required_block_size)

}

The block must have at least the size and alignment required by the given Layout . Since we

defined that the block size is also its alignment, this means that the required_block_size is

the maximum of the layout’s size() and align() attributes. To find the next-larger block in

the BLOCK_SIZES slice, we first use the iter() method to get an iterator and then the

position() method to find the index of the first block that is at least as large as the

required_block_size .

Note that we don’t return the block size itself, but the index into the BLOCK_SIZES slice. The

reason is that we want to use the returned index as an index into the list_heads array.

Implementing
GlobalAlloc

The last step is to implement the GlobalAlloc trait:

// in src/allocator/fixed_size_block.rs

use super��Locked;
use alloc��alloc��GlobalAlloc;

https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.allocate_first_fit
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.allocate_first_fit
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.allocate_first_fit
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html#method.as_ptr
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html#method.as_ptr
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html#method.as_ptr
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/alloc/alloc/struct.Layout.html
https://doc.rust-lang.org/core/cmp/trait.Ord.html#method.max
https://doc.rust-lang.org/core/cmp/trait.Ord.html#method.max
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.size
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.size
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.size
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.align
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.align
https://doc.rust-lang.org/core/alloc/struct.Layout.html#method.align
https://doc.rust-lang.org/std/primitive.slice.html#method.iter
https://doc.rust-lang.org/std/primitive.slice.html#method.iter
https://doc.rust-lang.org/std/primitive.slice.html#method.iter
https://doc.rust-lang.org/core/iter/trait.Iterator.html#method.position
https://doc.rust-lang.org/core/iter/trait.Iterator.html#method.position
https://doc.rust-lang.org/core/iter/trait.Iterator.html#method.position

unsafe impl GlobalAlloc for Locked<FixedSizeBlockAllocator> {
unsafe fn alloc(&self, layout: Layout) �� *mut u8 {

 todo!();
 }

unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
 todo!();
 }
}

Like for the other allocators, we don’t implement the GlobalAlloc trait directly for our

allocator type, but use the Locked wrapper to add synchronized interior mutability. Since the

alloc and dealloc implementations are relatively large, we introduce them one by one in

the following.

alloc

The implementation of the alloc method looks like this:

// in `impl` block in src/allocator/fixed_size_block.rs

unsafe fn alloc(&self, layout: Layout) �� *mut u8 {
let mut allocator = self.lock();
match list_index(&layout) {

 Some(index) �� {
match allocator.list_heads[index].take() {

 Some(node) �� {
 allocator.list_heads[index] = node.next.take();
 node as *mut ListNode as *mut u8
 }
 None �� {

// no block exists in list �� allocate new block
let block_size = BLOCK_SIZES[index];
// only works if all block sizes are a power of 2
let block_align = block_size;
let layout = Layout��from_size_align(block_size, block_align)

 .unwrap();
 allocator.fallback_alloc(layout)
 }
 }
 }
 None �� allocator.fallback_alloc(layout),
 }
}

Let’s go through it step by step:

First, we use the Locked��lock method to get a mutable reference to the wrapped allocator

instance. Next, we call the list_index function we just defined to calculate the appropriate

block size for the given layout and get the corresponding index into the list_heads array. If

this index is None , no block size fits for the allocation, therefore we use the

fallback_allocator using the fallback_alloc function.

If the list index is Some , we try to remove the first node in the corresponding list started by

list_heads[index] using the Option��take method. If the list is not empty, we enter the

Some(node) branch of the match statement, where we point the head pointer of the list to the

successor of the popped node (by using take again). Finally, we return the popped node

pointer as a *mut u8 .

If the list head is None , it indicates that the list of blocks is empty. This means that we need

to construct a new block as described above. For that, we first get the current block size

from the BLOCK_SIZES slice and use it as both the size and the alignment for the new block.

Then we create a new Layout from it and call the fallback_alloc method to perform the

allocation. The reason for adjusting the layout and alignment is that the block will be added

to the block list on deallocation.

dealloc

The implementation of the dealloc method looks like this:

// in src/allocator/fixed_size_block.rs

use core��{mem, ptr��NonNull};

// inside the `unsafe impl GlobalAlloc` block

unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
let mut allocator = self.lock();
match list_index(&layout) {

 Some(index) �� {
let new_node = ListNode {

 next: allocator.list_heads[index].take(),
 };

// verify that block has size and alignment required for storing node
 assert!(mem��size_of��<ListNode>() �� BLOCK_SIZES[index]);
 assert!(mem��align_of��<ListNode>() �� BLOCK_SIZES[index]);

let new_node_ptr = ptr as *mut ListNode;
unsafe {

 new_node_ptr.write(new_node);
 allocator.list_heads[index] = Some(&mut *new_node_ptr);
 }
 }
 None �� {

let ptr = NonNull��new(ptr).unwrap();
unsafe {

https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take

 allocator.fallback_allocator.deallocate(ptr, layout);
 }
 }
 }
}

Like in alloc , we first use the lock method to get a mutable allocator reference and then

the list_index function to get the block list corresponding to the given Layout . If the index

is None , no fitting block size exists in BLOCK_SIZES , which indicates that the allocation was

created by the fallback allocator. Therefore, we use its deallocate to free the memory again.

The method expects a NonNull instead of a *mut u8 , so we need to convert the pointer first.

(The unwrap call only fails when the pointer is null, which should never happen when the

compiler calls dealloc .)

If list_index returns a block index, we need to add the freed memory block to the list. For

that, we first create a new ListNode that points to the current list head (by using

Option��take again). Before we write the new node into the freed memory block, we first

assert that the current block size specified by index has the required size and alignment for

storing a ListNode . Then we perform the write by converting the given *mut u8 pointer to a

*mut ListNode pointer and then calling the unsafe write method on it. The last step is to set

the head pointer of the list, which is currently None since we called take on it, to our newly

written ListNode . For that, we convert the raw new_node_ptr to a mutable reference.

There are a few things worth noting:

• We don’t differentiate between blocks allocated from a block list and blocks allocated

from the fallback allocator. This means that new blocks created in alloc are added to

the block list on dealloc , thereby increasing the number of blocks of that size.

• The alloc method is the only place where new blocks are created in our

implementation. This means that we initially start with empty block lists and only fill

these lists lazily when allocations of their block size are performed.

• We don’t need unsafe blocks in alloc and dealloc , even though we perform some

unsafe operations. The reason is that Rust currently treats the complete body of

unsafe functions as one large unsafe block. Since using explicit unsafe blocks has the

advantage that it’s obvious which operations are unsafe and which are not, there is a

proposed RFC to change this behavior.

Using
it

To use our new FixedSizeBlockAllocator , we need to update the ALLOCATOR static in the

allocator module:

// in src/allocator.rs

use fixed_size_block��FixedSizeBlockAllocator;

https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.deallocate
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.deallocate
https://docs.rs/linked_list_allocator/0.9.0/linked_list_allocator/struct.Heap.html#method.deallocate
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html
https://doc.rust-lang.org/nightly/core/ptr/struct.NonNull.html
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/core/option/enum.Option.html#method.take
https://doc.rust-lang.org/std/primitive.pointer.html#method.write
https://doc.rust-lang.org/std/primitive.pointer.html#method.write
https://doc.rust-lang.org/std/primitive.pointer.html#method.write
https://github.com/rust-lang/rfcs/pull/2585
https://github.com/rust-lang/rfcs/pull/2585

#[global_allocator]
static ALLOCATOR: Locked<FixedSizeBlockAllocator> = Locked��new(
 FixedSizeBlockAllocator��new());

Since the init function behaves the same for all allocators we implemented, we don’t need

to modify the init call in init_heap .

When we now run our heap_allocation tests again, all tests should still pass:

> cargo test --test heap_allocation
simple_allocation��� [ok]
large_vec��� [ok]
many_boxes��� [ok]
many_boxes_long_lived��� [ok]

Our new allocator seems to work!

Discussion

While the fixed-size block approach has much better performance than the linked list

approach, it wastes up to half of the memory when using powers of 2 as block sizes.

Whether this tradeoff is worth it heavily depends on the application type. For an operating

system kernel, where performance is critical, the fixed-size block approach seems to be the

better choice.

On the implementation side, there are various things that we could improve in our current

implementation:

• Instead of only allocating blocks lazily using the fallback allocator, it might be better to

pre-fill the lists to improve the performance of initial allocations.

• To simplify the implementation, we only allowed block sizes that are powers of 2 so that

we could also use them as the block alignment. By storing (or calculating) the

alignment in a different way, we could also allow arbitrary other block sizes. This way,

we could add more block sizes, e.g., for common allocation sizes, in order to minimize

the wasted memory.

• We currently only create new blocks, but never free them again. This results in

fragmentation and might eventually result in allocation failure for large allocations. It

might make sense to enforce a maximum list length for each block size. When the

maximum length is reached, subsequent deallocations are freed using the fallback

allocator instead of being added to the list.

• Instead of falling back to a linked list allocator, we could have a special allocator for

allocations greater than 4 KiB. The idea is to utilize paging, which operates on 4 KiB

pages, to map a continuous block of virtual memory to non-continuous physical

frames. This way, fragmentation of unused memory is no longer a problem for large

https://os.phil-opp.com/paging-introduction/
https://os.phil-opp.com/paging-introduction/

allocations.

• With such a page allocator, it might make sense to add block sizes up to 4 KiB and

drop the linked list allocator completely. The main advantages of this would be reduced

fragmentation and improved performance predictability, i.e., better worst-case

performance.

It’s important to note that the implementation improvements outlined above are only

suggestions. Allocators used in operating system kernels are typically highly optimized for

the specific workload of the kernel, which is only possible through extensive profiling.

Variations

There are also many variations of the fixed-size block allocator design. Two popular

examples are the slab
allocator and the buddy
allocator, which are also used in popular

kernels such as Linux. In the following, we give a short introduction to these two designs.

Slab
Allocator

The idea behind a slab allocator is to use block sizes that directly correspond to selected

types in the kernel. This way, allocations of those types fit a block size exactly and no

memory is wasted. Sometimes, it might be even possible to preinitialize type instances in

unused blocks to further improve performance.

Slab allocation is often combined with other allocators. For example, it can be used together

with a fixed-size block allocator to further split an allocated block in order to reduce memory

waste. It is also often used to implement an object pool pattern on top of a single large

allocation.

Buddy
Allocator

Instead of using a linked list to manage freed blocks, the buddy allocator design uses a

binary tree data structure together with power-of-2 block sizes. When a new block of a

certain size is required, it splits a larger sized block into two halves, thereby creating two

child nodes in the tree. Whenever a block is freed again, its neighbor block in the tree is

analyzed. If the neighbor is also free, the two blocks are joined back together to form a block

of twice the size.

The advantage of this merge process is that external fragmentation is reduced so that small

freed blocks can be reused for a large allocation. It also does not use a fallback allocator, so

the performance is more predictable. The biggest drawback is that only power-of-2 block

sizes are possible, which might result in a large amount of wasted memory due to internal

fragmentation. For this reason, buddy allocators are often combined with a slab allocator to

further split an allocated block into multiple smaller blocks.

Summary
This post gave an overview of different allocator designs. We learned how to implement a

https://en.wikipedia.org/wiki/Slab_allocation
https://en.wikipedia.org/wiki/Slab_allocation
https://en.wikipedia.org/wiki/Object_pool_pattern
https://en.wikipedia.org/wiki/Object_pool_pattern
https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Fragmentation_(computing)#External_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#External_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation

basic bump allocator, which hands out memory linearly by increasing a single next pointer.

While bump allocation is very fast, it can only reuse memory after all allocations have been

freed. For this reason, it is rarely used as a global allocator.

Next, we created a linked list allocator that uses the freed memory blocks itself to create a

linked list, the so-called free list. This list makes it possible to store an arbitrary number of

freed blocks of different sizes. While no memory waste occurs, the approach suffers from

poor performance because an allocation request might require a complete traversal of the

list. Our implementation also suffers from external fragmentation because it does not merge

adjacent freed blocks back together.

To fix the performance problems of the linked list approach, we created a fixed-size block

allocator that predefines a fixed set of block sizes. For each block size, a separate free list

exists so that allocations and deallocations only need to insert/pop at the front of the list and

are thus very fast. Since each allocation is rounded up to the next larger block size, some

memory is wasted due to internal fragmentation.

There are many more allocator designs with different tradeoffs. Slab allocation works well to

optimize the allocation of common fixed-size structures, but is not applicable in all situations.

Buddy allocation uses a binary tree to merge freed blocks back together, but wastes a large

amount of memory because it only supports power-of-2 block sizes. It’s also important to

remember that each kernel implementation has a unique workload, so there is no “best”

allocator design that fits all cases.

What’s
next?
With this post, we conclude our memory management implementation for now. Next, we will

start exploring multitasking, starting with cooperative multitasking in the form of async/await.

In subsequent posts, we will then explore threads, multiprocessing, and processes.

Support
Me
Creating and maintaining this blog and the associated libraries is a lot of work, but I really

enjoy doing it. By supporting me, you allow me to invest more time in new content, new

features, and continuous maintenance. The best way to support me is to sponsor
me
on

GitHub. Thank you!

« Heap Allocation Async/Await »

Comments
Do you have a problem, want to share feedback, or discuss further ideas? Feel free to leave

a comment here! Please stick to English and follow Rust's code of conduct. This comment

https://en.wikipedia.org/wiki/Free_list
https://en.wikipedia.org/wiki/Free_list
https://en.wikipedia.org/wiki/Fragmentation_(computing)#External_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#External_fragmentation
https://en.wikipedia.org/wiki/Free_list
https://en.wikipedia.org/wiki/Free_list
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation
https://en.wikipedia.org/wiki/Fragmentation_(computing)#Internal_fragmentation
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Computer_multitasking
https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://github.com/sponsors/phil-opp
https://github.com/sponsors/phil-opp
https://github.com/sponsors/phil-opp
https://github.com/sponsors/phil-opp
https://github.com/sponsors/phil-opp
https://github.com/sponsors/phil-opp
https://os.phil-opp.com/heap-allocation/
https://os.phil-opp.com/heap-allocation/
https://os.phil-opp.com/heap-allocation/
https://os.phil-opp.com/async-await/
https://os.phil-opp.com/async-await/
https://os.phil-opp.com/async-await/
https://www.rust-lang.org/policies/code-of-conduct
https://www.rust-lang.org/policies/code-of-conduct

thread directly maps to a discussion
on
GitHub, so you can also comment there if you prefer.

https://github.com/phil-opp/blog_os/discussions/categories/post-comments?discussions_q=%22Allocator%20Designs%22%20in%3Atitle
https://github.com/phil-opp/blog_os/discussions/categories/post-comments?discussions_q=%22Allocator%20Designs%22%20in%3Atitle
https://github.com/phil-opp/blog_os/discussions/categories/post-comments?discussions_q=%22Allocator%20Designs%22%20in%3Atitle

4 reactions

3 1

49 comments · 4+ replies – powered by giscus

senseiod Jan 20, 2020

Great!

1 1 0 replies

MikailBag Jan 20, 2020

Thanks for the post! As usual, it is very interesting!

Since the Heap type of the linked_list_allocator crate does not implement GlobalAlloc (as it's not

possible without locking).

looks like typo

2 0 replies

engstad Jan 20, 2020

The align_up function could be improved by removing the if-test. Notice that if addr is already

aligned, then (addr + align - 1) / align * align equals addr , whereas if it is not, then it

equals (addr + align)/ align*align or addr/align*align + align or align_down(addr) +

align .

Or, if you use powers of two as argument instead:

1 0 replies

engstad Jan 20, 2020

Oldest Newest

fn align_up(addr: usize, align: usize) -> usize {
 (addr + align - 1) / align * align;
}

fn align_up_pow2(addr: usize, align_pow2: usize) -> usize {
 (addr + align - 1) >> align_pow2 << align_pow2
}

I should mention that when using a BumpAllocator , that you could have extended the functionality a

bit.

First, while you normally can't delete entries from the allocator, you can delete the last entry. In other

words, if you know what you are doing, you can allow a reset() function that takes the address of

an allocation resetting the allocation to that point. Highly dangerous if you don't know what is going on,

but you can safeguard it somewhat if you know that it was the last allocation. This makes it a "stack"

allocator.

Second, it is common practice to allocate from both the front and the back of the memory region. This

is useful where some of the allocations are temporary. You put temporary allocations at the end, while

longer-lasting allocation are put in the front.

Anyway, both these methods are quite dangerous, but in terms of raw speed, there's no comparison.

1 0 replies

phil-opp Jan 22, 2020 Owner

@engstad

Thanks for your comments!

The align_up function could be improved by removing the if-test.

Good point! I'll extend that section. The fastest variant I'm aware of is relying on the optimized

align_offset implementation of Rust's standard library:

First, while you normally can't delete entries from the allocator, you can delete the last entry. In

other words, if you know what you are doing, you can allow a reset() function that takes the

address of an allocation resetting the allocation to that point

One could also check in deallocate whether the end address of the freed allocation equals next .

However, this way we could not recover inserted allocation bytes.

Second, it is common practice to allocate from both the front and the back of the memory region.

This is useful where some of the allocations are temporary. You put temporary allocations at the

end, while longer-lasting allocation are put in the front.

Good point! While this is difficult to implement for a global allocator, it definitely works for manual

allocations.

I try to update the bump allocator discussion section with both your suggestions.

1 0 replies

#[no_mangle]
fn align_up(addr: usize, align: usize) -> usize {

let offset = (addr as *const u8).align_offset(align);
 addr + offset
}

phil-opp Jan 22, 2020 Owner

@engstad I prepared two updates for the post related to your comments. #721 adds more variants to

implement align_up and shortly discusses their performance. #722 outlines the two bump allocator

improvements you mentioned. What do you think about the changes?

1 0 replies

phil-opp Jan 22, 2020 Owner

@senseiod Thanks!

1 0 replies

phil-opp Jan 22, 2020 Owner

@MikailBag Thank you! Could you maybe clarify what the typo is? I don't see it right now…

1 0 replies

amosonn Jan 27, 2020

Nice comparison, thanks!

For more on bump allocation, see this post (in Rust, even):

https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html

To summarize, his rounding method is:

(size + align - 1) & !(align - 1)

(which relies on align being a power of 2 of course); and he comments that allocation arithmetic

should be checked for overflows (which is the case for all allocators), and that then bumping from the

end is more performant.

Also small typo in the beginning:

"This complexity is often undesired [...]"

(the "is" is missing).

1 0 replies

phil-opp Jan 27, 2020 Owner

@amosonn Thanks for you comment!

For more on bump allocation, see this post (in Rust, even):

https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html

I already link this post in the Dicussion section as "can be optimized to just a few assembly

operations". I deliberatly decided against bumping from the end because the intention of the post is to

explain a basic implementation, not to maximally optimize it. Regarding the alignment function: I think

the align_offset function from the standard library should still be faster, given how optimized it is

(see rust-lang/rust#50319).

allocation arithmetic should be checked for overflows (which is the case for all allocators)

Good point! I'll prepare a PR to fix this.

Also small typo in the beginning:

Thanks! Fixed in 4b8c902 .

1 0 replies

phil-opp Jan 27, 2020 Owner

@amosonn

allocation arithmetic should be checked for overflows (which is the case for all allocators)

Good point! I'll prepare a PR to fix this.

I filed pull requests #726 and #727.

1 0 replies

amosonn Jan 27, 2020 edited

Ah sorry, I missed the link :).

Regarding the various alignment implementations: align_offset does something stronger: it checks

how many elements of an arbitrary size (mem::size_of::<T>()) should be added to align. In this

case, you only need to compute this for stride 1, which devolves in that implementaion to something

quite similar to the method above (but with a branch for already aligned pointers). Most of the

complexity in that method is for computing for "stranger" sizes.

1 0 replies

phil-opp Jan 28, 2020 Owner

Thanks for investigating! I'll update #721 to use the (size + align - 1) & !(align - 1) method.

1 0 replies

Menschenkindlein Jan 30, 2020 Contributor

In the code for LinkedListAllocator, self.inner.lock() => self.lock()

1 0 replies

phil-opp Jan 30, 2020 Owner

@Menschenkindlein Thanks! Fixed in 00fedc8 and 670ac60 .

1 1 0 replies

19 hidden items

Load more…

diminishedprime Aug 12, 2020

First off, thanks for the excellent series, it's been extremely interesting to go through!

Just a small note, if you skip the implementation of the linked list allocator, you won't already have:

in your lib.rs. Just something I ran into.

1 0 replies

phil-opp Aug 19, 2020 Owner

@diminishedprime Thanks for reporting! I pushed 10d84fa to fix this issue.

1 0 replies

jiayihu Sep 11, 2020

As small note, list_index() should be FixedSizeBlockAllocator::list_index in the

GlobalAlloc implementation of FixedSizeBlockAllocator

1 0 replies

phil-opp Oct 8, 2020 Owner edited

@jiayihu Sorry for the late reply!

#![feature(const_fn)]

@jiayihu Sorry for the late reply!

As small note, list_index() should be FixedSizeBlockAllocator::list_index in the

GlobalAlloc implementation of FixedSizeBlockAllocator

This depends on whether you declare the list_index function inside an impl

FixedSizeBlockAllocator block or as a normal independent function. I implemented it as a

independent function in this post, but putting it in the impl block is fine too of course.

See:

blog_os/src/allocator/fixed_size_block.rs

Lines 14 to 20 in ca3dfc7

14 /// Choose an appropriate block size for the given layout.

15 ///

16 /// Returns an index into the `BLOCK_SIZES` array.

17 fn list_index(layout: &Layout) -> Option<usize> {

18 let required_block_size = layout.size().max(layout.align());

19 BLOCK_SIZES.iter().position(|&s| s >= required_block_size)

20 }

1 0 replies

Sk3pz Oct 26, 2020

I found an issue with the allocators which was caused by using a mutable reference in a constant

function (both in linked list allocator and in fixed size allocator), and removing that caused the issue

calls in statics are limited to constant functions, tuple structs and tuple variants .

The solution to this issue for anybody coming across this is to go to lib.rs and add #!

[feature(const_mut_refs)] to allow for mutable references in constant functions! (I am not sure this

is the best way of doing it, but its what I did!)

1 0 replies

phil-opp Oct 26, 2020 Owner

@DeathBySpork Thanks for sharing your problem and solution.

Yes, adding #![feature(const_mut_refs)] is the recommend way of doing it, and also mentioned in

the post:

In order to get it to compile, we need to add #![feature(const_mut_refs)] to the beginning of our

lib.rs.

If you haven't done so already for the LinkedListAllocator implementation, you also need to add

#![feature(const_mut_refs)] to the beginning of your lib.rs.

(See https://os.phil-opp.com/allocator-designs/#the-allocator-type and https://os.phil-opp.com/

allocator-designs/#the-allocator-type-1)

1 0 replies

Sk3pz Nov 6, 2020

ah, I guess I didnt notice the change, I am sorry!

1 0 replies

phil-opp Nov 7, 2020 Owner

@DeathBySpork No worries, thanks for reporting your problems!

1 0 replies

Ananta98 Feb 1, 2021

I still got error "calls in statics are limited to constant functions, tuple structs and tuple variants". I've

add #![feature(const_in_array_repeat_expressions)] and #![feature(const_mut_refs)] in main.rs but still

got error how to solve it ? My Code in https://github.com/Ananta98/PetraOS. Thank you.

1 0 replies

phil-opp Feb 2, 2021 Owner

@Ananta98 Looks like you forgot to make your Locked::new function a const fn :

After this change, it works for me.

1 0 replies

Ananta98 Feb 2, 2021

diff --git a/src/mm/allocator.rs b/src/mm/allocator.rs
index 1ee24e3..8b911b1 100644
--- a/src/mm/allocator.rs
+++ b/src/mm/allocator.rs
@@ -15,7 +15,7 @@ pub struct Locked<A> {
 }

 impl<A> Locked<A> {
- pub fn new(inner : A) -> Self {
+ pub const fn new(inner : A) -> Self {
 Locked {
 inner : Mutex::new(inner),
 }

Thank you @phil-opp it works now. sorry this is human fault.

1 0 replies

phil-opp Feb 2, 2021 Owner

Great to hear that! No worries, I'm happy to help.

1 0 replies

abesto Apr 30, 2022

Thank you so much for your work on this post series and the supporting crates! It's been extremely

educational, following along.

I'm either confused, or this is input: the below asserts in the fixed block allocator

seem like they'll never be useful.

• mem::align_of::<ListNode>() is constant

• mem::size_of::<ListNode>() is constant

• min(BLOCK_SIZES) is constant

If I'm right, then we run these assertions each time we deallocate memory, paying runtime cost for no

value, I think?

There is a useful assertion to be made (once, maybe in init): that even the smallest block size has

room for ListNode .

1 2 2 replies

// verify that block has size and alignment required for storing node
assert!(mem::size_of::<ListNode>() <= BLOCK_SIZES[index]);
assert!(mem::align_of::<ListNode>() <= BLOCK_SIZES[index]);

seewishnew Dec 29, 2022 Contributor

Agreed, the min BLOCK_SIZE should start at max(mem::align_of::<ListNode>(),

mem::size_of::<ListNode>()) , which should be 16 bytes in x86_64. I also believe it makes

more sense to add alignment checks during dealloc for ptr so that we end up panicking at an

assert as opposed to an internal ptr.write call.

seewishnew Dec 29, 2022 Contributor

Correction, the ListNode in fixed_size_block.rs should only need 8 bytes for both size and

alignment. This goes in-hand with the current min size of BLOCK_SIZES

UsQuake Sep 28, 2022

How can I translate the posts in Korean

1 1 reply

jlkiri Jan 28, 2024

alignment. This goes in-hand with the current min size of BLOCK_SIZES .

However, it is interesting to note that we are only adding blocks to the list_heads during

dealloc from blocks originally formed from the fallback allocator, and the

linked_list_allocator crate has a minimum Hole size of 16 bytes, at least in x86-64.

So even though we currently have a BLOCK_SIZE[0] = 8 , during dealloc for such small blocks,

in reality we will be adding 16-byte blocks to list_heads[0] and use them only for 8 bytes or

fewer, leading to over 50% wasted space for this bucket, on average. This seems to be an

implicit price we might unconsciously have to pay--this could probably be mentioned as another

point under discussions.

As a test, I found that trying to allocate some u64 on the heap gives us exactly this 50%

efficiency:

1

// in tests/allocation_overhead.rs
#[test_case]
fn overhead_test_pass() {

// Even though 8-byte blocks seem to be supported, the real
// minimum is 16 bytes

// We have 50% overhead, so this should pass
let n = (HEAP_SIZE / size_of::<u64>()) as u64 / 2; // 6400 for 100 KiB HEAP_SIZE
assert_eq!(6400, n);

// whereas this should fail.
// let n = (HEAP_SIZE / size_of::<u64>()) / 2 + 1; // 6401

(0..n).for_each(|i| {
Box::into_raw(Box::new(i));

});
}

bjorn3 Sep 28, 2022 Contributor

#1092 is the tracking issue for Korean translations. I would suggest looking there for any posts

that others are already translating and commenting with the post you picked to avoid duplicate

work.

Amazing article, thank you.

I'm not sure I understand one of the caveats at end of the article: "We currently only create new

blocks, but never free them again.". What does it mean? As far as I can see the blocks are freed in the

dealloc implementation.

1 1 reply

Write Preview

Sign in to comment

prey169 Jan 29

I think this is in reference to our pointers never merging unalloc'd memory back together. so

overtime we will have more and more pointers splitting up the heap and we wont have room for

a larger memory block to be allocated

Instead of authenticating the giscus application, you can also comment directly on
GitHub.

Other
Languages
• Japanese

• Spanish

© 2022. All rights reserved. License Contact

https://giscus.app/
https://giscus.app/
https://github.com/phil-opp/blog_os/discussions/categories/post-comments?discussions_q=%22Allocator%20Designs%22%20in%3Atitle
https://github.com/phil-opp/blog_os/discussions/categories/post-comments?discussions_q=%22Allocator%20Designs%22%20in%3Atitle
https://github.com/phil-opp/blog_os/discussions/categories/post-comments?discussions_q=%22Allocator%20Designs%22%20in%3Atitle
https://os.phil-opp.com/allocator-designs/ja/
https://os.phil-opp.com/allocator-designs/ja/
https://os.phil-opp.com/es/allocator-designs/
https://os.phil-opp.com/es/allocator-designs/
https://github.com/phil-opp/blog_os#license
https://github.com/phil-opp/blog_os#license
https://os.phil-opp.com/contact/
https://os.phil-opp.com/contact/

