
Making slow Rust code fast
Oct 15, 2021

Performance tuning using Criterion.rs and

flamegraphs
Performance is one of the top reasons developers choose Rust for their applications. In

fact, it's the first reason listed under the "Why Rust?" section on the rust-lang.org

homepage, even before memory safety. This is for good reason too--many benchmarks

show that software written in Rust is fast, sometimes even the fastest. This doesn't mean

that everything written in Rust is guaranteed to be fast, though. In fact, it's surprisingly

easy to write slow Rust code, especially when attempting to appease the borrow checker

by cloning or Arc -ing instead of borrowing, a strategy which is generally recommended

to new Rust users. That's why it's important to profile and benchmark Rust code to see

where any bottlenecks are and to fix them, just like you would in any other language. In

this post, I'll demonstrate some basic tools and techniques for doing so, based on my

recent experience working to improve the performance of the mongodb crate.

Note: all the example code used in this post can be found here.

Index
• Profiling

◦ Benchmarking

◦ Using perf and cargo flamegraph to generate flamegraphs

◦ Identifying bottlenecks in a flamegraph

• Attack of the Clone
• Speeding up deserialization

• Analyzing results

◦ Viewing Criterion's HTML report

◦ Performing a realistic benchmark using wrk
• Next Steps

• Conclusion

• Shameless plug

• References

patrickfreed's blog About

https://www.rust-lang.org/#:~:text=Version%201.55.0-,Why%20Rust%3F,-Performance
https://www.rust-lang.org/#:~:text=Version%201.55.0-,Why%20Rust%3F,-Performance
https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=fortune
https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=fortune
https://www.techempower.com/benchmarks/#section=data-r18&hw=ph&test=fortune
https://github.com/patrickfreed/benchmark-example
https://github.com/patrickfreed/benchmark-example
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#using-perf-and-cargo-flamegraph-to-generate-flamegraphs
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#attack-of-the-clone
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#attack-of-the-clone
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#attack-of-the-clone
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#attack-of-the-clone
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#performing-a-realistic-benchmark-using-wrk
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#performing-a-realistic-benchmark-using-wrk
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#performing-a-realistic-benchmark-using-wrk
https://patrickfreed.github.io/rust/2021/10/15/making-slow-rust-code-fast.html#performing-a-realistic-benchmark-using-wrk
https://patrickfreed.github.io/
https://patrickfreed.github.io/
https://patrickfreed.github.io/
https://patrickfreed.github.io/

• Acknowledgments

Profiling
Whenever doing any kind of performance tuning work, it is absolutely essential to profile

the code before attempting to fix anything, since bottlenecks can often reside in

unexpected places, and suspected bottlenecks are often not as impactful as assumed.

Not adhering to this principle can lead to premature optimization, which may

unnecessarily complicate the code and waste development time. This is also why

newcomers are advised to liberally clone things when getting started--the clones can help

with readability and probably won't have a serious impact on performance, but if they do,

later profiling will reveal that, so there's no need to worry about them until then (this is the

"full version" of the advice).

Benchmarking

The first step in profiling is to establish a set of consistent benchmarks that can be used

to determine a baseline level of performance and to measure any incremental

improvements. In the case of mongodb , the standardized set of MongoDB driver

microbenchmarks worked nicely for this, especially since it allowed for comparisons

between MongoDB drivers written in other programming languages. Being that these are

"micro"-benchmarks, they also make it easy to measure changes in individual components

(e.g. reads vs writes), which can be useful when focusing on making improvements in

specific areas.

Once the benchmarks have been chosen, a stable environment should be set up that can

be used to perform all the timing measurements. Ensuring the environment doesn't

change and isn't doing other "work" (e.g. browsing through cat pictures) while profiling is

important for reducing noise in the benchmark measurements.

Using cargo bench and Criterion.rs to run benchmarks

The nightly version of Rust comes with unstable support for creating and running

benchmarks, and while it is useful for simple benchmarks, its features are limited and are

not documented very well. Another option is the criterion crate, which provides much

more configurable and feature-rich support for benchmarking, all the while working on

stable Rust!

I'll detail a basic criterion setup here, but for more information I highly recommend

checking out the excellent Criterion.rs User Guide.

When benchmarking mongodb , I first created a new project using cargo new <my-
benchmark-project> and added the following lines to the Cargo.toml :

https://wiki.c2.com/?PrematureOptimization
https://wiki.c2.com/?PrematureOptimization
https://github.com/mongodb/specifications/blob/master/source/benchmarking/benchmarking.rst
https://github.com/mongodb/specifications/blob/master/source/benchmarking/benchmarking.rst
https://github.com/mongodb/specifications/blob/master/source/benchmarking/benchmarking.rst
https://github.com/mongodb/specifications/blob/master/source/benchmarking/benchmarking.rst
https://crates.io/crates/criterion
https://crates.io/crates/criterion
https://crates.io/crates/criterion
https://bheisler.github.io/criterion.rs/book/index.html
https://bheisler.github.io/criterion.rs/book/index.html

[dependencies]
tokio = { version = "1", features = ["full"] }
futures = { version = "0.3", default-features = false }
mongodb = { path = "/home/patrick/mongo-rust-driver" }

[dev-dependencies]
criterion = { version = "0.3.5", features = ["async_tokio", "html_reports"

[[bench]]
name = "find"
harness = false

For my benchmark, I used the tokio async runtime, so I needed to specify it as a

dependency and enable the async_tokio criterion feature, but this isn't required if

you're not using tokio. I also needed to use some functionality provided by the futures
crate, but again this isn't necessary to run a criterion benchmark. For my mongodb
dependency, I specified a path to a local clone of its repository so that I could benchmark

any changes I made. Also, for this example I'll be focusing on benchmarking the

mongodb crate's Collection::find method, so I named my benchmark accordingly,

but you can name yours anything.

Next, a benches/find.rs file needs to be created to contain the benchmark. The file

name needs to match the value specified in the name field in Cargo.toml . Here is an

example of a simple benchmark which tests the performance of Collection::find :

use criterion::{criterion_group, criterion_main, Criterion};
use futures::TryStreamExt;
use mongodb::{

bson::{doc, Document},
Client,

};

pub fn find_bench(c: &mut Criterion) {
// begin setup

// create the tokio runtime to be used for the benchmarks
let rt = tokio::runtime::Builder::new_multi_thread()

.enable_all()

.build()

.unwrap();

// seed the data server side, get a handle to the collection
let collection = rt.block_on(async {

let client = Client::with_uri_str("mongodb://localhost:27017")

https://crates.io/crates/tokio
https://crates.io/crates/tokio
https://crates.io/crates/tokio
https://docs.rs/mongodb/2.0.0/mongodb/struct.Collection.html#method.find
https://docs.rs/mongodb/2.0.0/mongodb/struct.Collection.html#method.find
https://docs.rs/mongodb/2.0.0/mongodb/struct.Collection.html#method.find
https://docs.rs/mongodb/2.0.0/mongodb/struct.Collection.html#method.find
https://docs.rs/mongodb/2.0.0/mongodb/struct.Collection.html#method.find
https://docs.rs/mongodb/2.0.0/mongodb/struct.Collection.html#method.find

.await

.unwrap();

let collection = client.database("foo").collection("bar");
collection.drop(None).await.unwrap();

let doc = doc! {
"hello": "world",
"anotherKey": "anotherValue",
"number": 1234

};
let docs = vec![&doc; 10_000];
collection.insert_many(docs, None).await.unwrap();
collection

});
// end setup

c.bench_function("find", |b| {
b.to_async(&rt).iter(|| {

// begin measured portion of benchmark
async {

collection
.find(doc! {}, None)
.await

.unwrap()

.try_collect::<Vec<Document>>()

.await

.unwrap();
}

})
});

}

criterion_group!(benches, find_bench);
criterion_main!(benches);

The find_bench function contains all the code for setting up and running the

benchmark. The function can be named anything, but it needs to take in an &mut
Criterion as a parameter. The first part of the function contains the setup code that is

executed only once before the benchmark runs and whose runtime is not measured at all.

The actual measured part is the closure that is passed into Bencher::iter later on.

That closure will be run many times, and the timings for each run will be recorded,

analyzed, and included in an HTML report.

In this particular example, the setup involves creating the tokio runtime that will be

used for the rest of the benchmark. Normally, this is done behind the scenes via the

tokio::main macro or, in the case of libraries, not at all. However, we need to manually

create a runtime here so that we can pass it to criterion later via the

Bencher::to_async method. Once the runtime has been created, the setup continues

by populating the MongoDB collection that we'll be querying in the actual benchmark.

Because this involves the usage of async APIs, we need to ensure they execute within

the context of the async runtime via Runtime::block_on . In the actual measured

portion, we perform a query over all of the documents in the collection we created during

setup.

For more information about the criterion functionality used in this example, check out

the example found in the "Getting Started" section of the Criterion user guide.

With all that ready to go (and with our MongoDB instance running), we can run cargo
bench to establish our baseline. The output will look something like the following:

~/benchmark-example$ cargo bench
 Finished bench [optimized] target(s) in 0.07s
 Running unittests (target/release/deps/benchmark_example-b9c25fd0639c5e9c

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Running unittests (target/release/deps/find-e1f66bfc9cf31158)
Gnuplot not found, using plotters backend
Benchmarking find: Warming up for 3.0000 s
find time: [55.442 ms 55.663 ms 55.884 ms]

The most important information here is time: [55.442 ms 55.663 ms 55.884 ms] .

The center value is the best estimate of the time taken for each iteration, and the first and

last value define the upper and lower bounds of the confidence interval. By default, the

confidence level used is 95%, which means there's a 95% chance that the interval contains

the actual average runtime for an iteration. For more information on these values and how

they're calculated, check out the Criterion.rs User Guide.

Now if we run cargo bench again, it will record more timings and compare them to the

previous ones (prior data is stored in target/criterion), reporting any changes. Given

that we haven't changed the code at all, this should report that nothing has changed:

find time: [55.905 ms 56.127 ms 56.397 ms]
 change: [+0.3049% +0.8337% +1.4904%] (p = 0.01 < 0.05
 Change within noise threshold.
Found 5 outliers among 100 measurements (5.00%)
 1 (1.00%) low mild

https://bheisler.github.io/criterion.rs/book/getting_started.html
https://bheisler.github.io/criterion.rs/book/getting_started.html
https://bheisler.github.io/criterion.rs/book/criterion_rs.html
https://bheisler.github.io/criterion.rs/book/criterion_rs.html

 2 (2.00%) high mild
 2 (2.00%) high severe

And as expected, criterion reports that any change in performance from the last run was

likely due to noise. Now that we have established a baseline, it's time to profile the code to

see where it's slow.

Using perf and cargo flamegraph to generate flamegraphs

perf is a Linux command line tool that can be used to obtain performance information

about an application. We won't be using it directly, but rather through the flamegraph
crate, which is a Rust-based flamegraph generator that works with cargo .

Flamegraphs are useful visualizations of the time spent by your program in each function.

Each function called during an execution being measured is represented as a rectangle

and each call stack as a stack of rectangles. The width of a given rectangle is proportional

to the amount of time that was spent in that function, with wider rectangles meaning more

time. Flamegraphs are incredibly useful for identifying slow portions of a program, as they

can allow you to quickly identify in which parts of the codebase is a disproportionate

amount of time is being spent.

To generate flamegraphs using cargo , first we need to install perf and the

flamegraph crate. This can be done with the following on Ubuntu:

sudo apt-get install linux-tools-common linux-tools-`uname -r`
cargo install flamegraph

Once the installation is complete, we can generate the first flamegraph of our baseline! To

do that, run the following:

cargo flamegraph --bench find -o find-baseline.svg -- --bench

Then you can view the flamegraph in your browser by opening find-baseline.svg . If

you run into permissions issues running cargo flamegraph , see this note from the

flamegraph crate's README.

Generating the flamegraph of a criterion benchmark can be noisy, since a lot of the

time spent will be in criterion (e.g. for measuring time) and in the setup rather than in

the portion being benchmarked. To cut down on some of that noise in the flamegraph, you

can write a program that behaves similarly to the measured portion of the benchmark and

generate a flamegraph of that instead.

For instance, I used the following command to generate a flamegraph from a regular

binary application that uses my local copy of the mongodb crate to perform a find

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://crates.io/crates/flamegraph
https://crates.io/crates/flamegraph
https://crates.io/crates/flamegraph
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://github.com/flamegraph-rs/flamegraph#enabling-perf-for-use-by-unprivileged-users
https://github.com/flamegraph-rs/flamegraph#enabling-perf-for-use-by-unprivileged-users

without criterion:

cargo flamegraph --bin my-binary -o find-baseline.svg

And here is the resulting flamegraph (open it in a new browser tab to explore):
Flame Graph Search

[[.. [[st..

bso..
l..

<core..
bso..
bso..
bso..
bso..
bso..
bso..
bso..
bso..

b..
bs..

bson..
bson..
bson..
bson..
bson..
bson..
bson..
bson..
bson..

<..
<..
a..
a..
<..

has..
ha..
h..

<linked_hash_map..
linked_h..

<linked_hash_map::Linke..
<linked_hash_map::Linke..
<T as alloc::slice::hac..
<linked_hash_map::Linke..

lin..

<core::future::from_generator::GenFut..
mongodb::cmap::conn::co..

b..
b..
b..
b..
b..
b..
b..
b..
b..
b..
b..
b..

<..

mongod..
mongod..
<mongo..
mongod..
<mongo..
serde:..
bson::..
<bson:..

<core::future::from_generator::GenFuture<T> as cor..

<..

<b..
h..

<bson..
<bson::de::ser..

lin..

<core::marker:..
<bson::de::serde::Bson..
bson::de::serde::<impl..
<futures_util::stream:..

_..
<linked_..

cor..
<li..

a..
a..

bson:..
bson::de:..

hash..
ha..
h..

bson::document::Docu..
bson::de::ensure_rea..
bson::de::deserializ..
bson::document::Docu..
bson::de::ensure_rea..
bson::de::deserializ..
bson::de::deserializ..
bson::document::Docu..
bson::de::ensure_rea..
bson::de::deserializ..
bson::document::Docu..
bson::de::ensure_rea..

linked_h..

<core::future::from_generator::GenFuture<T> as core::future::future::Future>::poll

int..
mallo..

<mongodb::cur..
<core::future..
<core::future..
<core::future..
core::ptr::dr..
<linked_hash_..
core::ptr::dr..
<linked_hash_..

core::..
core::..
<linke..

cor..
<li..

<futures_util::..

<..

<m..
mo..
<m..
se..
bs..
<b..
<b..
<b..
<b..

<..

mongodb..
<mongod..
mongodb..
<mongod..
serde::..
bson::d..
<bson::..
<bson::..
<bson::..

lin..

[unknown]
my-bench

Now that we can see where the time is being spent, it's time to dig in and see if we can

find the bottlenecks.

Identifying bottlenecks in a flamegraph

The stacks in flamegraphs start at the bottom and move upwards as the call stack

deepens (left vs right is arbitrary), and generally that's the best way to start reading them.

Looking at the bottom of the above flamegraph, the widest rectangles are

Future::poll , but that's not because Rust futures are super slow--it's because every

.await involves polling futures. With that in mind, we can skip up from any poll
rectangles until we can get to functions within mongodb to see the information we care

about. The following annotated version of the flamegraph highlights the sections of note:

The blue square contains the time spent in the calls to CommandResponse::body , and it

shows that nearly all of that time is spent in clone() . The various purple rectangles

correspond to the time spent parsing BSON (the binary format used by MongoDB) into

Document s, and the green rectangle corresponds to the time spent in Document 's

serde::Deserialize implementation. Lastly, the dotted black rectangle corresponds

to the time spent releasing memory, and the solid black one corresponds to the time spent

serializing commands to BSON.

Now that we know where most of the time is being spent (only in a handful of places), we

can focus our efforts on actually changing the code to make it faster.

Attack of the Clone

As with any task, starting with the low-hanging fruit can often yield the best return on

investment. In this case, a big chunk of time was spent in cloning alone (the blue

rectangle above), so if we can simply eliminate the clones, we may be able to save all of

that time. From the flamegraph, we know the most expensive clone is the one that is

called in CommandResponse::body , so let's go investigate that method.

On command.rs:149 , we have the following definition:

/// Deserialize the body of the response.
pub(crate) fn body<T: DeserializeOwned>(&self) -> Result<T> {

match bson::from_bson(Bson::Document(self.raw_response.clone())) {
Ok(body) => Ok(body),
Err(e) => Err(ErrorKind::ResponseError {

message: format!("{}", e),
}
.into()),

}

https://github.com/mongodb/mongo-rust-driver/blob/v2.0.0-beta/src/cmap/conn/command.rs#L138
https://github.com/mongodb/mongo-rust-driver/blob/v2.0.0-beta/src/cmap/conn/command.rs#L138

}

As we can see, there is indeed a call to clone in here, so it's likely the one we saw taking

a lot of time in the flamegraph. The clone is required because we need to deserialize

from the raw_response owned by self , but we only have a reference to self , so we

can't move out of it. We also can't use raw_response by reference because

bson::from_bson expects an owned value. Let's investigate the places in which body
itself is called to see if we can change it to take ownership of self and thus avoid the

clone.

Looking specifically at the use exercised by this benchmark, the find operation uses it

to deserialize the response from the server in Find::handle_response :

fn handle_response(&self, response: CommandResponse) -> Result<Self::O
let body: CursorBody = response.body()?;

Ok(CursorSpecification::new(
self.ns.clone(),
response.source_address().clone(),
body.cursor.id,
self.options.as_ref().and_then(|opts| opts.batch_size),
self.options.as_ref().and_then(|opts| opts.max_await_time),
body.cursor.first_batch,

))
}

As we can see here, response is only used once after the call to body , and that one

usage could come before it without issue, so this call site at least would still work if

body took ownership of self . Repeating this process for the rest of the call sites, we

see that body can in fact take ownership of self and thus avoid a clone, so let's make

this change and see how it affects performance.

Rerunning cargo bench after making that change yields the following:

find time: [47.495 ms 47.843 ms 48.279 ms]
 change: [-15.488% -14.760% -13.944%] (p = 0.00 < 0.05
 Performance has improved.
Found 4 outliers among 100 measurements (4.00%)
 4 (4.00%) high severe

Nice! Even after such a simple change, we've already observed a significant improvement

in performance. Let's investigate the other places where a lot of time is being spent now

that some of the lower-hanging fruit has been addressed.

https://github.com/mongodb/mongo-rust-driver/commit/3312975695bd581322e0d9f43c917f2eacb04f94
https://github.com/mongodb/mongo-rust-driver/commit/3312975695bd581322e0d9f43c917f2eacb04f94

Speeding up deserialization
Looking back at the flamegraph, we can see that a significant portion of time was being

spent parsing responses from the database wire protocol (purple) and subsequently

deserializing them to Rust data structures via serde (green). Despite each one

performing a similar task, the two steps were needed because the bson crate only

supported deserialization from the Bson and Document Rust types, rather than actual

BSON, the binary format used in the MongoDB wire protocol. The flamegraph

demonstrates that this process consumed a large amount of time, and so if the two steps

could be combined into one, it's possible that it could lead to significant performance

benefits.

Essentially, we want to go from the following:

let bytes = socket.read(&mut bytes).await?; // read message from database
let document = Document::from_reader(bytes.as_slice())?; // parse into Document
let rust_data_type: MyType = bson::from_document(document)?; // deserialize via serde

to

let bytes = socket.read(&mut bytes).await?; // read message from database
let rust_data_type: MyType = bson::from_slice(bytes.as_slice())?; // deserialize via serde

To do this, we're going to need to implement a new serde deserializer that works with

raw BSON. The work involved in that is pretty extensive and quite complicated, so I'll hold

off on the details. The "Implementing a Deserializer" section of the serde docs provides

an excellent example of implementing one for JSON though for those who are interested.

So, now that we implemented the deserializer and updated the driver to use it, let's rerun

cargo bench to see if it had any impact on performance:

find time: [30.624 ms 30.719 ms 30.822 ms]
 change: [-36.409% -35.791% -35.263%] (p = 0.00 < 0.05
 Performance has improved.
Found 5 outliers among 100 measurements (5.00%)
 1 (1.00%) low mild
 1 (1.00%) high mild
 3 (3.00%) high severe

Awesome! The average iteration time was reduced by roughly 36% from the previous one,

which was already a big reduction from the initial baseline. Now that we've implemented a

few improvements, let's take a closer look at the results.

https://serde.rs/impl-deserializer.html
https://serde.rs/impl-deserializer.html
https://github.com/mongodb/bson-rust/commit/7ccf82b3dc66141d8292a5c1e253362abaa13d5c
https://github.com/mongodb/bson-rust/commit/7ccf82b3dc66141d8292a5c1e253362abaa13d5c
https://github.com/mongodb/mongo-rust-driver/commit/0fa2a905c1f5411a6f0109debe18c3cfa35c94be
https://github.com/mongodb/mongo-rust-driver/commit/0fa2a905c1f5411a6f0109debe18c3cfa35c94be

Analyzing results

Viewing Criterion's HTML report

Criterion includes support for generating an HTML report that summarizes the most

recent run and compares it to the run before it. To access the report, simply open

target/criterion/report/index.html in your browser.

As an example, here is the report comparing the baseline to the most optimized one.

At the top of the report, we can see a summary of the most optimized run, including a

graph illustrating the mean execution time and a scatter plot showing all the samples

criterion took, as well as links to some other graphs. Here's a screenshot of that section

for the most recent find benchmark run:

At the bottom of the report, there is a comparison between the two most recent runs, with

the older run (the baseline) in red and the more recent run (the optimized one) in blue. A

screenshot of the section comparing the optimized version of mongodb to the

unoptimized baseline can be found below. In it, we can see that the unoptimized baseline

is clearly much slower than the optimized one. Judging by the wideness of the

distributions, we can also see that the optimized one is more consistent in its

performance than the baseline.

https://patrickfreed.github.io/resources/making-slow-rust-code-fast/criterion/find/report/index.html
https://patrickfreed.github.io/resources/making-slow-rust-code-fast/criterion/find/report/index.html

These reports are super helpful tools for visualizing the changes that occur as a result of

performance tuning, and they're especially useful for presenting the results to others. They

can also serve as a record of past performance data, eliminating the need to manually

record the results.

Performing a realistic benchmark using wrk

While microbenchmarks are extremely useful for isolating behavior and identifying

bottlenecks, they aren't always representative of real workloads. To prove the changes

being made actually improve performance and are not overfitted to the microbenchmarks,

it's useful to also take measurements during real-world scenarios.

In the case of an async database driver like mongodb , this means situations with a high

number of concurrent requests. A useful tool for generating such requests is the wrk
workload generator.

To install wrk , you'll need to clone the repo and build it from source:

git clone https://github.com/wg/wrk
cd wrk
make
./wrk --version

If that succeeded, you should see wrk 's version information. For more specific

installation instructions, see wrk 's INSTALL page.

https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/wg/wrk/blob/master/INSTALL
https://github.com/wg/wrk/blob/master/INSTALL

After spinning up an actix-web server (running in release mode) which will perform a

find on every GET request, I pointed wrk at it using the following invocation:

./wrk -t8 -c100 -d10s http://127.0.0.1:8080

This runs a benchmark for 10 seconds, using 8 threads, and keeping 100 HTTP

connections open.

Using the unoptimized driver, I saw the following results:

Running 10s test @ http://127.0.0.1:8080
 8 threads and 100 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 7.83ms 2.06ms 26.52ms 73.81%
 Req/Sec 1.54k 379.64 7.65k 91.02%
 122890 requests in 10.10s, 205.45MB read
Requests/sec: 12168.39
Transfer/sec: 20.34MB

Post optimizations, I saw this instead:

Running 10s test @ http://127.0.0.1:8080
 8 threads and 100 connections
 Thread Stats Avg Stdev Max +/- Stdev
 Latency 4.03ms 1.31ms 52.06ms 97.77%
 Req/Sec 3.03k 292.52 6.00k 92.41%
 242033 requests in 10.10s, 404.63MB read
Requests/sec: 23964.39
Transfer/sec: 40.06MB

...which represents almost a 100% increase in throughput, awesome! This means our

optimizations based on microbenchmarking are translating to significant improvements in

real workloads.

Next steps
In this post, we've seen how you can use just a few fundamental performance techniques

(generating flamegraphs, benchmarking) to achieve significant performance

improvements in your Rust application. The process for this can be summarized in the

following steps:

1. Run a benchmark using criterion to establish a baseline

2. Identify bottlenecks via cargo flamegraph
3. Attempt to fix bottlenecks

https://crates.io/crates/actix-web
https://crates.io/crates/actix-web
https://crates.io/crates/actix-web

4. Re-run benchmark to see if bottleneck was fixed

5. Repeat

This process can be repeated over and over until a satisfactory level of performance is

reached. However, as you iterate, the improvements are likely to become less dramatic

and require more effort to implement. For example, in the case of mongodb , the first big

improvement came from simply being more judicious about using clone() , but to

achieve a similar level of improvement after that, an entire serde deserializer needed to

be implemented! This leads to another reason why profiling is so important: in addition to

identifying where optimizations need to occur, it can also help determine when they need

to occur (or conversely, when they should stop). If the remaining improvements are not

worth the effort, profiling can show that and allow you to focus your efforts elsewhere.

This is important because no matter how optimized something is, there's always room for

improvement, and it's easy to go down the rabbit hole of over optimization.

Conclusion
I hope this overview of profiling and benchmarking in Rust was helpful. Note that

optimizing your Rust application or library to be as fast as technically possible isn't always

necessary or even desirable, since optimized code is often harder to understand and

maintain than simple but slow code. What's more important is that your application or

library meets its performance expectations. For instance, it makes little difference if a CLI

tool's self-update takes 50ms or 100ms, despite there being a possible 50% reduction in

runtime, because 100ms is well within the expected level of performance for such

functionality. However, for cases where performance is not meeting expectations, the

process outlined in this post can be very effective at producing optimizations, as can be

seen in the recent improvements we made to the mongodb crate.

Shameless plug
We recently released version v2.0.0 of the mongodb crate, which contains the

performance improvements mentioned in this post as well as a ton of new features,

including support for transactions! If interested in writing a web application in Rust, please

do check out the MongoDB Rust driver if you're in need of a database!

References
• Benchmarking example code

• Criterion user guide

• perf wiki

• mongodb crate

• wrk

https://github.com/mongodb/mongo-rust-driver/releases/tag/v2.0.0
https://github.com/mongodb/mongo-rust-driver/releases/tag/v2.0.0
https://github.com/mongodb/mongo-rust-driver/releases/tag/v2.0.0
https://crates.io/crates/mongodb
https://crates.io/crates/mongodb
https://crates.io/crates/mongodb
https://www.mongodb.com/
https://www.mongodb.com/
https://github.com/patrickfreed/benchmark-example
https://github.com/patrickfreed/benchmark-example
https://bheisler.github.io/criterion.rs/book/index.html
https://bheisler.github.io/criterion.rs/book/index.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://crates.io/crates/mongodb
https://crates.io/crates/mongodb
https://crates.io/crates/mongodb
https://crates.io/crates/mongodb
https://github.com/wg/wrk
https://github.com/wg/wrk
https://github.com/wg/wrk

Acknowledgments
Thanks to @univerz for their initial investigation into these bottlenecks.

Patrick's blog about various topics in software engineering, mostly focused on Emacs, Rust, and

Swift.

patrickfreed

https://github.com/univerz
https://github.com/univerz
https://github.com/mongodb/mongo-rust-driver/commit/7399a60d7c425fde7a361b486d30c99e97fb754d#r36742360
https://github.com/mongodb/mongo-rust-driver/commit/7399a60d7c425fde7a361b486d30c99e97fb754d#r36742360
https://github.com/patrickfreed
https://github.com/patrickfreed
https://github.com/patrickfreed
https://github.com/patrickfreed
https://github.com/patrickfreed
https://github.com/patrickfreed
https://github.com/patrickfreed

