
����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����) ����������������������������������������������������������������� ����������������������������������������������������������������� ���� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ����

Scaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with Bazel
✏ 2023-03-20   ✂ 2023-03-20

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

Cargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitations
Cargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build system

Poor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency tracking

The CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI saga
The nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix days

The icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe iceberg

Enter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter Bazel

The migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration process
Build a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototype

Dig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middle

Run CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI early

One package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a time

Ensure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parity

Rough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edges

AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

As of March ����, the Internet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repositoryInternet Computer repository contains about

six hundred thousand lines of Rust code. Last year, we started using

BazelBazelBazelBazelBazelBazelBazelBazelBazelBazelBazelBazelBazel as our primary build system, and we couldn’t have been

happier with the switch. This article explains the motivation behind

this move and the migration process details.

➞➞➞➞

➞➞➞➞➞①②➞➞➞➞➞➞➞➞➞

https://mmapped.blog/index.html
https://mmapped.blog/index.html
https://mmapped.blog/posts.html
https://mmapped.blog/posts.html
https://mmapped.blog/about.html
https://mmapped.blog/about.html
https://mmapped.blog/feed.xml
https://mmapped.blog/feed.xml
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
https://news.ycombinator.com/item?id=35270660
https://news.ycombinator.com/item?id=35270660
https://news.ycombinator.com/item?id=35270660
https://www.reddit.com/r/rust/comments/11xxffc/blog_post_scaling_rust_builds_with_bazel/
https://www.reddit.com/r/rust/comments/11xxffc/blog_post_scaling_rust_builds_with_bazel/
https://github.com/dfinity/ic
https://github.com/dfinity/ic
https://bazel.build/
https://bazel.build/


Cargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitationsCargo’s limitations

Many Rust newcomers, especially those with a C++ background,

swear by cargo. Rust tooling is fantastic for beginners, but we

became dissatis�ed with cargo as the project size increased. Most of

our complaints fall into two categories.

Cargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build systemCargo is not a build system

Cargo is the Rust package manager. Cargo downloads your Rust

package’s dependencies, compiles your packages, makes

distributable packages, and uploads them to crates.io.

The Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo BookThe Cargo Book

Let’s acknowledge the elephant in the room: cargo is not a build

system; it’s a tool for building and distributing Rust packages. It can

build Rust code for a speci�c platform with a given set of features in

a single invocation. Cargo chose simplicity and ease of use over

generality and scalability; it does not track dependencies well or

support arbitrary build graphs.

These trade-o�s make cargo easy to pick up but impose severe

limitations in a complex project. There are workarounds, such as

xtaskxtaskxtaskxtaskxtaskxtaskxtaskxtaskxtaskxtaskxtaskxtaskxtask, but they will only get you so far. Let’s consider an example of

what many of our tests must do:

Build a sandbox binary for executing WebAssembly.

Build a WebAssembly program.

Post-process the WebAssembly program (strip some custom

sections and compress the result, for example).

Build and execute a test binary that launches the sandbox

binary, sends the WebAssembly program to the sandbox and

interacts with the program.

https://doc.rust-lang.org/cargo/
https://doc.rust-lang.org/cargo/
https://github.com/matklad/cargo-xtask
https://github.com/matklad/cargo-xtask


This simple scenario requires invoking cargo three times with

di�erent arguments and appropriately post-processing and

threading the build artifacts. There is no way to express such a test

using cargo alone; another build system must orchestrate the test

execution.

Poor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency trackingPoor caching and dependency tracking

Like notorious MakeMakeMakeMakeMakeMakeMakeMakeMakeMakeMakeMakeMake, cargo relies on �le modi�cation timestamps

for incremental builds. Updating code comments or switching git

branches can invalidate cargo’s cache, causing long rebuilds. The

sccachesccachesccachesccachesccachesccachesccachesccachesccachesccachesccachesccachesccache tool can improve cache hits, but we saw no improvement

from using it on our continuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integrationcontinuous integration (CI) servers.

Cargo’s dependency tracking facilities are relatively simplistic. For

example, we can tell cargo to rerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rsrerun build.rs if some input �les or

environment variables change. Still, cargo has no idea which �les or

other resources tests might be accessing, so it must be conservative

with caching. Consequently, we o�en build way more than we need

to, and sometimes our builds fail with confusing errors that go away

a�er cargo c�ean.

The CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI sagaThe CI saga

Over the project life, we used various tools to mitigate the cargo’s

limitations, with mixed success.

The nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix daysThe nix days

When we started the Rust implementation in mid-����, we relied on

nixnixnixnixnixnixnixnixnixnixnixnixnix to build all our so�ware and set up the development

environment in a cross-platform way (we develop both on macOS

and Linux).

https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)
https://github.com/mozilla/sccache
https://github.com/mozilla/sccache
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script
https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script
https://nixos.org/
https://nixos.org/


As our code base grew, we started to feel nix’s limitations. The unit

of caching in nix is a derivationderivationderivationderivationderivationderivationderivationderivationderivationderivationderivationderivationderivation. If we wanted to take full advantage

of nix’s caching capabilities, we would have to "nixify" all our

external dependencies and internal Rust packages (one derivation

per Rust package). A�er a long �ght with build reproducibility

issues, our glorious dev-infra team implemented �ne-grained

caching using the cargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nixcargo�nix project.

Unfortunately, most developers in the team were uncomfortable

with nix. It became a constant source of confusion and lost

developer productivity. Since nix has a steep learning curve, only a

few nix wizards could understand and modify the build rules. This

nix-alienation bifurcated our build environment: the CI servers built

the code with nix-build, and developers built the code by entering

the nix-shell and invoking cargo.

The icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe icebergThe iceberg

The �nal blow to the nix story came around late-����, close to the

network launch. Our security team chose Ubuntu as the deployment

target and insisted that production binaries link against the

regularly updated system libraries (libc, libc++, openssl, etc.) the

deployment platform provides. This setup is hard to achieve in nix

without compromising correctness .

Furthermore, the infrastructure team got a few new members

unfamiliar with nix and decided to switch to a more familiar

technology, Docker containers. The team implemented a new build

system that runs cargo builds inside a docker container with the

versions of dynamic libraries identical to those in the production

environment.

The new system grew organically and eventually evolved into a hot

mess of a hundred GitLab Yaml con�guration �les calling shell and

python scripts in the correct order. These scripts used the known

1

https://nixos.org/manual/nix/stable/language/derivations.html
https://nixos.org/manual/nix/stable/language/derivations.html
https://github.com/cargo2nix/cargo2nix
https://github.com/cargo2nix/cargo2nix


�lesystem locations and environment variables to pass the build

artifacts around. Most integration tests ended up as shell scripts

expected some inputs that the CI pipeline produces.

The new Docker-based build system lost the granular caching

capabilities of nix-build. The infra team attempted to build a custom

caching system but eventually abandoned the project. Cache

invalidation is a challenging problem indeed.

With the new system, the chasm between the CI and development

environments deepened further because the nix-shell didn’t go

anywhere. The developers continued to use nix-shell for everyday

development. It’s hard to pinpoint the exact reason. I attribute that

to the fact that entering the nix-shell is less invasive than entering a

docker container, and nix-shell does not require running in a virtual

machine on macOS (Rust compile times are slow). Also, the infra

team was so busy rewriting the build system that improving the

everyday developer experience was out of reach.

I call this setup an "iceberg": on the surface, a developer needed

only nix and cargo to work on the code, but in practice, that was

only ��% of the story. Since most tests required a CI environment,

developers had to create merge requests to check whether their

code worked beyond the basic unit tests. The CI didn’t know

developers were interested in running a speci�c test and executed

the entire test suite, wasting scarce computing resources and

slowing the development cycle.

The tests accumulated over time, the load on the CI system grew,

and eventually, the builds became unbearably slow and �aky. It was

time for another change.

Enter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter BazelEnter Bazel

Among about a dozen build systems I worked with, Bazel is the



only one that made sense to me . One of my favorite features of

Bazel is how explicit and intuitive it is for everyday use.

Bazel is like a good videogame: it’s easy to learn and challenging to

master. It’s easy to de�ne and wire build targets (that’s what most

engineers do), but adding new build rules requires some expertise.

Every engineer at Google can write correct build �les without

knowing much about Blaze (Google’s internal variant of Bazel). The

build �les are verbose bordering plain boring, but it’s a good thing.

They tell the reader precisely what the module’s artifacts and

dependencies are.

Bazel o�ers many features, but we mostly cared about the

following:

Bazel is extensible enough to cover all our use cases. Bazel

gracefully handled everything we threw at it: Linux and

macOS binaries, WebAssembly programs, OS images, DockerDockerDockerDockerDockerDockerDockerDockerDockerDockerDockerDockerDocker

containerscontainerscontainerscontainerscontainerscontainerscontainerscontainerscontainerscontainerscontainerscontainerscontainers, Motoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programsMotoko programs, TLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cationsTLA+ speci�cations, etc. The

best part is: We can also combine and mix these artifacts in

any way we like.

Aggressive caching. The sandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxingsandboxing feature ensures that

build actions do not use undeclared dependencies, making it

much safer to cache build artifacts and, most importantly for

us, test results.

Remote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote cachingRemote caching. We use the cache from our CI system to

speed up developer builds.

Distributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed buildsDistributed builds. Bazel can distribute tasks across multiple

machines to �nish builds even faster.

Visibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility controlVisibility control. Bazel allows package authors to mark

some packages as internal to prevent other teams from

importing the code. Controlling dependency graphs is crucial

for fast builds.

2

https://github.com/bazelbuild/rules_docker
https://github.com/bazelbuild/rules_docker
https://github.com/bazelbuild/rules_docker
https://github.com/bazelbuild/rules_docker
https://github.com/dfinity/rules_motoko
https://github.com/dfinity/rules_motoko
https://lamport.azurewebsites.net/tla/tla.html
https://lamport.azurewebsites.net/tla/tla.html
https://bazel.build/docs/sandboxing
https://bazel.build/docs/sandboxing
https://bazel.build/remote/caching
https://bazel.build/remote/caching
https://bazel.build/basics/distributed-builds
https://bazel.build/basics/distributed-builds
https://bazel.build/concepts/visibility
https://bazel.build/concepts/visibility


Even more importantly, Bazel uni�es our development and CI

environments. All our tests are Bazel tests now, meaning that every

developer can run any test locally. At its heart, our CI job is baze�

�es� ��con�ig=ci �����.

One nice feature of our Bazel setup is that we can con�gure

versions of our external dependencies in a single �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �lesingle �le. Ironically,

cargo developers implemented support for workspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependencyworkspace dependency

inheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritanceinheritancea few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�era few weeks a�er we �nished the migration.

The migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration processThe migration process

You are such a naïve academic. I asked you how to do it, and you

told me what I should do. I know what I need to do. I just don’t

know how to do it.

Attributed to Andrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew GroveAndrew Grove; see “““““““““““““The � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of ExecutionThe � Disciplines of Execution””””””””””””” by Jim Huling,
Chris McChesney, and Sean Covey, page xx.

The idea of migrating the build system came from a few engineers

(read Xooglers) who were tired of �ghting with long build times

and poor tooling. To our surprise, a few volunteers expressed

interest in joining the rebellion at its earliest stage. We needed a

plan for executing the switch and getting the management’s buy-in.

The �rst rule of large codebases is to introduce signi�cant changes

gradually. This section describes our process of migration, which

took several months.

Build a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototypeBuild a prototype

We started migration by building a prototype. We created a sample

repository that mimicked the features of our code base that we

https://github.com/dfinity/ic/blob/2d985cf8cf61dab9fd609ab589bd7e0990d4dbf2/bazel/external_crates.bzl
https://github.com/dfinity/ic/blob/2d985cf8cf61dab9fd609ab589bd7e0990d4dbf2/bazel/external_crates.bzl
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#inheriting-a-dependency-from-a-workspace
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#inheriting-a-dependency-from-a-workspace
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#inheriting-a-dependency-from-a-workspace
https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html#inheriting-a-dependency-from-a-workspace
https://blog.rust-lang.org/2022/09/22/Rust-1.64.0.html#cargo-improvements-workspace-inheritance-and-multi-target-builds
https://blog.rust-lang.org/2022/09/22/Rust-1.64.0.html#cargo-improvements-workspace-inheritance-and-multi-target-builds
https://en.wikipedia.org/wiki/Andrew_Grove
https://en.wikipedia.org/wiki/Andrew_Grove
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751
https://www.amazon.com/Disciplines-Execution-Achieving-Wildly-Important/dp/1491517751


expected to bring the most trouble, such as generating Protocol

Bu�er types using the prost library, compiling Rust to

WebAssembly and native code in a single invocation, and setting up

rust-analyzer support. Once we knew that the most complex

problems we face have a solution at a small scale, we presented the

case to the management, explained the �nal vision, how many

people and time we needed, and got a green light. Now the real

work began.

Dig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middleDig a tunnel from the middle

Our CI was a multi-stage process that treated cargo as a black box

producing binaries from the source code. There were two major

work streams in our mission to minimize build times:

Replace the spaghetti of YAML �les and scripts using cargo

as a black box with neat Bazel targets with explicit

dependencies. This change would bring clarity and

con�dence to our CI routines and enable developers to access

the build artifacts without an entire CI run.

Use Bazel to build binaries from Rust code directly, bypassing

cargo. This change would signi�cantly improve our cache hit

rate and allow us to avoid running expensive tests on every

change.

These work streams require di�erent skill sets, and we wanted to

start working on them in parallel. To unblock the �rst workstream,

we created a simple Bazel rule, cargo_bui�d, that treated cargo as a

black box and produced binaries for deployment and tests. This

way, our infrastructure experts could �gure out how to build OS

images with Bazel, while our Rust experts could proceed with the

Rust code “bazeli�cation”.

Run CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI earlyRun CI early



We added the baze� �es� ����� job to our CI pipeline as soon as we

had the �rst BUILD �le in our repository. The extra job slightly

increased the CI wait time but ensured that packages converted to

Bazel wouldn’t degrade over time. As a side bene�t, developers

started to experience Bazel-related CI failures during their code

refactorings. They activelyactivelyactivelyactivelyactivelyactivelyactivelyactivelyactivelyactivelyactivelyactivelyactively learned to modify BUILD �les and

gradually became accustomed to the new world.

One package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a timeOne package at a time

The goal of the second workstream was converting a few hundred

Rust packages to the new build rules. We started from the core

packages at the bottom of the stack that needed special treatment,

and then project volunteers bazeli�ed a few packages at a time

when they had a free time slot. Two little tricks helped us with this

tedious task:

Automation. The infra team invested a few days in a script

that converted a Cargo.�o�� �le to a ��% complete BUILD �le

matching our guidelines. Many packages required manual

treatment, and the generated BUILD �le was far from optimal,

but the script boosted the conversion process signi�cantly.

Progress visualization. One team member wrote a utility

visualizing the migration progress by inspecting the cargo

dependency graph and searching for packages with and

without BUILD �les. This little tool had a tremendous e�ect

on our morale.

Eventually, we could build and test every piece of our Rust code

with Bazel. We then switched the OS build from the cargo_bui�d

bootstrapping to the binaries built from the source using Bazel

rules.

Ensure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parityEnsure test parity

https://en.wikipedia.org/wiki/Active_learning
https://en.wikipedia.org/wiki/Active_learning


The last piece of the puzzle was ensuring the test parity. Cargo

discovers tests automagically, while Bazel BUILD �les require explicit

targets for each type of test (crate tests, doc tests, integration tests).

The infra team wrote another little utility that analyzed the outputs

of cargo and Bazel build pipelines and compared the list of executed

tests, ensuring that the volunteers accounted for every test during

the migration and that developers didn’t forget to update BUILD �les

when they added new tests.

Rough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edgesRough edges

Bazel solves most of our needs regarding building artifacts, but we

have yet to replicate a few cargo features related to developer �ow.

Cargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo checkCargo check. Cargo does not produce binaries when run in

check mode, making it much faster than cargo build.

Developers o�en use this mode to check whether the entire

code base compiles a�er a refactoring.

IDE support. The rules_rust Bazel plugin o�ers experimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimentalexperimental

supportsupportsupportsupportsupportsupportsupportsupportsupportsupportsupportsupportsupport for rust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzerrust-analyzer, which worked perfectly in the

prototype but choked on our code base. We invested a lot of

e�ort in making the new setup work, but we still keep cargo

�les around to keep developers relying on IntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ RustIntelliJ Rust happy

.

Publishing packages. We want to publish some of our Rust

packages to crates.io, and the rules_rust Bazel plugin does

not provide a replacement for "cargo publish" yet.

Access to the cargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystemcargo ecosystem. Many helpful tools rely on

cargo and don’t have an analog in the Bazel world yet, such

as cargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expandcargo-expand.

Because of these issues, we still keep cargo �les around. Luckily,

this does not a�ect our CI times much because the only check we

need is that cargo check ���es�s ��benches succeeds.

3

https://doc.rust-lang.org/cargo/commands/cargo-check.html
https://doc.rust-lang.org/cargo/commands/cargo-check.html
https://bazelbuild.github.io/rules_rust/rust_analyzer.html
https://bazelbuild.github.io/rules_rust/rust_analyzer.html
https://bazelbuild.github.io/rules_rust/rust_analyzer.html
https://bazelbuild.github.io/rules_rust/rust_analyzer.html
https://rust-analyzer.github.io/
https://rust-analyzer.github.io/
https://intellij-rust.github.io/
https://intellij-rust.github.io/
https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands
https://github.com/rust-lang/cargo/wiki/Third-party-cargo-subcommands
https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay/cargo-expand


←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers←If composers were hackers
Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→Book summary: Building a Second Brain→

AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments

The Bazel migration project was a de�nitive success. I thank our

talented infra team and all the volunteers who contributed to the

project.

Special thanks go to the developers and maintainers of the

rules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rustrules_rust Bazel plugin, who unblocked us many times during the

migration, especially Andre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre UebelAndre Uebel and Daniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-HallDaniel Wagner-Hall, and to

Alex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex KladovAlex Kladov for taking the time to share his rust-analyzer expertise.

You can discuss this article on RedditRedditRedditRedditRedditRedditRedditRedditRedditRedditRedditRedditReddit.

Similar articles

When Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurts

Designing error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in Rust

Rust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modulesRust at scale: packages, crates, and modules

©Roman Kashitsyn  
Source CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource Code

https://mmapped.blog/posts/18-if-composers-were-hackers.html
https://mmapped.blog/posts/18-if-composers-were-hackers.html
https://mmapped.blog/posts/16-building-a-second-brain.html
https://mmapped.blog/posts/16-building-a-second-brain.html
https://bazelbuild.github.io/rules_rust/
https://bazelbuild.github.io/rules_rust/
https://github.com/UebelAndre
https://github.com/UebelAndre
https://github.com/illicitonion
https://github.com/illicitonion
https://github.com/matklad
https://github.com/matklad
https://www.reddit.com/r/rust/comments/11xxffc/blog_post_scaling_rust_builds_with_bazel/
https://www.reddit.com/r/rust/comments/11xxffc/blog_post_scaling_rust_builds_with_bazel/
https://mmapped.blog/posts/15-when-rust-hurts.html
https://mmapped.blog/posts/15-when-rust-hurts.html
https://mmapped.blog/posts/12-rust-error-handling.html
https://mmapped.blog/posts/12-rust-error-handling.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog

