
����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����) ��� ��� ���� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ����

Rust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, andRust at scale: packages, crates, and
modulesmodulesmodulesmodulesmodulesmodulesmodulesmodulesmodulesmodulesmodulesmodulesmodules
✏ 2022-01-20 ✂ 2023-06-16

Dramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis Personae

Modules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs Crates

Advice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organization

Common pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfalls
Confusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packages

�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion

Further readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther reading

Good judgment is the result of experience and experience the result

of bad judgment.

Attributed to Mark Twain.

The Internet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet ComputerInternet Computer (IC) Rust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code baseRust code base grew from an empty

repository in June ���� to almost ���,��� lines of code in early ����.

This rapid growth taught me that decisions working �ne for

relatively small projects might start dragging the project down over

time. This article evaluates Rust code organization options and

suggests ways to use them e�ectively.

➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞

https://mmapped.blog/index.html
https://mmapped.blog/index.html
https://mmapped.blog/posts.html
https://mmapped.blog/posts.html
https://mmapped.blog/about.html
https://mmapped.blog/about.html
https://mmapped.blog/feed.xml
https://mmapped.blog/feed.xml
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://www.reddit.com/r/rust/comments/s818q3/blog_post_rust_at_scale_packages_crates_and/
https://www.reddit.com/r/rust/comments/s818q3/blog_post_rust_at_scale_packages_crates_and/
https://internetcomputer.org/
https://internetcomputer.org/
https://github.com/dfinity/ic
https://github.com/dfinity/ic

Dramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis PersonaeDramatis Personae

Rust terminology proved to be confusing because the term crate is

overloaded. For example, the �rst edition of the venerable The RustThe RustThe RustThe RustThe RustThe RustThe RustThe RustThe RustThe RustThe RustThe RustThe Rust

Programming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming LanguageProgramming Language book contained the following misleading

passage

Rust has two distinct terms that relate to the module system:

‘crate’ and ‘module’. A crate is synonymous with a ‘library’ or

‘package’ in other languages. Hence “Cargo” as the name of

Rust’s package management tool: you ship your crates to others

with Cargo. Crates can produce an executable or a library,

depending on the project.

“The Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming LanguageThe Rust Programming Language”, version �.��.�

Wait a minute, a library and a package are di�erent concepts, aren’t

they? Mixing up these concepts leads to frustration, even if you

already have a few months of Rust exposure. Tooling conventions

also contribute to the confusion: If a Rust package de�nes a library

crate, cargo automatically derives the library name from the

package name .

Let’s familiarize ourselves with the concepts we’ll be dealing with.

Module

A modulemodulemodulemodulemodulemodulemodulemodulemodulemodulemodulemodulemodule is the unit of code organization. It is a

container for functions, types, and nested modules.

Modules also specify the visibility for the names they

de�ne or re-export.

Crate

A cratecratecratecratecratecratecratecratecratecratecratecratecrate is the unit of compilation and linking. Crates are

part of the language (cra�e is a keywordkeywordkeywordkeywordkeywordkeywordkeywordkeywordkeywordkeywordkeywordkeywordkeyword), but you don’t

mention them much in the source code. Libraries and

executables are the most common crate types.

Package

1

https://doc.rust-lang.org/1.25.0/book/
https://doc.rust-lang.org/1.25.0/book/
https://doc.rust-lang.org/1.25.0/book/
https://doc.rust-lang.org/1.25.0/book/
https://doc.rust-lang.org/1.25.0/book/
https://doc.rust-lang.org/1.25.0/book/
https://doc.rust-lang.org/reference/items/modules.html
https://doc.rust-lang.org/reference/items/modules.html
https://doc.rust-lang.org/reference/crates-and-source-files.html
https://doc.rust-lang.org/reference/crates-and-source-files.html
https://doc.rust-lang.org/reference/keywords.html
https://doc.rust-lang.org/reference/keywords.html

A packagepackagepackagepackagepackagepackagepackagepackagepackagepackagepackagepackagepackage is the unit of so�ware distribution. Packages

are not part of the language but artifacts of the Rust

package manager, CargoCargoCargoCargoCargoCargoCargoCargoCargoCargoCargoCargoCargo. Packages can contain one or

more crates: at most one library and any number of

executables.

Modules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs CratesModules vs Crates

When you factor a large codebase into components, there are two

extremes: to have a few large packages with lots of modules or to

have lots of small packages.

Having few packages with lots of modules has some advantages:

Adding or removing a module is less work than adding or

removing a package.

Modules are more �exible. For example, modules in the same

crate can form a dependency cycle: module �oo can use

de�nitions from module bar, which in turn can use

de�nitions from module �oo. In contrast, the package

dependency graph must be acyclic.

You don’t have to modify your Cargo.�o�� �le every time

you rearrange your modules.

In the ideal world where Rust compiles instantly, turning the

repository into a massive package with many modules would be the

most convenient setup. The bitter reality is that Rust takes quite

some time to compile, and modules don’t help you shorten the

compilation time:

The basic unit of compilation is a crate, not a module. You

must recompile all the modules in a crate even if you change

only one. The more code you put in a crate, the longer it

https://doc.rust-lang.org/cargo/appendix/glossary.html#package
https://doc.rust-lang.org/cargo/appendix/glossary.html#package
https://doc.rust-lang.org/cargo/index.html
https://doc.rust-lang.org/cargo/index.html

☛☛☛☛☛☛☛☛☛☛☛☛☛

takes to compile.

Cargo parallelizes compilations across crates, not within a

crate. You don’t use the full potential of your multi-core CPU

if you have a few large packages.

It boils down to the tradeo� between convenience and compilation

speed. Modules are convenient but don’t help the compiler do less

work. Packages are less convenient but deliver better compilation

speed as the code base grows.

Advice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organizationAdvice on code organization

Split dependency hubs.

There are two types of dependency hubs:

Packages with lots of dependencies. Two examples from the

IC codebase are the �es�-u�i�s package containing auxiliary

code for integration tests (proptest strategies, mock and fake

component implementations, helper functions, etc.), and the

rep�ica package instantiating all the components.

Packages with lots of reverse dependencies. Examples from the

IC codebase are the ��pes package containing common type

de�nitions and the in�er�aces package specifying

component interfaces.

⊕

☛☛☛☛☛☛☛☛☛☛☛☛☛

types interfaces

consensus p2p messaging execution

replicatest-utils

dev-dependency

dependency

Dependency hubs are undesirable because of their devastating e�ect

on incremental compilation. If you modify a package with many

reverse dependencies (e.g., ��pes), cargo must to recompile all those

dependencies to check your change.

Sometimes it is possible to eliminate a dependency hub. For

example, the �es�-u�i�s package is a union of independent utilities.

We can group these utilities by the component they help to test and

factor the code into multiple <co�ponen�>-�es�-u�i�s packages.

More o�en, however, dependency hubs will have to stay. Some

types from ��pes are pervasive. The package containing these types

is doomed to be a type-two dependency hub. The rep�ica package

wiring all the components is doomed to be a type-one dependency

hub. The best you can do is to localize the hubs and make them

small and stable.

Consider using generics and associated types to eliminate

dependencies.

This advice needs an example, so bear with me.

��pes, in�er�aces, and rep�ica�ed_s�a�e were among the �rst

packages in the IC code base. The ��pes package contains common

type de�nitions, the in�er�aces package de�nes traits for so�ware

components, and the rep�ica�ed_s�a�e package de�nes IC’s

replicated state machine data structures, with the Rep�ica�edS�a�e

type at the root.

But why do we need the ��pes package? Types are an integral part

of the interface. Why not de�ne them in the in�er�aces package?

The problem is that some interfaces refer to the Rep�ica�edS�a�e

type. And the rep�ica�ed_s�a�e package depends on type

de�nitions from the ��pes package. If all the types lived in the

in�er�aces package, there would be a circular dependency between

in�er�aces and rep�ica�ed_s�a�e.

⊕

types replicated_state

interfaces

dependency

When we need to break a circular dependency, we can move

common de�nitions into a new package or merge some packages.

The rep�ica�ed_s�a�e package is heavy; we didn’t want to merge

its contents with in�er�aces. So we took the �rst option and moved

the types shared between in�er�aces and rep�ica�ed_s�a�e into the

��pes package.

One property of trait de�nitions in the in�er�aces package is that

the traits depend only on the Rep�ica�edS�a�e type name. The traits

do not need to know Rep�ica�edS�a�e’s de�nition.

⊕

�rai� S�a�eManager {
 �n ge�_�a�es�_s�a�e(&se��) �� Rep�ica�edS�a�e;

 �n co��i�_s�a�e(&se��, s�a�e: Rep�ica�edS�a�e, version: Version);

☛☛☛☛☛☛☛☛☛☛☛☛☛

}

This property allows us to break the direct dependency between

in�er�aces and rep�ica�ed_s�a�e. We only need to replace the

exact type with a generic type argument.

⊕

�rai� S�a�eManager {
 ��pe S�a�e; ��< �e �urned a speci�ic ��pe in�o an associa�ed ��pe.

 �n ge�_�a�es�_s�a�e(&se��) �� S�a�e;

 �n co��i�_s�a�e(&se��, s�a�e: S�a�e, version: Version);
}

Now, we don’t need to recompile the in�er�aces package and its

numerous dependencies every time we add a new �eld to the

replicated state.

Prefer runtime polymorphism.

One of the design choices we had was how to connect so�ware

components. Should we pass instances of components as Arc<d�n

In�er�ace> (runtime polymorphism) or as generic type arguments

(compile-time polymorphism)?

⊕

pub s�ruc� Consensus {
 ar�i�ac�_poo�: Arc<d�n Ar�i�ac�Poo�>,
 s�a�e_�anager: Arc<d�n S�a�eManager>,
}

⊕

☛☛☛☛☛☛☛☛☛☛☛☛☛

pub s�ruc� Consensus<AP: Ar�i�ac�Poo�, SM: S�a�eManager> {
 ar�i�ac�_poo�: AP,
 s�a�e_�anager: SM,
}

Compile-time polymorphism is an essential tool but a heavy-weight

one. Runtime polymorphism requires less code and results in less

binary bloat. Most team members also found the d�n version easier

to read.

Prefer explicit dependencies.

One of the most common questions new developers ask on the dev

channel is “Why do we explicitly pass around loggers? Global

loggers seem to work pretty well.” What a great question. I would

ask the same thing in ����!

Global variables are badbadbadbadbadbadbadbadbadbadbadbadbad, but my previous experience suggested that

loggers and metric sinks are special. Oh well, they aren’t, a�er all.

The usual problems with implicit state dependencies are especially

prominent in Rust.

Most Rust libraries do not rely on true global variables. The

usual way to pass an implicit state is to use a thread-localthread-localthread-localthread-localthread-localthread-localthread-localthread-localthread-localthread-localthread-localthread-localthread-local

variable, which can become problematic when you spawn a

new thread. New threads tend to inherit and retain

unexpected values of thread locals.

Cargo runs tests within a test binary in parallel by default.

The test output might become an intangible mess if you’re

not careful with threading loggers through the call stack. The

problem usually manifests when a background thread needs

to access the log. Explicitly passing loggers eliminates that

http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
http://wiki.c2.com/?GlobalVariablesAreBad
https://doc.rust-lang.org/stable/std/macro.thread_local.html
https://doc.rust-lang.org/stable/std/macro.thread_local.html

problem.

Testing code relying on an implicit state o�en becomes hard

or impossible in a multi-threaded environment. The code

recording your metrics is, well, code. It also deserves to be

tested.

If you use a library relying on implicit state, you can

introduce subtle bugs if you depend on incompatible library

versions in di�erent packages.

The latter point desperately needs an example. So here is a little

detective story.

We use the prometheusprometheusprometheusprometheusprometheusprometheusprometheusprometheusprometheusprometheusprometheusprometheusprometheus package for metrics recording. This package

can keep the metrics registry in a global variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variableglobal variable.

One day, we discovered a bug: we could not see metrics from some

of our components. Our code seemed correct, yet the metrics were

missing.

One of the packages depended on prometheus version �.9, while all

other packages used �.1�. According to semversemversemversemversemversemversemversemversemversemversemversemversemver, these versions are

incompatible, so cargo linked both versions into the binary,

introducing two implicit registries. We exposed only the �.1�

version registry over the HTTP interface. As you correctly guessed,

the missing components recorded metrics to the �.9 registry.

Passing loggers, metrics registries, and async runtimes explicitly

turns a runtime bug into a compile-time error. Switching to explicit

passing the metrics registry helped me �nd and �x the bug.

The o�cial documentation of the venerable slogslogslogslogslogslogslogslogslogslogslogslogslog package also

recommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitlyrecommends passing loggers explicitly:

The reason is: manually passing Logger gives maximum

�exibility. Using s�og_scope ties the logging data structure to

the stacktrace, which is not the same a logical structure of your

https://crates.io/crates/prometheus
https://crates.io/crates/prometheus
https://docs.rs/prometheus/0.10.0/src/prometheus/registry.rs.html#307-317
https://docs.rs/prometheus/0.10.0/src/prometheus/registry.rs.html#307-317
https://semver.org/
https://semver.org/
https://crates.io/crates/slog
https://crates.io/crates/slog
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around

☛☛☛☛☛☛☛☛☛☛☛☛☛

so�ware. Especially libraries should expose full �exibility to

their users, and not use implicit logging behaviour.

Usually Logger instances �t pretty neatly into data structures in

your code representing resources, so it’s not that hard to pass

them in constructors, and use in�o!(se��.�og, ���)

everywhere.

s�ogs�ogs�ogs�ogs�ogs�ogs�ogs�ogs�ogs�ogs�ogs�ogs�og���������������������������������������

By passing state implicitly, you gain temporary convenience but

make your code less clear, less testable, and more error-prone.

Every type of resource we passed implicitly caused hard-to-

diagnose issues and wasted a lot of engineering time.

People in other programming communities also realized that global

loggers are evil. You might enjoy reading Logging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a StaticLogging Without a Static

LoggerLoggerLoggerLoggerLoggerLoggerLoggerLoggerLoggerLoggerLoggerLoggerLogger.

Deduplicate dependencies.

Cargo makes it easy to add dependencies, but this convenience

comes with a cost. You might accidentally introduce incompatible

version of the same package.

Multiple versions of the same package might result in correctness

issues, especially with packages with zero major version component

(�.�.z). If you depend on versions �.1 and �.2 of the same package

in a single binary, cargo will link both versions into the executable.

If you ever pulled your hair o� trying to �gure out why you get that

“there is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor runningthere is no reactor running” error, you know how painful these

issues can be to debug.

Workspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependenciesWorkspace dependencies and cargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo updatecargo update will help you keep your

dependency graph in order.

2

https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://github.com/slog-rs/slog/wiki/FAQ#do-i-have-to-pass-logger-around
https://www.yegor256.com/2019/03/19/logging-without-static-logger.html
https://www.yegor256.com/2019/03/19/logging-without-static-logger.html
https://www.yegor256.com/2019/03/19/logging-without-static-logger.html
https://www.yegor256.com/2019/03/19/logging-without-static-logger.html
https://github.com/awslabs/aws-lambda-rust-runtime/issues/266
https://github.com/awslabs/aws-lambda-rust-runtime/issues/266
https://doc.rust-lang.org/cargo/reference/workspaces.html#the-dependencies-table
https://doc.rust-lang.org/cargo/reference/workspaces.html#the-dependencies-table
https://doc.rust-lang.org/cargo/commands/cargo-update.html
https://doc.rust-lang.org/cargo/commands/cargo-update.html

☛☛☛☛☛☛☛☛☛☛☛☛☛

You do not have to unify the feature sets for the same dependency

across the workspace packages. Cargo compiles each dependency

version once, thanks to the feature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cationfeature uni�cation mechanism.

Put unit tests into separate �les.

Rust allows you to write unit tests right next to your production

code.

⊕

pub �n �robnica�e(x: &Foo) �� u32 {
 �odo!("i�p�e�en� �robnica�ion")
}

��c�g(�es�)]
�od �es�s {
 use super��*;

 ���es�]
 �n �es�_�robnica�ion() {
 asser�!(�robnica�e(&Foo��ne�()), 5);
 }
}

This feature is very convenient, but it can slow down test

compilation time. Cargo build cache can get confused when you

modify the �le, tricking cargo into re-compiling the crate under

both dev and �es� pro�les, even if you touched only the test part. By

trial and error, we discovered that the issue does not occur if the

tests live in a separate �le.

⊕

pub �n �robnica�e(x: &Foo) �� u32 {
 �odo!("i�p�e�en� �robnica�ion")
}

�� The con�en�s o� �he �odu�e �oved �o �oo/�es�s.rs.
��c�g(�es�)]

https://doc.rust-lang.org/cargo/reference/features.html#feature-unification
https://doc.rust-lang.org/cargo/reference/features.html#feature-unification

�od �es�s;

This technique tightened our edit-check-test loop and made the

code easier to navigate.

Common pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfallsCommon pitfalls

This section describes common issues Rust newcomers might run

into. I experienced these issues myself and saw several colleagues

struggling with them.

Confusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packagesConfusing crates and packages

Imagine you have package i�age-�agic de�ning a library for image

processing and providing a command-line utility for image

transformation called �rans�ogri��. Naturally, you want to use the

library to implement �rans�ogri��.

⊕

[package]
na�e = "i�age-�agic"
version = "1.�.�"
edi�ion = 2�18

[�ib]

[[bin]]
na�e = "�rans�ogri��"
pa�h = "src/�rans�ogri��.rs"

dependencies���

Now you open �rans�ogri��.rs and write something like the

following:

use cra�e��{I�age, �rans�or�_i�age}; ��< Co�pi�e error.

The compiler will become upset and tell you something like

error[E�432]: unreso�ved i�por�s `cra�e��I�age`, `cra�e���rans�or�_i�age`
 ��� src/�rans�ogri��.rs:1�13
 |
1 | use cra�e��{I�age, �rans�or�_i�age};
 | ^^^^^ ^^^^^^^^^^^^^^^ no `�rans�or�_i�age` in �he roo�
 | |
 | no `I�age` in �he roo�

Oh, how is that? Aren’t �ib.rs and �rans�ogri��.rs in the same

crate? No, they are not. The i�age-�agic package de�nes two crates:

a library crate named i�age_�agic (note that cargo replaced the

dash in the package name with an underscore) and a binary crate

named �rans�ogri��.

So when you write use cra�e��I�age in �rans�ogri��.rs, you tell

the compiler to look for the type de�ned in the same binary. The

i�age_�agic crate is just as external to �rans�ogri�� as any other

library would be, so we have to specify the library name in the use

declaration:

use i�age_�agic��{I�age, �rans�or�_i�age}; ��< OK.

�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies�uasi-circular dependencies

To understand this issue, we’ll �rst learn about Cargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�lesCargo build pro�les.

Build pro�les are named compiler con�gurations. For example:

release

The pro�le for production binaries. Highest

optimization level, disabled debug assertions, long

https://doc.rust-lang.org/cargo/reference/profiles.html
https://doc.rust-lang.org/cargo/reference/profiles.html

compile times. Cargo uses this pro�le when you run

cargo bui�d ��re�ease.

dev

The pro�le for the normal development cycle. Debug

asserts and over�ow checks are enabled, optimizations

are disabled for faster compile times. Cargo uses this

pro�le when you run cargo bui�d.

test

Mostly the same as the dev pro�le. When you test a

library crate, cargo builds the library with the �es�

pro�le and injects the main function executing the test

harness. This pro�le is enabled when you run cargo

�es�. Cargo builds dependencies of the crate under test

using the dev pro�le.

Imagine now that you have a package with a library �oo. You want

good test coverage and the tests to be easy to write. So you

introduce another package with many test utilities for �oo, �oo-

�es�-u�i�s.

It also feels natural to use �oo-�es�-u�i�s for testing the �oo itself.

Let’s add �oo-�es�-u�i�s as a dev dependency of �oo.

⊕

[package]
na�e = "�oo"
version = "1.�.�"
edi�ion = "2�18"

[�ib]

[dev-dependencies]
�oo-�es�-u�i�s = { pa�h = "��/�oo-�es�-u�i�s" }

⊕

[package]

na�e = "�oo-�es�-u�i�s"
version = "1.�.�"
edi�ion = "2�18"

[�ib]

[dependencies]
�oo = { pa�h = "��/�oo" }

Wait, didn’t we create a dependency cycle? �oo depends on �oo-

�es�-u�i�s that depends on �oo, right?

There is no circular dependency because cargo compiles �oo twice:

once with dev pro�le to link with �oo-�es�-u�i�s and once with test

pro�le to add the test harness.

⊕

foo-test-utils (dev)

foo (test)

incompatible

foo (dev)

Time to write some tests!

⊕

use �oo��Foo;

pub �n �ake_�es�_�oo() �� Foo {
 Foo {
 na�e: "John Doe".�o_s�ring(),
 age: 32,
 }
}

⊕

��derive(Debug)]
pub s�ruc� Foo {
 pub na�e: S�ring,
 pub age: u32,
}

�n priva�e_�un(x: &Foo) �� u32 {
 x.age / 2
}

pub �n �robnica�e(x: &Foo) �� u32 {
 �odo!("co�p�e�e �robnica�ion")
}

���es�]
�n �es�_priva�e_�un() {
 �e� x = �oo_�es�_u�i�s���ake_�es�_�oo();
 priva�e_�un(&x);
}

However, when we try to run cargo �es� -p �oo, we get a cryptic

compile error:

error[E�3�8]: �is�a�ched ��pes
 ��� src/�ib.rs:14�17
 |
14 | priva�e_�un(&x);
 | ^^ expec�ed s�ruc� `Foo`, �ound s�ruc� `�oo��Foo`
 |
 = no�e: expec�ed re�erence `&Foo`

 �ound re�erence `&�oo��Foo`

What could that mean? The compiler tells us that type de�nitions in

the test and the dev versions of �oo are incompatible. Technically,

these are di�erent, incompatible crates even though these crates

share the name.

The way out of trouble is to de�ne a separate integration test crate

in the �oo package and move the tests there. This approach allows

you to test only the public interface of the �oo library.

⊕

���es�]
�n �es�_�oo_�robnica�ion() {
 �e� �oo = �oo_�es�_u�i�s���ake_�es�_�oo();
 asser�_eq!(�oo���robnica�e(&�oo), 2);
}

The test above compiles �ne because cargo links the test and

�oo_�es�_u�i�s with the dev version of �oo.

⊕

foo-test-utils (dev)

foo_test (test)

foo (dev)

�uasi-circular dependencies are confusing. They also increase the

incremental compilation time considerably. My advice is to avoid

them when possible.

ConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusionConclusion

In this article, we looked at Rust’s code organization tools. The key

takeaways:

Understand the di�erence between modules, crates, and

packages.

Rust’s module system is convenient, but packing many

modules into a single crate degrades the build time.

Factoring the code into many cohesive packages is the most

scalable approach.

All implicit state is nasty.

Further readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther readingFurther reading

Discuss this article on r/rustr/rustr/rustr/rustr/rustr/rustr/rustr/rustr/rustr/rustr/rustr/rustr/rust.

Alexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey KladovAlexey Kladov wrote a fantastic blog post series on the same

topic, One Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of RustOne Hundred Thousand Lines of Rust.

Similar articles

Designing error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in RustDesigning error types in Rust

When Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurtsWhen Rust hurts

Tutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structuresTutorial: stable-structures

Scaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with BazelScaling Rust builds with Bazel

https://www.reddit.com/r/rust/comments/s818q3/blog_post_rust_at_scale_packages_crates_and/
https://www.reddit.com/r/rust/comments/s818q3/blog_post_rust_at_scale_packages_crates_and/
https://github.com/matklad
https://github.com/matklad
https://matklad.github.io/2021/09/05/Rust100k.html
https://matklad.github.io/2021/09/05/Rust100k.html
https://mmapped.blog/posts/12-rust-error-handling.html
https://mmapped.blog/posts/12-rust-error-handling.html
https://mmapped.blog/posts/15-when-rust-hurts.html
https://mmapped.blog/posts/15-when-rust-hurts.html
https://mmapped.blog/posts/14-stable-structures.html
https://mmapped.blog/posts/14-stable-structures.html
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html

←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater←Square joy: trapped rainwater
A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→A swarm of replicated state machines→

©Roman Kashitsyn
Source CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource Code

https://mmapped.blog/posts/04-square-joy-trapped-rain-water.html
https://mmapped.blog/posts/04-square-joy-trapped-rain-water.html
https://mmapped.blog/posts/02-ic-state-machine-replication.html
https://mmapped.blog/posts/02-ic-state-machine-replication.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog

