MMAP(BLOG) POSTS ABOUT ATOM FEED

Designing error types in Rust

e 2022-11-15 < 2022-11-16 @

Introduction
Libraries vs. applications
Design goals
Prefer specific enums
Reserve panics for bugs in your code
Lift input validation
Implement std::error:Error
Define errors in terms of the problem, not a solution
Do not wrap errors, embed them

Resources

Introduction

If T had to pick my favorite Rust language feature, that would be its
systematic approach to error handling. Sum types, generics (such as
Result<T, E>), and a holistic standard library design perfectly!
match my obsession with edge cases. Rust error handling is so good
that even Haskell looks bleak and woefully unsafe2 This article
explains how I approach errors when I design library interfaces in
Rust.

Libraries vs. applications

https://mmapped.blog/index.html
https://mmapped.blog/index.html
https://mmapped.blog/posts.html
https://mmapped.blog/posts.html
https://mmapped.blog/about.html
https://mmapped.blog/about.html
https://mmapped.blog/feed.xml
https://mmapped.blog/feed.xml
https://mmapped.blog/posts/12-rust-error-handling.html
https://mmapped.blog/posts/12-rust-error-handling.html
https://www.reddit.com/r/rust/comments/yvdz6l/blog_post_designing_error_types_in_rust
https://www.reddit.com/r/rust/comments/yvdz6l/blog_post_designing_error_types_in_rust
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://doc.rust-lang.org/std/result/enum.Result.html
https://haskell.org/
https://haskell.org/

My approach to errors differs depending on whether I am writing a
general-purpose library, a background daemon, or a command-line

tool.

Applications interface humans. Applications do their job well when
they resolve issues without human intervention or, if automatic
recovery is impossible or undesirable, provide the user with a clear

explanation of how to resolve the issue.

Library code interfaces other code. Libraries do their job well when
they recover from errors transparently and provide programmers

with a complete list of error cases from which they cannot recover.

This guide targets library design because that is the area with which
[am most familiar. However, the core principle of empathy applies
equally well to designing machine-machine, human-machine, and

human-human interfaces.

Design goals

I didn’t want to call these guidelines, and I didn’t want to call
these rules. I wanted them to be goals. These are the things that
you should strive for in your code, that are not always easy to
accomplish. And maybe you can’t always pull them off. But the

closer you come, the better your code will be.

Sean Parent, “C++ Seasoning”

Most issues in the error type design stem from the same root:
making error cases easy for the code author at the expense of the
caller. All the strategies I describe in this article are applications of

the following mantra:

https://youtu.be/W2tWOdzgXHA?t=107
https://youtu.be/W2tWOdzgXHA?t=107

- Be empathetic to your user.

Imagine yourself having to handle the error. Could you write robust
code given the error type and its documentation? Could you

translate the error into a message the end user can understand?

Prefer specific enums

Applying familiar error-handling techniques is tempting if you
come to Rust from another language. A single error type might

seem natural if you wrote a lot of Go.

pub fn frobnicate(n: u64) — anyhow::Result<String> { /* .. x/ }

If you hardened your character with C++ or spent a lot of time
working with grpc, having a humongous global error type might

seem like a good idea.

pub enum ProjectWideError {
InvalidInput,
DatabaseConnectionError,
Unauthorized,
FileNotFound,
/o

I

pub fn frobnicate(n: ué4) — Result<String, ProjectWideError> { /

These approaches might work fine for you, but I found them
unsatisfactory for library design? in the long run: they facilitate
propagating errors (often with little context about the operation that

caused the error), not handling errors.

https://go.dev/
https://go.dev/
https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html

When it comes to interface clarity and simplicity, nothing beats
algebraic data types (ADTs). Let us use the power of ADTs to fix the

frobnicate function interface.

pub enum FrobnicateError {
/// Frobnicate does not accept inputs above this number.
InputExceeds (u64),
/// Frobnicate cannot work on mondays. Court order.
CannotFrobnicateOnMondays,

}

pub fn frobnicate(n: u64) — Result<String, FrobnicateError> { /*

Now the type system tells the readers what exactly can go wrong,

making handling the errors a breeze.

You might think, “T will never finish my project if I define a new
enum for each function that can fail” In my experience, expressing
failures using the type system takes less work than documenting all
the quirks of the interface. Specific types make writing good
documentation easier. They repay their weight in gold when you

start testing your code.

Feel free to introduce distinct error types for each function you
implement. I am still looking for Rust code that went overboard

with distinct error types.

#Htest]
fn test_unfrobnicatable() {

assert_eq! (FrobnicateError:: InputExceeds (MAX_FROB_INPUT), frobn
I

#Htest]
fn test_frobnicate_on_mondays() {
sleep_until(next_monday());
assert_eq! (FrobnicateError::CannotFrobnicateOnMondays, frobnica

}

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Algebraic_data_type

Reserve panics for bugs in your code

The panic! macro is used to construct errors that represent a bug

that has been detected in your program.

The Rust Standard Library, When to use panic! vs Result.

The primary purpose of panics in Rust is to indicate bugs in your
program. Resist the temptation to use panics for input validation if
there is a chance that the inputs come from the end user, even if you
document panics meticulously. People rarely read documentation;
they can easily miss your warnings. Use the type system to guide
them.

/// Frobnicates an integer.

/1!

/// # Panics

///

/// This function panics if

/// * the "n° argument is greater than [MAX_FROB_INPUT].
/// * you call it on Monday.

pub fn frobnicate(n: ué4) — String { /* .. %/ }

Feel free to use panics and assertions to check invariants that must

hold in your code.

pub fn remove_from_tree<K: 0rd, V>(tree: &mut Tree<K, V>, key: &K
let maybe_value = /* .. x/;
debug_assert! (tree.balanced());
debug_assert! (!tree.contains(key));
maybe_value

You can panic on invalid inputs if the failure indicates a severe bug

https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html#when-to-use-panic-vs-result
https://doc.rust-lang.org/std/macro.panic.html
https://doc.rust-lang.org/std/macro.panic.html
https://doc.rust-lang.org/std/macro.panic.html

in the caller’s program. Good examples are out-of-bound indices or
trait implementations that do not obey laws (e.g., if an 0rd type

violates the total order requirements).

Lift input validation

Good functions do not panic on invalid inputs. Great functions do
not have to validate inputs. Let us consider the following interface

of a function that sends an email.

pub enum SendMailError {
/// One of the addresses passed to send_mail 1S invalid.
MalformedAddress { address: String, reason: String },
/// Failed to connect to the mail server.
FailedToConnect { source: std::io::Error, reason: String },
/* o x/
}.
pub fn send_mail(to: &str, cc: &[&str], body: &str) — SendMailEr

Note that our send_mail function does at least two things: validating
email addresses and sending emails. Such a state of affairs becomes
tiresome if you have many functions that expect valid addresses as
inputs. One solution is to pepper the code with more types. In this
case, we can introduce the EmailAddress type that holds only valid

email addresses.

/// Represents valid email addresses.
pub struct EmailAddress(String);

impl std::str::FromStr for EmailAddress {

type Err = MalformedEmailAddress;

fn from_str(s: &str) — Result<Self, Self::Err> { /* .. x/ }
}.

pub enum SendMailError {
// no more InvalidAddress!
FailedToConnect { source: std::io::Error, reason: String },

/% x/

https://doc.rust-lang.org/1.62.0/std/ops/trait.Index.html#panics
https://doc.rust-lang.org/1.62.0/std/ops/trait.Index.html#panics
https://doc.rust-lang.org/1.62.0/std/cmp/trait.Ord.html
https://doc.rust-lang.org/1.62.0/std/cmp/trait.Ord.html
https://doc.rust-lang.org/1.62.0/std/cmp/trait.Ord.html
https://en.wikipedia.org/wiki/Total_order
https://en.wikipedia.org/wiki/Total_order

1

pub fn send_mail(
to: &EmailAddress,
cc: &[&EmailAddress],
body: &str,

) — SendMailError { /* .. %/ }

If we add more functions working with valid addresses, these
functions will not have to run the validation logic and return
address validation errors. We also enable the caller to perform
address validation earlier, closer to where the program receives that

address.

Implement std::error:Error

Implementing the std::error::Error trait for error types is like

being polite. You should do it even if you do not mean it.

Some callers might care about something other than your beautiful
design, shoveling your errors into a Box<Error> or anyhow :: Result
and moving on. They may be building a little command line tool
that does not need to handle machines with 4096 CPUs. If you
implement std::error::Error for your error types, you will make

their lives easier.

If you find that implementing the std::error::Error trait is too

much work, try using the thiserror package.

(53]

https://doc.rust-lang.org/std/error/trait.Error.html
https://doc.rust-lang.org/std/error/trait.Error.html
https://doc.rust-lang.org/std/error/trait.Error.html
https://xkcd.com/619/
https://xkcd.com/619/
https://crates.io/crates/thiserror
https://crates.io/crates/thiserror
https://crates.io/crates/thiserror

use thiserror::Error;

t#H{derive(Error, Debug)]

pub enum FrobnicateError {
#Herror("cannot frobnicate numbers above {0}")]
InputExceeds (u64),

#Herror("thy shall not frobnicate on mondays (court order)")]
CannotFrobnicateOnMondays,

1

Define errors in terms of the problem, not a solution

The most common shape of errors I see looks like the following:

pub enum FetchTxError {
IoError(std::io::Error),
HttpError(http2::Error),
SerdeError(serde_chor::Error),
OpensslLError(openssl::ssl::Error),

pub fn fetch_signed_transaction(
id: Txid,
pk: &[u8],
) — Result<0Option<Tx>, FetchTxError> { /* .. x/ }

This error type does not tell the caller what problem you are solving
but how you solve it. Implementation details leak into the caller’s

code, causing much pain:

Such error types encourage unhealthy coding patterns when
low-level errors travel up the call stack with minimal context
attached. The following error message comes from one
program I have to use that often leaves me puzzled and

depressed.

I0 error: Os { code: 2, kind: NotFound, message: "No such file or

Your clients must read the leaked dependencies

documentation to learn about possible error cases. Look at
openssl::ssl::Error, for example. Can you devise a good
recovery strategy without knowing which opensst library

function returned this error?

Your clients must add openssl and serde_cbor to direct
dependencies to handle your errors. If you decide to switch
from openssl to Libressl or from serde_cbor to ciborium,

your clients will have to adapt their code.

Let us redesign the FetchTxError type, focusing on the well-being of

fellow programmers calling that code.

pub enum FetchTxError {
/// Could not connect to the server.
ConnectionFailed {
url: String,
reason: String,
cause: Option<std::io::Error>, // ©

L

/// Cannot find transaction with the specified txid.
TxNotFound(Txid), // @

/// The object data is not valid CBOR.
InvalidEncoding { // ®
data: Bytes,
error_offset: Option<usize>,
error_message: String,

Ly

/// The public key is malformed.
MalformedPublicKey { // @
key_bytes: Vec<u8>,
reason: String,

}

/// The transaction signature does not match the public key.
SignatureVerificationFailed { // @

txid: Txid,

pk: Pubkey,

sig: Signature,

,

https://docs.rs/openssl/0.10.42/openssl/ssl/struct.Error.html
https://docs.rs/openssl/0.10.42/openssl/ssl/struct.Error.html
https://docs.rs/openssl/0.10.42/openssl/ssl/struct.Error.html

pub fn fetch_signed_transaction(
id: Txid,
pk: &[u8],
) — Result<Tx, FetchTxError> { /* .. %/ }

The new design offers several of improvements:

The ConnectionFailed constructor wraps a low-level
std::io::Error error. Wrapping works fine here because

there is enough context to understand what went wrong.

We replaced the 0Option type with an explicit error
constructor, TxNotFound, clarifying the meaning of the None

case.

The InvalidEncoding constructor hides the details of the
decoding library we use. We can now replace serde_cbor

without breaking other people’s code.

We replaced generic crypto errors with two specific cases:
TxidMismatch and SignatureVerificationFailed. Our fellow
programmer has more context to make rational decisions: the
MalformedPublicKey case indicates that the user supplied the
wrong key. The SignatureVerificationFailed case can
indicate that the peer tampered with the data, so we should

try connecting to another peer.

If I needed to call fetch_signed_transaction, I prefer the latter
interface. Which interface would you choose? Which interface will

be easier to test?

Do not wrap errors, embed them

We have already seen the tactic of embedding error cases in the
previous section. This tactic eases interface comprehension so much

that it deserves more attention.

Imagine that we are working on a little library that verifies

cryptographic signatures. We want to support ECDSA and BLS

signatures. We start from the path of the least resistance.

pub enum Algorithm { Ecdsa, Bls12381 };

pub enum VerifySigError {
EcdsaError { source: ecdsa::Error, context: String },
BLsError { source: blsl12_381_sign::Error, context: String },

}

pub fn verify_sig(
algorithm: Algorithm,
pk: Bytes,
sig: Bytes,
msg_hash: Hash,
) — Result<(), VerifySigError> { /* .. x/ }

There are a few issues with that verify_sig function design.

There is an implicit assumption that if the caller passes the
Ecdsa as the algorithm, the error can be only EcdsaError. It
should be clear from the semantics, but the type system does

not enforce this invariant.
The error type leaks implementation details to the caller.

If we extend the list of supported algorithms, the caller might
have to modify all call sites.

We can address these issues by removing one layer of nesting and
embedding error cases from ecdsa::Error and
bls12_381_sign::Error into the VerifySigError error type. The
result is a clear and self-descriptive error type conveying to your

callers that you care about them.

pub enum Algorithm { Ecdsa, Bls12381 };

pub enum VerifySigError {
MalformedPublicKey { pk: Bytes, reason: String },

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/BLS_digital_signature
https://en.wikipedia.org/wiki/BLS_digital_signature

MalformedSignature { sig: Bytes, reason: String },
SignatureVerificationFailed {
algorithm: Algorithm,
pk: Bytes,
sig: Bytes,
reason: String
}
/.
Iy

pub fn verify_sig(
algorithm: Algorithm,
pk: Bytes,
sig: Bytes,
msg_hash: Hash,
) — Result<(), VerifySigError> { /* .. x/ }

There are a few cases when wrapping errors makes sense:

Wrapping std::io::Error is acceptable if you include
enough context, such as the attempted operation and the
paths involved. std::io::Error does not bring extra
dependencies and is familiar to any seasoned Rust
programmer, so it adds little cognitive load. std::io::Errors
also can contain low-level OS error codes that can help

diagnose tricky cases.

It is often acceptable to convert a lower-level error to a string
and attach that string to your errors, as long as the
containing error type constructor is descriptive enough.
However, you should check that these strings do not contain

sensitive information, such as email addresses or secret keys.

You might prefer to wrap a Box<dyn Error> instead of converting
the error to string so the caller can downcast the error, delay the
conversion to string, and traverse the error stack using the source
method. I found that boxing errors does not help me much in

practice:

If the caller needs to access information from the original

https://doc.rust-lang.org/std/io/struct.Error.html#method.raw_os_error
https://doc.rust-lang.org/std/io/struct.Error.html#method.raw_os_error
https://doc.rust-lang.org/1.62.0/std/error/trait.Error.html#method.downcast
https://doc.rust-lang.org/1.62.0/std/error/trait.Error.html#method.downcast
https://doc.rust-lang.org/1.62.0/std/error/trait.Error.html#method.source
https://doc.rust-lang.org/1.62.0/std/error/trait.Error.html#method.source
https://doc.rust-lang.org/1.62.0/std/error/trait.Error.html#method.source

error programmatically, embed the relevant bits or add more

type constructors. Downcasting is a short-term solution.

The client must depend on the same semantic version of the
transitive dependency to downcast the error. The client code
can silently break if the versions diverge (8.3 in the client

code vs. 8.4 in your code, for example).

The error types become impossible to clone and serialize (my

errors often cross process boundaries).

Resources

There is a lot of research on error-handling approaches. Yet the
practical application of those ideas in real-world programming
interfaces is an art requiring good taste and human compassion.
The following resources made the most profound imprint on my

thinking about errors.

Catch me if you can: Looking for type-safe, hierarchical,
lightweight, polymorphic and efficient error management in
OCaml by David Teller, Arnaud Spiwack, and Till Varoquaux.
This article demonstrates how features of a high-level
functional language give rise to a powerful new way of

dealing with errors.

The Error vs. Exception article on Haskell Wiki has a few
through-provoking parallels between panics (called “errors”

in the article) and recoverable errors (called “exceptions”).

Parse, don’t validate by Alexis King is a beautiful

introduction to type-driven design and error handling.

The Trouble with Typed Errors by Matt Parsons. I share
Matt’s passion for precisely expressing errors in types, even
though I would not try to replicate his Haskell-specific ideas

in Rust.

https://web.archive.org/web/20110818020758/http://www.univ-orleans.fr/lifo/Members/David.Teller/publications/ml2008.pdf
https://web.archive.org/web/20110818020758/http://www.univ-orleans.fr/lifo/Members/David.Teller/publications/ml2008.pdf
https://web.archive.org/web/20110818020758/http://www.univ-orleans.fr/lifo/Members/David.Teller/publications/ml2008.pdf
https://web.archive.org/web/20110818020758/http://www.univ-orleans.fr/lifo/Members/David.Teller/publications/ml2008.pdf
https://web.archive.org/web/20110818020758/http://www.univ-orleans.fr/lifo/Members/David.Teller/publications/ml2008.pdf
https://web.archive.org/web/20110818020758/http://www.univ-orleans.fr/lifo/Members/David.Teller/publications/ml2008.pdf
https://wiki.haskell.org/Error_vs._Exception
https://wiki.haskell.org/Error_vs._Exception
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://www.parsonsmatt.org/2018/11/03/trouble_with_typed_errors.html
https://www.parsonsmatt.org/2018/11/03/trouble_with_typed_errors.html

You can discuss this article on Reddit.

Similar articles

When Rust hurts
Rust at scale: packages, crates, and modules
Tutorial: stable-structures

Scaling Rust builds with Bazel

«IC internals: the ICP ledger
IC internals: Internet Identity storage—

©Roman Kashitsyn

Source Code

https://mmapped.blog/posts/13-icp-ledger.html
https://mmapped.blog/posts/13-icp-ledger.html
https://mmapped.blog/posts/11-ii-stable-memory.html
https://mmapped.blog/posts/11-ii-stable-memory.html
https://www.reddit.com/r/rust/comments/yvdz6l/blog_post_designing_error_types_in_rust
https://www.reddit.com/r/rust/comments/yvdz6l/blog_post_designing_error_types_in_rust
https://mmapped.blog/posts/15-when-rust-hurts.html
https://mmapped.blog/posts/15-when-rust-hurts.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://mmapped.blog/posts/03-rust-packages-crates-modules.html
https://mmapped.blog/posts/14-stable-structures.html
https://mmapped.blog/posts/14-stable-structures.html
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
https://mmapped.blog/posts/17-scaling-rust-builds-with-bazel.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog

