
����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����)����(����) ����������������������������������������������������������������� ����������������������������������������������������������������� ���� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ����

Effective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docsEffective design docs
✏ 2024-09-15   ✂ 2024-09-16

Types of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docs

Why write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docs
To put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in order

To correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes early

To communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate context

To onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team members

To record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record history

When to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design doc

How to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design doc

What should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design doc

Seeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedback

FAQFAQFAQFAQFAQFAQFAQFAQFAQFAQFAQFAQFAQ
Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?

ResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResources

➞➞➞➞➞➞➞➞➞➞①②③④⑤➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞➞

https://mmapped.blog/index.html
https://mmapped.blog/index.html
https://mmapped.blog/posts.html
https://mmapped.blog/posts.html
https://mmapped.blog/about.html
https://mmapped.blog/about.html
https://mmapped.blog/feed.xml
https://mmapped.blog/feed.xml
https://mmapped.blog/posts/31-effective-design-docs.html
https://mmapped.blog/posts/31-effective-design-docs.html


Design docs are a controversial topic, especially among agileagileagileagileagileagileagileagileagileagileagileagileagile

developersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopersdevelopers who “value working so�ware over comprehensive

documentation.” Yet, all engineering organizations I worked at in

the last decade, from tech giants to lean startups, employed writing

design docs as an essential part of the development process.

This article is an opinionated guide to writing design docs for

so�ware projects. It explains why and when to write design docs,

how to think like a researcher, how to put words on the page like

Neil Gaiman, and what we can learn from the publishing industry.

Types of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docsTypes of design docs

There are at least two types of documents that people call design

docs: a functional speci�cation describes what a system must do

from the user’s point of view, and a design doc describes a so�ware

architecture or an approach to solving a technical problem.

These types serve di�erent purposes and require di�erent

work�ows:

Functional specs describe the system from the user’s

perspective; design documents deal with its internals.

Functional specs describe the behavior of the entire system;

design docs focus on solving a speci�c problem.

Engineers write design documents for themselves, and

product managers write functional specs for diverse

audiences, such as engineers, external developers, and QA

sta�.

Functional specs must evolve with the product; design docs

are static.

https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/


The following table summarizes the di�erences.

���������� ���� ������ ���

Target audience Diverse Engineers
Abstraction level Interface Implementation

Author Product manager Engineers
Scope Entire system Speci�c problem

Evolution model Evolving Static

We can imagine a third document type: a technical speci�cation

describing the implementation details of the entire system and

evolving with it. Unfortunately, I’ve never seen this idea working:

The implementation moves too fast; a technical spec quickly

becomes obsolete.

The document’s ownership is unclear. Nobody knows (and

probably can’t) all aspects of a large system. When many

people own a document, nobody owns it.

The system’s source code is its most detailed technical

speci�cation.

This article deals with the second documentation type: design docs.

Why write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docsWhy write design docs

To put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in orderTo put thoughts in order

Writing is nature’s way of letting you know how sloppy your

thinking is.

Guindon, San Francisco Chronicle, �/�/�� Guindon

No matter how clear an idea seems in your head, the �rst attempt to

express it in writing turns it into mashed potatoes. This mysterious



property of writing is the main bene�t of writing a design doc. It

forces you to formulate your problem and a solution before you

�ddle with code. Even if nobody reads your design doc, you save

time by writing things down: If your architecture and interfaces

look bad on paper, the code implementing them will look even

worse.

To correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes earlyTo correct mistakes early

The cheapest mistakes are the ones you correct early. Your �rst

design will be �awed; a design doc will enable your colleagues to

point out �aws in your ideas and re�ne them before you invest

weeks in implementing them.

To communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate contextTo communicate context

One of my most frustrating experiences as a code reviewer was

when colleagues from another side of the globe asked me to

approve a sizeable controversial change that touched the interface

between our components. The di�s were all over the place, and the

system went in a direction that didn’t feel right. The change author

claimed everything should become clear once I see other (not yet

written) patches in the sequence. Yeah, sure.

According to Christian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian BirdChristian Bird and other scientists who studied code

reviews at Microso�, the biggest challenges reviewers face are large

code changes and understanding the reason for a change . When you

implement your designs in small incremental patches to address the

�rst challenge, a reference to the design doc in the change

description takes care of the second.

To onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team membersTo onboard new team members

Sociologist Karl Maton envisions optimal learning of a new concept

as riding a Semantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic waveSemantic wave. The learner starts with a high-level,

technical description of the concept, then unpacks details using

1

https://www.cabird.com/
https://www.cabird.com/
https://www.researchgate.net/publication/294799589_Semantic_waves_Context_complexity_and_academic_discourse
https://www.researchgate.net/publication/294799589_Semantic_waves_Context_complexity_and_academic_discourse


simpler context-dependent language, and returns to the high-level

description, enlightened (Maton calls this last step repacking) .

Design docs are among the best resources for onboarding new team

members. Instead of painfully deriving the purpose and structure of

a system from the code base, they can get a high-level overview

from a design doc, and then dive into the codebase with enough

mental hooks to anchor their discoveries.

To record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record historyTo record history

An engineering project shouldn’t be considered complete until it is

summarized and �led so that the information can be recalled or

used again.

W.J. King, Unwritten Laws of Engineering, second edition

Have you ever worked on a project that felt like the �ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey�ve-monkey

experimentexperimentexperimentexperimentexperimentexperimentexperimentexperimentexperimentexperimentexperimentexperimentexperiment? Everyone on the project does something in a peculiar

way, but nobody remembers why exactly, and everyone is afraid of

challenging the status quo.

Design docs are historical records of your team’s decisions and their

reasoning; they are a solution to Chesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fenceChesterton’s fence problem.

Thanks to these records, future designers will know whether the

constraints you codi�ed still apply to their context.

When to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design docWhen to write a design doc

Most changes don’t need a design doc. My heuristic is to start a

design doc when one of the following conditions is true:

The change requires more than two weeks of engineering

2

https://skeptics.stackexchange.com/questions/6828/was-the-experiment-with-five-monkeys-a-ladder-a-banana-and-a-water-spray-condu#6859
https://skeptics.stackexchange.com/questions/6828/was-the-experiment-with-five-monkeys-a-ladder-a-banana-and-a-water-spray-condu#6859
https://skeptics.stackexchange.com/questions/6828/was-the-experiment-with-five-monkeys-a-ladder-a-banana-and-a-water-spray-condu#6859
https://skeptics.stackexchange.com/questions/6828/was-the-experiment-with-five-monkeys-a-ladder-a-banana-and-a-water-spray-condu#6859
https://fs.blog/chestertons-fence/
https://fs.blog/chestertons-fence/


work.

The problem has multiple solutions, and the optimal choice is

not apparent.

The design involves non-trivial changes between so�ware

components.

Most importantly, write designs before you start implementing the

system. Documenting the system post-factum takes away most of

the bene�ts of writing a design doc. Furthermore, once the system

works, you’ll be too eager to move on and view documentation as a

drag, so the chance of producing anything of value becomes

in�nitesimal.

How to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design docHow to write a design doc

Writing papers is a primary mechanism for doing research (not

just for reporting it).

Simon Peyton Jones, How to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research PaperHow to Write a Good Research Paper

Most people hate writing and will do almost anything instead of

putting words on the page: read Slack, help colleagues, stare at

metrics dashboards, consume ungodly amounts of co�ee, or even

groom their Jira backlog. There is an easy �x for this problem:

schedule your writing sessions. Neil Gaiman allows himself to do

only two things during his writing sessions: sit in front of the

document and do nothing or write. A�er some time, putting words

in will seem more fun than just sitting there.

Unfortunately, engineers can’t always follow the same routines as

novelists. Fiction writers disengage from the world when they

create their masterpieces. So�ware designs conceived in isolation

https://youtu.be/WP-FkUaOcOM
https://youtu.be/WP-FkUaOcOM


look plausible on paper but disintegrate once they meet reality. To

avoid this trap, build prototypes—miniature versions of the system—

to test whether your ideas hold water.

Should you start by building prototypes or dra�ing the doc? The

research community has an answer. Design docs are not novels;

they are research papers: Your problem is to build or reshape a piece

of so�ware, and your goal is to convince yourself and your peers

that your plan is the best option. In his talk How to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a GoodHow to Write a Good

Research PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch PaperResearch Paper, Simon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton JonesSimon Peyton Jones, a former principal researcher

at Microso� Research, recommends starting with a paper and using

it to drive the research. This recommendation suggests a work�ow

alternating writing and prototyping:

Start with the background section. Explain the problem

you’re trying to solve, and enumerate your assumptions,

constraints, goals, and non-goals.

Lay out the design alternatives.

Research the alternatives in su�cient depth and build

prototypes when necessary. Go back and forth between

writing the doc and doing the research.

Pick the best design and describe it in detail. Explain why all

other options are worse.

Write the summary.

The summary should be the �rst section of a design doc, but you

write it last. You can’t summarize the research you haven’t done.

Even Mozart, who could envision large pieces of music in his head

and later record them on paper speckless in one sitting, composed

overtures for his operas only a�er �nishing the rest of the score; he

needed to know all the themes to create a perfect introduction into

his musical worlds. Famously, he wrote an overture for Don

Giovanni the night before the premiere.

https://youtu.be/WP-FkUaOcOM
https://youtu.be/WP-FkUaOcOM
https://youtu.be/WP-FkUaOcOM
https://youtu.be/WP-FkUaOcOM
https://simon.peytonjones.org/
https://simon.peytonjones.org/


What should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design docWhat should go into a design doc

There is no one-size-�ts-all template for design docs.⊕ Experiment

to �nd what works best for your organization. Most design docs

contain the following sections in one form or another:

Metadata. Place the author, creation time, and status near the

top of the document. The reader should know whether to

read it and whom to ask about it.

Summary. This section provides a bird’s-eye view of the

entire document: a single paragraph explaining the problem

and the solution in the simplest terms.

Context/Background. Explain the current state of a�airs and

the problem you aim to solve. This section should make

sense to a secondary audience, not only experts in the �eld.

Goals/Non-goals. State which aspects of the problem are

inside and outside the project scope. For example, in an early

version of a system, you might avoid handling performance

considerations or integrations with external systems.

Proposed design. Go into details of your key idea. Include

diagrams, schemas, and back-of-envelope calculations. Cover

all the signi�cant design aspects relevant to your �eld:

security, privacy, scalability, portability, observability,

accessibility, and backward compatibility.

Alternatives considered. Describe other design options you

considered and why you chose your primary option. Your

proposal is unlikely to be strictly better than alternatives on

all dimensions; list the upsides and downsides of each

approach. If possible, add a comparison table where one

dimension is design options, and another is design criteria

(complexity, cost, delivery time estimates, etc.).



Seeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedbackSeeking feedback

If nobody reads or comments on your design doc, you lose most of

the bene�ts of writing it. Unfortunately, tricking other people into

reading your writing is hard. As Steven Press�eld puts it, “nobodynobodynobodynobodynobodynobodynobodynobodynobodynobodynobodynobodynobody

wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.wants to read your sh*t.” Furthermore, making engineers re-read

new revisions of a document is nearly impossible.

When seeking feedback, we face a dilemma. If you request feedback

too early, your colleagues will point out the most obvious �aws and

probably never give your document another chance. On the other

hand, if you slave on a doc for weeks until it becomes “perfect,” you

will likely waste time developing bad ideas.

One of my colleagues found a solution to this dilemma during his

time at Jane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane StreetJane Street: each document writer should have a buddy.

Once the doc has enough substance, the buddy helps the author

polish the document before requesting feedback from a wider

audience. This approach is a miniature version of the publishing

industry work�ow, where the author iterates on the manuscript

with a dedicated editor before the text goes to print.

People �nd walls of text scary and procrastinate reading them. The

best way to make your doc readable is to keep it short and to the

point. Cut ruthlessly, make the structure apparent, and keep the

language simple. Another way to trick people into reading is to

make the document visually appealing. To combat monotonicity,

intersperse the text with diagrams, use lists, and be generous with

blank space. Refer to the ResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResources section for book

recommendations that can help you with structural and visual

components.

https://www.amazon.com/gp/product/B01GZ1TJBI
https://www.amazon.com/gp/product/B01GZ1TJBI
https://www.amazon.com/gp/product/B01GZ1TJBI
https://www.amazon.com/gp/product/B01GZ1TJBI
https://www.janestreet.com/
https://www.janestreet.com/


FAQFAQFAQFAQFAQFAQFAQFAQFAQFAQFAQFAQFAQ

Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?Should I update a design doc as the code evolves?

Probably not. Design doc captures your thinking at a speci�c point

in time. If the situation changes and you must revise the design,

write a new document referencing the original. Scientists don’t edit

their published papers; they write new ones.

However, feel free to modify the design doc if you change your

mind or discover new challenges during development. Editorial

changes that make the doc more accessible are also welcome.

ResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResourcesResources

designdocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.devdesigndocs.dev o�ers examples and templates of so�ware

design docs.

The “Painless Functional Speci�cations” articles by Joel

Spolsky cover many aspects of authoring a functional spec:

Part �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why BotherPart �: Why Bother, Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?Part �: What’s a Spec?, Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…Part �: But…

How?How?How?How?How?How?How?How?How?How?How?How?How?, Part �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: TipsPart �: Tips.

Trees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theoremsTrees, maps, and theorems contains excellent advice on all

steps of authoring a technical document, emphasizing

structure.

Bugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in WritingBugs in Writing gives you tactics for writing good technical

English. The previous book is about the forest and trees; this

one is about the leaves.

How to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a LotHow to Write a Lot teaches you how to become a productive

writer. In short, schedule your writing time and do writing-

related work during these sessions.

If you can read only one book on graphical design, let it be

https://www.designdocs.dev/
https://www.designdocs.dev/
https://www.designdocs.dev/
https://www.joelonsoftware.com/2000/10/02/painless-functional-specifications-part-1-why-bother/
https://www.joelonsoftware.com/2000/10/02/painless-functional-specifications-part-1-why-bother/
https://www.joelonsoftware.com/2000/10/03/painless-functional-specifications-part-2-whats-a-spec/
https://www.joelonsoftware.com/2000/10/03/painless-functional-specifications-part-2-whats-a-spec/
https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/
https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/
https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/
https://www.joelonsoftware.com/2000/10/04/painless-functional-specifications-part-3-but-how/
https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/
https://www.joelonsoftware.com/2000/10/15/painless-functional-specifications-part-4-tips/
https://www.principiae.be/X0100.php
https://www.principiae.be/X0100.php
https://www.amazon.com/gp/product/020137921X
https://www.amazon.com/gp/product/020137921X
https://www.amazon.com/gp/product/1433829738
https://www.amazon.com/gp/product/1433829738


←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde←Programming avant-garde
Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→Transaction models are programming paradigms→

The Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design BookThe Non-Designer’s Design Book.

Similar articles

ONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introductionONNX introduction

Box combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinatorsBox combinators

Transposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �lesTransposing tensor �les

The plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute patternThe plan-execute pattern

EnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentwareEnlightenmentware

©Roman Kashitsyn  
Source CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource CodeSource Code

https://mmapped.blog/posts/32-programming-avant-garde.html
https://mmapped.blog/posts/32-programming-avant-garde.html
https://mmapped.blog/posts/30-transaction-models.html
https://mmapped.blog/posts/30-transaction-models.html
https://www.amazon.com/gp/product/1566091594
https://www.amazon.com/gp/product/1566091594
https://mmapped.blog/posts/37-onnx-intro.html
https://mmapped.blog/posts/37-onnx-intro.html
https://mmapped.blog/posts/41-box-combinators.html
https://mmapped.blog/posts/41-box-combinators.html
https://mmapped.blog/posts/33-transposing-tensor-files.html
https://mmapped.blog/posts/33-transposing-tensor-files.html
https://mmapped.blog/posts/29-plan-execute.html
https://mmapped.blog/posts/29-plan-execute.html
https://mmapped.blog/posts/28-enlightenmentware.html
https://mmapped.blog/posts/28-enlightenmentware.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog
https://github.com/roman-kashitsyn/mmapped.blog

