
Home Publications / Talks

August 31 2023
by Marc-Andre Giroux

I recently had to investigate a memory leak in apollo/router, a
federated GraphQL gateway written in Rust. The first question I had
was how to get a memory profile out of our running instances. For
several reasons I decided to use Jemalloc's Heap Profiling tooling to
do so:

• apollo/router uses jemalloc on linux by default
• jemalloc 's has a relatively low performance overhead compared to
other tools.
• ByteHound sounded amazing but could not get it to work with
apollo/router , something about it using V8 under the hood.

Took me a bit to get all the pieces working, so hopefully this post
saves someone some time.

To use jemalloc in Rust these days we must do it explicitely using
the #[global_allocator] attribute. rustc used to link against
jemalloc on some platforms, but that's not the case anymore.

Cargo.toml

[dependencies]

[target.'cfg(not(target_env = "msvc"))'.dependencies]

tikv-jemallocator = "0.5"

Then in your main.rs , start using jemallocator as your
#[global_allocator] :

// main.rs

#[cfg(not(target_env = "msvc"))]

use tikv_jemallocator::Jemalloc;

https://magiroux.com/
https://magiroux.com/
https://magiroux.com/publications
https://magiroux.com/publications
https://github.com/apollographql/router
https://github.com/apollographql/router
https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking
https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Leak-Checking

#[cfg(not(target_env = "msvc"))]

#[global_allocator]

static GLOBAL: Jemalloc = Jemalloc;

One more thing, jemalloc needs to be configured with --enable-prof

for heap profiling to work. The tikv-jemallocator crate can do that
in its build script by adding the profiling feature:

[target.'cfg(not(target_env = "msvc"))'.dependencies]

tikv-jemallocator = { version = "0.5", features = ["profiling"] }

If you read jemalloc's docs, the heap profiles are configured through
the MALLOC_CONF environment variable.

export MALLOC_CONF="prof:true,prof_prefix:jeprof.out"

For my specific use case, I was using this config:

export MALLOC_CONF=prof:true,lg_prof_interval:30,lg_prof_sample:21,prof_prefix:/tmp/j

• prof:true : enables profiling
• lg_prof_interval : 2MB interval between allocation samples, in
bytes of allocation acitvity (2^21)
• lg_prof_sample:21 : will dump a heap profile after 1GB allocations
(2^30)
• prof_prefix : a prefix for the heap dump files.

I deployed all this and waited��� and��� .

After a while I discovered that tikv-jemallocator configures
jemalloc with a (--with-jemalloc-prefix=_rjem_). This also
influences the env var. The actual config should look like this:

export _RJEM_MALLOC_CONF=prof:true,lg_prof_interval:30,lg_prof_sample:21,prof_prefix:

https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Heap-Profiling
https://github.com/jemalloc/jemalloc/wiki/Use-Case%3A-Heap-Profiling

Once that was deployed I started getting a bunch of heap dumps
appearing in /tmp/jeprof* . To get those sweet SVGs I first got the
jeprof utility on the machine, but also needed dot from
graphviz :

$ apt install libjemalloc-dev graphviz

Once I got those on the machine I was profiling, I ran this command
to generate a graph like this one:

$ jeprof --svg > heapdump.svg

As you can see, getting those heapdumps requires running your
executable with prof:true , which by default will start profiling
right away. This definitely has an overhead, and we should probably
not run this on all our instances serving real production traffic.

At the same time, it's annoying to have to start up a new executable
to get a profile. There are situations where we'd love to get
insights into a long running process, or getting profiles during very
specific moments only.

Thankfully, jemalloc's got our back with the prof.active option:

 opt.prof_active (bool) r- [--enable-prof]

 Profiling activated/deactivated. This is a secondary control mechanism

 that makes it possible to start the application with profiling enabled

 (see the opt.prof option) but inactive, then toggle profiling at any

 time during program execution with the prof.active mallctl.

 This option is enabled by default.

So the idea is that:

• opt.prof generally enables or disables profiling memory allocation
activity
• prof_active activates or deactivates the profiling.

You may wonder if having prof:true but prof_active:false still has

https://github-production-user-asset-6210df.s3.amazonaws.com/1919498/263556545-26753a47-fa8e-4379-8612-13e370417da6.svg
https://github-production-user-asset-6210df.s3.amazonaws.com/1919498/263556545-26753a47-fa8e-4379-8612-13e370417da6.svg

a considerable overhead. I was wondering the same and found this
insightful comment in an email thread from 2014:

Yes, you can use jemalloc's heap profiling as you describe, with
essentially no performance impact while heap profiling is inactive.
You may even be able to leave heap profiling active all the time
with little performance impact, depending on how heavily your
application uses malloc. At Facebook we leave heap profiling active
all the time for a wide variety of server applications; there are
only a couple of exceptions I'm aware of for which the performance
impact is unacceptable (heavy malloc use, ~2% slowdown when heap
profiling is active).

So depending on your use-case, this may be totally fine.

Ok, moving on, how do we enable/disable prof_active from our rust
app? jemalloc gives us the API to control some of its options. The
main thing we'll use here is the mallctl() function:

int mallctl(const char *name,

 void *oldp,

 size_t *oldlenp,

 void *newp,

 size_t newlen);

mallctl takes the option name as a parameter as a period-separated
name, in our case, that's prof.active . We can use mallctl to both
read and write to options.

• To , we'll pass a pointer oldp to memory that will contain the
value we're reading, and set oldlenp to a pointer to the length of
oldp . We'll pass a null ptr and 0 to the rest of the arguments.

• To , we'll pass null pointers to both oldp and oldlenp , a
pointer to the new value in newp , and a pointer to its size in
newlen .

In Rust, the tikv-jemallocator-sys crate already gives us the
binding to mallctl() .

http://jemalloc.net/mailman/jemalloc-discuss/2014-January/000706.html
http://jemalloc.net/mailman/jemalloc-discuss/2014-January/000706.html
https://docs.rs/tikv-jemalloc-sys/0.5.4+5.3.0-patched/tikv_jemalloc_sys/fn.mallctl.html
https://docs.rs/tikv-jemalloc-sys/0.5.4+5.3.0-patched/tikv_jemalloc_sys/fn.mallctl.html
https://docs.rs/tikv-jemalloc-sys/0.5.4+5.3.0-patched/tikv_jemalloc_sys/fn.mallctl.html
https://docs.rs/tikv-jemalloc-sys/0.5.4+5.3.0-patched/tikv_jemalloc_sys/fn.mallctl.html

// cargo.toml

tikv-jemalloc-sys = { version = "0.5", features = ["profiling"] }

We already had a dynamic config system that receives config updates
through a tokio watch::Receiver . I decided to use this system to
dynamically enable/disable jemalloc profiles. Something like this:

pub(crate) async fn profiling_task(mut config_updates: watch::Receiver

 while config_updates.changed().await.is_ok() {

 let new_conf = config_updates.borrow();

 // call mallctl with the new value!

 let result = set_prof_active(new_conf.prof_active);

 // ...

 }

And here's how we finally make the call to mallctl()

#[derive(Debug, Clone)]

struct MallctlError { code: i32 };

fn set_prof_active(new_value: bool) -> Result<(), MallctlError> {

 let option_name = CString::new("prof_active").unwrap();

 let result = unsafe {

 tikv_jemalloc_sys::mallctl(

 option_name.as_ptr(), // const char *name

 str::ptr::null_mut(), // void *oldp

 str::ptr::null_mut(), // size_t *oldlenp

 &new_value as *const _ as *mut, // void *newp

 std::mem::size_of_val(&new_value) // size_t newlen

)

 }

 if result != 0 {

 return Err(MallctlError { code: result });

 }

 Ok(())

}

Locally at first this code always resulted in a MallctlError . The
error code was 2 , which is ENOENT . According to the docs that
means:

name or mib specifies an unknown/invalid value.

I was pretty sure I had the name right (prof.active). I used lldb

to debug the mallctl call and eventually tracked it down to this:

Process 89566 stopped

* thread #12, name = 'tokio-runtime-worker', stop reason = step over

 frame #0: 0x0000000100dc9084 router`prof_active_ctl(tsd=0x0000000118dcc408, mib=0

 3224 bool val = *(bool *)newp;

 3225 if (!opt_prof) {

 3226 if (val) {

-> 3227 ret = ENOENT;

 3228 goto label_return;

 3229 } else {

 3230 /* No change needed (already off). */

Target 0: (router) stopped.

(lldb)

If the prof option is disabled and we try to set prof.active , it
results in ENOENT . I guess that would be considered an "invalid
value" in that case. This is actually indicated in the docs. Locally
I wasn't running with prof:true initially, which caused this issue!

There you have it, now we have on-demand jemalloc heap profiling!
Hope this helps. If you're curious about that particular instance of
the memory leak, you can find the investigation here, and the fix
here. TL;DR: careful with Arc !

• xuorig

https://github.com/apollographql/router/issues/3686
https://github.com/apollographql/router/issues/3686
https://github.com/apollographql/router/pull/3692
https://github.com/apollographql/router/pull/3692
https://github.com/apollographql/router/pull/3692
https://github.com/apollographql/router/pull/3692
https://x.com/__xuorig__
https://x.com/__xuorig__

