
What part of Rust compilation is the
bottleneck?
Mar 15, 2024 | Reddit discussion

Rust compilation times is an ongoing topic that generates many discussions online1.

Most people don’t really care about what exactly takes time when compiling Rust

program; they just want it to be faster in general. But sometimes, you can see people

pointing fingers at specific culprits, like LLVM or the borrow checker. In this post, I’ll try to

examine who is the culprit in various situations, based on data gathered from a fun little

experiment.

I started thinking about this a few months ago. To see a break-down of the compilation, I

added a new form of visualisation to the Rust compiler benchmark suite. For each

benchmark, it now shows us the ratio of time spent in three individual high-level “sections”

of compilation:

• Frontend: lexing, parsing, macro expansion, type checking, trait solving, borrow

checking, MIR optimization, metadata generation, etc.

• Backend: code generation (currently using LLVM).

• Linker: linking of the final artifact (currently using the default Linux bfd linker).

It looks something like this:

I added this visualization because I think that it is useful to keep in mind where should we

focus our optimization efforts, and also to understand which parts of the compilation

form the bottleneck in various situations. Note that the code that decides what belongs

into the frontend, backend and linker parts is basically a heuristic, since there is no

unambiguous and official definition of these terms for rustc . The data is extracted out

of query traces recorded by the compiler’s self-profile machinery.

Top 100 crates experiment

Kobzol's blog

https://www.reddit.com/r/rust/comments/1bfr77s/what_part_of_rust_compilation_is_the_bottleneck/
https://www.reddit.com/r/rust/comments/1bfr77s/what_part_of_rust_compilation_is_the_bottleneck/
https://github.com/rust-lang/rustc-perf/pull/1749
https://github.com/rust-lang/rustc-perf/pull/1749
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://github.com/rust-lang/rustc-perf/blob/11a3c714b12a29094a30a79266352d95f11e0f13/site/src/self_profile.rs#L241
https://github.com/rust-lang/rustc-perf/blob/11a3c714b12a29094a30a79266352d95f11e0f13/site/src/self_profile.rs#L241
https://rustc-dev-guide.rust-lang.org/query.html
https://rustc-dev-guide.rust-lang.org/query.html
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html
https://kobzol.github.io/
https://kobzol.github.io/

I was curious to see the broader story of the duration spent in the individual sections, so I

borrowed @lqd ’s scripts for downloading crates to run a simple experiment. Using the

crates_io_api crate, I downloaded the 100 most popular crates from crates.io ,

added them as benchmarks to a local copy of the benchmark suite, and gathered self-

profile data by compiling them with a recent nightly compiler. Using some pandas
and seaborn -fu, I then created a few charts that I will show below.

Each benchmark was executed in 12 different configurations, using three profiles

(Check , Debug and Opt) and four scenarios (Full , IncrFull , IncrPatched and

IncrUnchanged). You can read more about profiles and scenarios in one of my previous

blog posts. Only the leaf crate was benchmarked, the compilation of dependencies is not

included in the measurement.

Disclaimer: it’s possible that my calculations of the sections weren’t 100% correct or that

my PC had some noise, I didn’t worry too much about running the benchmarks multiple

times. So take the results with a grain of salt :)

Binary crate (ripgrep)
First, let’s take a look at a representative example, the compilation of the ripgrep binary

with the Debug profile and Full scenario (in other words, a clean debug non-

incremental build)2:

This is a (pretty ugly) stacked bar chart, which shows the percentage of the individual

sections out of the whole compilation. The blue part is the frontend, which is further split

into borrow checking and type checking, the orange part is the backend (so mostly LLVM),

and the green part is the linker.

The type checking and especially the borrow checking fraction were calculated with a

pretty rough estimations, so I wouldn’t worry too much about them. The important part is

the distinction between the frontend, backend and the linker.

In this case, it’s clear that most of the time is spent waiting on LLVM. It is also important

to note that the frontend in this case runs on a single thread, while the backend part is

https://github.com/lqd
https://github.com/lqd
https://github.com/lqd
https://crates.io/crates/crates_io_api
https://crates.io/crates/crates_io_api
https://crates.io/crates/crates_io_api
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks#add-a-new-benchmark
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks#add-a-new-benchmark
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#benchmark-configurations
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#benchmark-configurations
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#benchmark-configurations
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#benchmark-configurations
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep

parallelized by up to 16 threads! So, should we point the finger at LLVM? Not so fast.

Let’s take a look at another case. The same ripgrep binary, but this time an incremental

debug (re)build after a small change. The binary was first compiled normally (with

incremental compilation enabled, which is the default in “debug mode”), then a single

dummy function was added to one of its source files, and then it was built again. This

chart shows the result of that rebuild:

Note how the linker suddenly becomes a much larger bottleneck, since it is essentially the

only non-incremental part of the compilation now. Also notice how borrow checking has

disappeared. I haven’t delved into this, but I think that it’s because rustc doesn’t redo

work inside unchanged function bodies (which is where borrow checking happens) when

doing an incremental rebuild.

For a larger binary, the linker fraction can be even larger, and can take substantial time.

That is why using a different linker, like lld or mold , can help a lot to cut down

incremental rebuild times.

Now the same incremental rebuild, but this time with optimizations (--release):

The backend now again takes a much large ratio, both because it does much more work

when optimizations are enabled, and also because the linker has less work, because it

doesn’t have to deal with debug info.

Note: ripgrep actually uses debug=1 for its release profile, but I turned it off here to

show the default case of release without debuginfo.

And what if we don’t want to generate code, but just run cargo check ? Then it will

https://nnethercote.github.io/perf-book/build-configuration.html#linking
https://nnethercote.github.io/perf-book/build-configuration.html#linking
https://lld.llvm.org/
https://lld.llvm.org/
https://lld.llvm.org/
https://github.com/rui314/mold
https://github.com/rui314/mold
https://github.com/rui314/mold
https://github.com/BurntSushi/ripgrep/blob/e9abbc1a02de29dbe60e1b625d540c58759b23a6/Cargo.toml#L74
https://github.com/BurntSushi/ripgrep/blob/e9abbc1a02de29dbe60e1b625d540c58759b23a6/Cargo.toml#L74

usually look something like this (again, an incremental rebuild, as I consider that to be the

most important case):

As expected, for cargo check , there is no linker part, and the frontend takes most of the

time. It’s interesting that even for cargo check , some part of what I classify as

“backend” is still being executed. I asked around on Zulip and it seems that it is needed to

generate metadata.

For completeness, you can find all the measured configurations for the ripgrep binary

here.

To have a more general picture, I also created the same chart for a few other binary crates

(hyperfine and dust)3 and averaged all of them together. You can find the result

here. In this averaged result, the backend takes even more time, since both hyperfine
and dust use lto = true (so-called “fat LTO”), which makes the LLVM part brutally

slow.

Library (regex-automata)
In order to see how do the ratios change when we compile a library instead, I measured

the regex-automata crate. Here is the result for a Debug/Full build:

Okay, it seems that frontend can also sometimes be the “bad guy”. Note the new

metadata section, which marks the generation of metadata that is then consumed by

other Rust crates that depend on the given library.

What if we just make a small incremental change?

https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/.60codegen_crate.60.20query.20present.20in.20.60check.60.20builds
https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/.60codegen_crate.60.20query.20present.20in.20.60check.60.20builds
https://github.com/rust-lang/rust/blob/a7cd803d029d71ab4d111fca43ce33ba55fe9841/compiler/rustc_codegen_ssa/src/base.rs#L576
https://github.com/rust-lang/rust/blob/a7cd803d029d71ab4d111fca43ce33ba55fe9841/compiler/rustc_codegen_ssa/src/base.rs#L576
https://kobzol.github.io/assets/posts/compile-sections/ripgrep.png
https://kobzol.github.io/assets/posts/compile-sections/ripgrep.png
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine
https://github.com/bootandy/dust
https://github.com/bootandy/dust
https://github.com/bootandy/dust
https://kobzol.github.io/assets/posts/compile-sections/binaries.png
https://kobzol.github.io/assets/posts/compile-sections/binaries.png
https://llvm.org/docs/FatLTO.html
https://llvm.org/docs/FatLTO.html
https://github.com/rust-lang/regex/tree/master/regex-automata
https://github.com/rust-lang/regex/tree/master/regex-automata
https://github.com/rust-lang/regex/tree/master/regex-automata

This time, the frontend takes an even larger fraction of the whole compilation.

Again, I ran the same experiment for multiple (~90) libraries, and averaged the results. You

can find the result here. Compared to the averaged results from the binaries, for libraries

the frontend takes a much larger fraction of the whole compilation time.

Based on what we have seen so far, it is clear that the bottleneck can be both in the

frontend and the backend, depending on the thing that you are compiling.

Which artifact type is more important?
Based on the difference between the ratios between binaries and libraries, I think that it is

interesting to think about what is actually the common case - do we compile libraries or

binaries more often? It will of course depend on your specific use-case, but some general

observations can be made.

One observation is that most of the crates in your crate graph (i.e. the dependencies of

your project), with the exception of build scripts and procedural macros, will actually be

libraries. However, at the same time, these crates are usually not compiled that often.

They will be recompiled in clean builds (and on CI, if you don’t use caching, which you

should!), and when you modify the used Cargo profile, compiler flags or even the version

of the compiler. But during the typical “edit-build-run” cycle, where you repeatedly do

incremental changes to your code and want to see the result as fast as possible, you will

typically be stuck on compiling a binary artifact, not a library. It might either be a binary

that you then execute directly, or a test harness that links to your library code and which

you then repeatedly execute to run tests.

I personally consider the interactive edit-build-run cycle to be the biggest bottleneck when

developing Rust code, so at least for me, the binary case is much more interesting. That is

also why I think that the backend and the linker are the things that could be improved the

most. for the Cranelift backend and the usage of the lld linker by default in the

future!

EDIT: After writing the post and having some discussions on Reddit, I realized that the

binary vs library distinction here is a bit misleading. What is actually important is if you are

https://kobzol.github.io/assets/posts/compile-sections/libraries.png
https://kobzol.github.io/assets/posts/compile-sections/libraries.png
https://kobzol.github.io/assets/posts/compile-sections/binaries.png
https://kobzol.github.io/assets/posts/compile-sections/binaries.png
https://github.com/Swatinem/rust-cache
https://github.com/Swatinem/rust-cache
https://davidlattimore.github.io/posts/2024/02/04/speeding-up-the-rust-edit-build-run-cycle.html
https://davidlattimore.github.io/posts/2024/02/04/speeding-up-the-rust-edit-build-run-cycle.html
https://github.com/rust-lang/rustc_codegen_cranelift
https://github.com/rust-lang/rustc_codegen_cranelift
https://github.com/rust-lang/rust/issues/71515
https://github.com/rust-lang/rust/issues/71515

producing a linkable artifact (e.g. .exe or .so). Because if you just build an

intermediate artifact (like an .rlib , which is what your crate dependencies compile

into), that won’t compile #[inline] -d and generic functions, and also the linker won’t be

involved. So a lot of the compilation costs will be actually deferred to the final artifact that

needs to also monomorphize and compile inlined and generic functions, and also needs

to perform linking. In many cases, the final artifact is indeed a binary, but it can also be

e.g. a dynamic library object (.so or .dll), although this is not so common with Rust

due to it not having a stable ABI.

What to do with this information?
To be honest, probably not that much. The section computation and the charts that I have

shown here were created by a bunch of heuristics and ad-hoc scripts, and (AFAIK),

rustc doesn’t compute this breakdown on its own. It would be cool if Cargo would be

able to show you some summary of the bottlenecks that slow down the compilation of

your crate(s), and guide you towards approaches that could reduce them, like this:

$ cargo build
 Compiling foo v0.1.0 (/tmp/foo)
 Finished dev [unoptimized + debuginfo] target(s) in 4.2s
 Note: you seem to be bottlenecked by the frontend, you might want
 to enable the parallel frontend.

And if it did that, it might then as well configure these optimizations for you :)

Conclusion
We saw that (as pretty much always) the answer to the question “what is the bottleneck”

is “it depends” :) I think that in the grand scheme of things, it doesn’t really matter that

much what part of the compiler is the bottleneck, as we (as in, people that contribute to

rustc) should strive to improve the performance across the board. That being said,

having a better idea of where does rustc spend most of the time when it compiles your

code might be useful, for example to tune your project configuration to achieve better

compilation times.

Now, if you don’t want to think about these things, and you just want to get the

configuration for the fastest possible compilation times, you can try my cargo-wizard
tool, and use the fast-compile profile (if you’re not shy of using the nightly
compiler, try it with the --nightly flag, to enable more optimizations).

And that’s all. If you’d like to examine the measured data, or run the experiment yourself,

you can find my scripts here. And if you have any comments or questions, you can let me

know on Reddit.

https://kobzol.github.io/rust/cargo/2024/03/10/rust-cargo-wizard.html
https://kobzol.github.io/rust/cargo/2024/03/10/rust-cargo-wizard.html
https://github.com/Kobzol/cargo-wizard
https://github.com/Kobzol/cargo-wizard
https://github.com/Kobzol/cargo-wizard
https://github.com/Kobzol/rustc-perf/tree/section-analysis/analysis
https://github.com/Kobzol/rustc-perf/tree/section-analysis/analysis
https://www.reddit.com/r/rust/comments/1bfr77s/what_part_of_rust_compilation_is_the_bottleneck/
https://www.reddit.com/r/rust/comments/1bfr77s/what_part_of_rust_compilation_is_the_bottleneck/

1. Probably also offline. ↩

2. Excuse the ugly matplotlib charts, I didn’t want to spend too much time on

making them nicer. ↩

3. I didn’t measure more binaries, because rustc-perf isn’t really prepared for

benchmarking crates that have both a library and a binary target (which happens a lot

for crates that produce a binary), so I only benchmarked a few that mostly worked

out-of-the-box. ↩

Kobzol's blog

berykubik@gmail.com

RSS

kobzol Blog about programming stuff.

Kobzol's blog

https://xkcd.com/303/
https://xkcd.com/303/
mailto:berykubik@gmail.com
mailto:berykubik@gmail.com
https://kobzol.github.io/feed.xml
https://kobzol.github.io/feed.xml
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol

