
Exploring the Rust compiler
benchmark suite
Aug 18, 2023 | Reddit discussion

In my recent post about the Rust compiler CI (continuous integration) and benchmarking

infrastructure, I have promised to write a blog post about runtime benchmarks, which is a

new addition to the benchmark suite of the Rust compiler. However, I realized that before

doing that, it might be a good idea to first describe how does the benchmark suite actually

work, what are its components and how is it used by the Rust compiler (rustc)

developers, to introduce the necessary context. So, runtime benchmarks will have to wait

, and instead this post will try to introduce the current state of the Rust compiler

benchmarking infrastructure.

I will attempt to describe the general concepts and the workflow used by rustc
compiler developers to measure and monitor the performance of the Rust compiler over

time. The main focus will be on the rustc-perf repository, which contains all the

infrastructure for Rust compiler benchmarks, and the so-called perf.RLO website, which

hosts various dashboards, charts and comparisons that we use daily to analyze the

compiler’s performance.

Note that while I am a member of the wg-compiler-performance working group and the

infra team (both of which are heavily involved in managing the performance of rustc),

any subjective claims that you might find in this blog post are mine and do not necessarily

represent the views of the mentioned teams .

Problem statement
To really start from the beginning, we should first explain the motivation that led to the

creation of the benchmark suite. One of the most common complaints about Rust is that

Rust programs are slow to compile. I won’t go into the reasons why that is the case here

(short version: cargo compiles the “whole world” from scratch and Rust made several

design decisions that favor runtime speed instead of compilation speed), but even though

I have some opinions on the definition of “being slow” (more on that below), the fact

remains that many Rust developers consider the compiler to be slow enough so that it

represents a very real bottleneck to their development workflow, which is a big issue that

we cannot afford to ignore.

Kobzol's blog

https://www.reddit.com/r/rust/comments/15ukro3/exploring_the_rust_compiler_benchmark_suite/
https://www.reddit.com/r/rust/comments/15ukro3/exploring_the_rust_compiler_benchmark_suite/
https://kobzol.github.io/rust/rustc/2023/07/30/optimizing-rust-ci-2023.html
https://kobzol.github.io/rust/rustc/2023/07/30/optimizing-rust-ci-2023.html
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf
https://perf.rust-lang.org/
https://perf.rust-lang.org/
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html#challenges-ahead
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html#challenges-ahead
https://fasterthanli.me/articles/why-is-my-rust-build-so-slow
https://fasterthanli.me/articles/why-is-my-rust-build-so-slow
https://prev.rust-lang.org/en-US/faq.html#why-is-rustc-slow
https://prev.rust-lang.org/en-US/faq.html#why-is-rustc-slow
https://kobzol.github.io/
https://kobzol.github.io/

This issue has been known for a long time of course, and therefore a lot of effort has been

(and still is being!) expended to improve the performance of the compiler. More than five

years ago, an official working group called wg-compiler-performance was established. The

goal of this group is to continuously measure, monitor and improve the compilation times

of Rust crates, primarily by optimizing the compiler, by sometimes also e.g. by

contributing changes to popular Rust crates to make them faster to compile.

The thing that we are most interested in is how is the performance of rustc changing

over time, and in particular, how do individual changes (pull requests) to the compiler

affect its performance. We track these compilation performance changes using the

rustc-perf infrastructure, which I will describe in detail in this post, and look out for

possible major regressions. However, this does not mean that we ban all pull requests

(PRs) that cause compilation time regressions! Sometimes, it is necessary to accept such

PRs, for example to fix a soundness hole in the compiler, or to make some part of the

compiler simpler and more maintainable for the future. We have to remember that while it

is very important, performance is not everything, and always has to be judged against

other metrics1!

Continuously monitoring the performance of a compiler or a library is not a new idea of

course, and there are several other projects that employ this technique, such as numpy ,

CPython , PyPy or LLVM . The general idea is to measure the performance of X on a

defined set of benchmarks continuously (e.g. after each commit), display the history of

performance changes in an intuitive way and ideally also immediately alert the developers

when regressions appear.

▸ Aside: is the Rust compiler slow?

What do we want to measure?
To measure something, we first need to decide what do we want to measure.

“Performance of rustc ” is a very broad term, after all. There are actually several things

that rustc-perf analyzes for a given artifact (a specific version/commit/build of

rustc):

• Compilation performance How much resources (time, memory, …) does the artifact

consume when compiling Rust crates? Or, in simpler terms: how fast does it compile

Rust code? This is probably the most interesting statistic for Rust developers, and it

will be the main focus of this post.

• Bootstrap time How long does it take for this artifact to compile itself (its own source

code)? Since rustc is composed of a set of Rust crates, this can be seen as a

subset of compilation performance. Nevertheless, it is interesting to monitor it

separately, because it is also affected by source code changes that don’t necessarily

affect the performance of the compiler, but that do affect the time required to compile

it (like extracting, merging or removing rustc_* crates within the compiler

https://www.rust-lang.org/governance/teams/compiler#Compiler%20performance%20working%20group
https://www.rust-lang.org/governance/teams/compiler#Compiler%20performance%20working%20group
https://internals.rust-lang.org/t/rust-compiler-performance-working-group/6934
https://internals.rust-lang.org/t/rust-compiler-performance-working-group/6934
https://haozeke.github.io/asv-numpy/
https://haozeke.github.io/asv-numpy/
https://haozeke.github.io/asv-numpy/
https://github.com/faster-cpython/benchmarking-public
https://github.com/faster-cpython/benchmarking-public
https://github.com/faster-cpython/benchmarking-public
https://speed.pypy.org/
https://speed.pypy.org/
https://speed.pypy.org/
https://llvm-compile-time-tracker.com/
https://llvm-compile-time-tracker.com/
https://llvm-compile-time-tracker.com/

workspace). This measure is of course also very important for rustc developers,

because it directly affects their iteration speed when working on the compiler.

• Runtime performance How fast/efficient are Rust programs compiled by this artifact?

This part is relatively new, and I will dedicate a whole blog post to it (Coming soon™).

• Artifact size How large are the individual components (libraries, binaries) of the

artifact? This is sometimes important for performance, but mainly it affects things

like the size of toolchain archives distributed by rustup .

As a sneak peek, here you can see one specific comparison of these four statistics

between two artifacts (two different compiler versions). Note that in the rest of the post, I

will primarily focus on compilation performance.

Benchmarks
To measure the performance of the compiler, we need some benchmarks. In our case,

each compile-time benchmark is a single Rust workspace (i.e. either a single crate or

multiple crates). When we perform a performance analysis, we compile each benchmark

with the analysed rustc artifact several times, and measure various metrics that are

interesting to us (I’ll talk more about metrics and the benchmarking process later in the

post).

Currently, we have about fifty benchmarks, which form the compile-time benchmark suite.

They are divided into three categories:

• Primary These are the benchmarks on which we focus the most, because they

represent real-world Rust code that will be typically encountered by most Rust

developers. These include crates like hyper , ripgrep , regex , syn , serde ,

diesel , cargo or clap .

• Secondary These benchmarks contain more arcane and unusual Rust code, which

stresses rustc in various ways. They might not necessarily represent real-world

code, but they are still useful to detect issues like memory exhaustion, stack overflow

or catastrophically long compilation times (caused e.g. by some accidentally

quadratic behavior) that sometimes happen in edge cases. For example, there are

benchmarks that contain deeply nested types, very large arrays or huge match

expression. Even though you will probably not encounter such code in the wild

(although, sometimes a bit of liberal macro usage can produce similar horrors), these

stress tests can sometimes tell us when some part of the compiler suddenly

becomes much slower.

There are also two secondary benchmarks (helloworld-tiny and

ripgrep-13.0.0-tiny), which exist solely to monitor the size of a “minimal-sized”

Rust executable, which is compiled with compiler flags that should favour small

executable size.

https://github.com/rust-lang/rust/tree/master/compiler
https://github.com/rust-lang/rust/tree/master/compiler
https://perf.rust-lang.org/compare.html?start=2023-08-01&end=2023-08-10&stat=instructions%3Au
https://perf.rust-lang.org/compare.html?start=2023-08-01&end=2023-08-10&stat=instructions%3Au
https://accidentallyquadratic.tumblr.com/
https://accidentallyquadratic.tumblr.com/
https://accidentallyquadratic.tumblr.com/
https://accidentallyquadratic.tumblr.com/
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/deeply-nested-multi/src/lib.rs
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/deeply-nested-multi/src/lib.rs
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/coercions/src/main.rs
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/coercions/src/main.rs
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/match-stress/src/huge.rs#L8210
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/match-stress/src/huge.rs#L8210
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/match-stress/src/huge.rs#L8210
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/match-stress/src/huge.rs#L8210

• Stable This is a special category of benchmarks which are not used for “day-to-day”

performance comparisons, but rather for monitoring the long term trend of rustc
compilation performance. We are running these benchmarks for every released stable

and beta version of rustc , going all the way back to 1.28.0 . You can see the

historical trend of these benchmarks in the dashboard. These benchmarks are called

stable, because we try not to modify them in any way5, so that we have a historical

baseline for comparing amongst different stable versions of rustc over a long time

period. This is in contrast to the primary and secondary benchmarks, which are being

rotated or updated from time to time, according to the benchmark update policy.

It is not always easy to decide if a benchmark should be included in the benchmark suite

or not. We try to keep a healthy mix of real-world benchmarks and stress tests, and also

attempt not to have too much overlap, as it’s not very useful to have two secondary

benchmarks that both stress e.g. trait resolving in the same way.

We also want to keep the scope of the suite somewhat reasonable. You could ask why

don’t we e.g. benchmark the most popular 1000 crates from crates.io or something like

that. Well, performing so many benchmarks would cause (at least) two problems:

• It would take a long time to execute the benchmarks. Currently, it already takes more

than an hour to run the full benchmark suite. Increasing this time increases the

latency of finding out if a PR/commit caused a perf. improvement or a regression,

which can be a bottleneck for rustc developers. The benchmarks are currently

executed on a single machine, and we’re already hitting the limits of its benchmarking

throughput.

• Having so much data would make it harder to make sense of the results. We

frequently encounter noise in the benchmark results, and the more benchmarks we

would have, the bigger the danger of false noisy signals creeping in would be.

Furthermore, it would make it harder for us to understand why has a perf. change

happened. With our current suite, whose size is (in my opinion) relatively reasonable,

rustc developers that focus on the performance of the compiler are somewhat

familiar with the benchmarks, to the point that they can often guess what could have

caused a regression just by eyeballing the set of benchmarks that have been

regressed. It would be much harder to build and exercise this knowledge if we had

e.g. a thousand benchmarks.

If you want to examine the existing benchmarks in more detail, you can find the list of the

currently used compile-time benchmarks along with their descriptions here.

Benchmark configurations
There are various workflows and corresponding expectations arising when compiling Rust

code. Some Rust developers care only about the performance of type checking (cargo

https://perf.rust-lang.org/dashboard.html
https://perf.rust-lang.org/dashboard.html
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/README.md#benchmark-update-policy
https://github.com/rust-lang/rustc-perf/blob/master/collector/compile-benchmarks/README.md#benchmark-update-policy
https://crates.io/
https://crates.io/
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks
https://github.com/rust-lang/rustc-perf/tree/master/collector/compile-benchmarks

check), e.g. to provide quick feedback in their IDE. Some developers want really fast

incremental debug builds, e.g. to repeatedly re-run tests after making small changes to the

code. And others want to have really fast optimized builds, because the runtime

performance of non-optimized builds is not good enough for them, e.g. if they are

developing games.

That is why we have two configurations that affect how is a benchmark compiled:

• Profile Defines the used Cargo command.

◦ debug : Corresponds to cargo build , uses the dev Cargo profile.

◦ opt : Corresponds to cargo build --release , uses the release Cargo

profile.

◦ check : Corresponds to cargo check . Performs only type checking without

code generation.

◦ doc : Corresponds to cargo doc . Builds the documentation of the crate.

• Scenario Defines a compilation workflow.

◦ full : Performs a non-incremental build, akin to setting

CARGO_INCREMENTAL=0 (this is normally the default for release builds).

◦ incr-full : Performs an incremental build, akin to setting

CARGO_INCREMENTAL=1 (this is normally the default for dev builds).

◦ incr-patched : Performs a rebuild of a crate compiled with an incremental

build, after performing some change to its source code. Each benchmark can

define several incr-patched scenarios, corresponding to different changes

being made (e.g. adding a comment, adding a println! call, removing a

statement, etc.).

◦ incr-unchanged : Performs a rebuild of a crate compiled with an incremental

build, after no changes have been made to its source code. This scenario is not

very practical in normal compiler usage, but it serves as a baseline for how fast

can an incremental build be, if it doesn’t actually need to perform any changes.

Unless a benchmark explicitly opts out of some profile or scenario, each benchmark is

executed with the cartesian product of all profiles and scenarios (except for the doc
profile, which is executed only once with the full scenario). In other words, we run each

benchmark with many configuration combinations (profile=check +
scenario=full , profile=opt + scenario=incr-full , profile=debug +
scenario=incr-unchanged , etc.).

If I’m counting correctly, most benchmarks will be thus executed with ~13 configurations

(some of them may opt out of some configurations, or they can define more than one

incr-patched scenario). Furthermore, we execute each configuration three times

(unless the benchmark reduces the number of iterations to reduce benchmarking time).

This means that most benchmarks are being compiled almost fifty times during each

performance analysis! For some of the larger benchmarks (e.g. cargo), it takes several

minutes until all the configurations are measured (and cargo is actually one of the

benchmarks that only performs a single iteration).

One important thing to note is that we only measure the performance of compiling the

“leaf” (workspace) crates. For example, the ripgrep crate has tens of dependencies. In

our suite, we don’t measure the compilation of all these dependencies, we only measure

the compilation of the final binary crate/target. This makes the measurement more stable

(and faster), but it also means that we can’t make a lot of conclusions about the end-to-

end compilation performance of Cargo compiling large crate graphs. Another approach or

a different performance suite would be needed for that.

If you want to learn more about the benchmark configurations and other terms that we

use when talking about rustc benchmarks, you can find more information in the

glossary.

Metrics
Now that we know what we want to measure (resources consumed by rustc when it

compiles a Rust crate) and we have seen how do our benchmarks look like, we should

define what are the kinds of “resources” that are interesting to us. There are actually many

metrics that we gather when we benchmark an artifact, you can find their list here. Some

metrics are gathered by running rustc under the perf profiler, some come from the

compiler’s built-in self-profiling mechanism and some are measured externally (e.g.

looking up the filesize of the built Rust executable on disk).

Below is a summary of the most important metrics that we take into account when

compiling a benchmark using a rustc artifact:

• Instruction count (instructions:u)6: How many instructions were executed?

• Cycle count (cycles:u): How many CPU cycles were executed?

• Wall-time (wall-time): How long it took to compile the benchmark?

• Maximum memory consumption (max-rss): What was the highest amount of RSS

(Resident Set Size) of the rustc process? In other words, what was the maximum

amount of RAM occupied by rustc at any given moment during compilation?

• Binary size (size:linked-artifact): What is the size of the compiled executable

(for binaries) or the .rlib file (for libraries)? This metric is a bit tricky, because for

libraries it doesn’t really mean “binary size” in the classical sense (because they are

not binaries, duh), and this sometimes confuses contributors. For libraries, this metric

also included size changes of metadata , the Rust-specific data used to exchange

information between crates when compiling a crate graph.

There are other metrics, like page faults, cache misses, branch mispredictions, etc., but

these are usually too low-level or too noisy for us to take into account, unless we analyse

a specific compiler change that is targeted to improve one of these metrics.

https://github.com/rust-lang/rustc-perf/blob/master/docs/glossary.md
https://github.com/rust-lang/rustc-perf/blob/master/docs/glossary.md
https://github.com/rust-lang/rustc-perf/blob/43d16fe5da8b9a48c72a75dcc861f86f5dcf3823/site/src/comparison.rs#L231
https://github.com/rust-lang/rustc-perf/blob/43d16fe5da8b9a48c72a75dcc861f86f5dcf3823/site/src/comparison.rs#L231
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html
https://blog.rust-lang.org/inside-rust/2020/02/25/intro-rustc-self-profile.html

You might wonder why I only put wall-time as the third metric in the list above.

Shouldn’t it be the most important metric? Indeed, the actual compilation time is the thing

that we want to improve the most, because it most affects the everyday workflow of Rust

developers. However, it is also a very noisy metric, and it is notoriously difficult to use it for

comparing the relative performance of two programs (artifacts). The compiler is a very

large program7, and a single change/commit/PR will usually not have an enormous effect

on its performance. However, we still want to be able to detect even relatively small

performance changes, to avoid a death by a thousand cuts. If we used wall time for such

detections, we would be drowned in noise, unable to recognize small performance

perturbations.

Therefore, we instead primarily usually use instruction count as the primary metric,

because it is quite stable (=resistant to measurement noise) and thus allows us to detect

even relatively small performance changes. It is also usually relatively highly correlated

with wall time, which is the ultimate metric for our needs. Sometimes we also take max-
rss , cycles , binary size or other metrics into account, if needed.

How is the benchmark suite executed?
Now that we know about both the benchmarks and the metrics, it is time to talk about

how do we actually execute the benchmarks. It is done using the collector binary,

which is implemented in the rustc-perf repository. It contains various commands for

executing the compile-time benchmark suite, but also for profiling rustc on a specific

benchmark to learn more about its behavior. It can profile the compiler with various

profiling tools, such as Callgrind , Cachegrind , dhat or perf .

rustc developers can run the benchmarks locally with a custom build of the compiler,

which can be used to quickly judge the performance effect of local compiler

modifications. However, such locally gathered results might not always correspond to the

actual performance profile of the compiler, because locally built rustc versions usually

do not contain the complex optimizations that we perform on CI. Therefore, benchmarks

are usually performed on our custom benchmarking infrastructure.

The benchmarks are executed on a dedicated machine (which I will call collector server),

whose location is top secret8. Its hardware parameters and software configuration can be

found here. The machine is set up in a way that tries to minimize environment noise. It has

disabled Hyper-threading, frequency scaling and ASLR (Address Space Layout

Randomization), and uses a few other configuration options in an effort to keep the

measurement results as stable as possible. We could perhaps still go a bit further in

tightening down the machine, but I feel like we’re hitting diminishing returns already, and I

don’t think that we could ever get to a point where we’d have so little noise that e.g. the

wall-time metric could be reliably used to detect small performance changes anyway.

https://github.com/rust-lang/rustc-perf/tree/master/collector
https://github.com/rust-lang/rustc-perf/tree/master/collector
https://valgrind.org/docs/manual/cl-manual.html
https://valgrind.org/docs/manual/cl-manual.html
https://valgrind.org/docs/manual/cl-manual.html
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
https://github.com/nnethercote/dhat-rs
https://github.com/nnethercote/dhat-rs
https://github.com/nnethercote/dhat-rs
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://kobzol.github.io/rust/rustc/2022/10/27/speeding-rustc-without-changing-its-code.html
https://kobzol.github.io/rust/rustc/2022/10/27/speeding-rustc-without-changing-its-code.html
https://kobzol.github.io/rust/rustc/2023/07/30/optimizing-rust-ci-2023.html
https://kobzol.github.io/rust/rustc/2023/07/30/optimizing-rust-ci-2023.html
https://github.com/rust-lang/rustc-perf/blob/master/docs/perf-runner.md
https://github.com/rust-lang/rustc-perf/blob/master/docs/perf-runner.md

Performance measurement workflow
Ok, so now we know how and where are the benchmarks executed, but how it all fits

together? How does the collector server know when and what to benchmark and how do

the benchmark results find their way into the perf.RLO website? I’ll try to explain it, but

first, I want to describe a few terms:

• Benchmark database (DB) Postgres SQL database that stores the results of all

benchmarks that we execute, plus additional metadata needed to support our

monitoring and benchmarking workflows. If you’re interested, the schema of the

database can be found here.

• Collector server The dedicated machine that actually runs the benchmarks. It

communicates with the perf.RLO site and stores results into the benchmark database.

• perf.RLO Web service that facilitates communication of the perfbot, the collector

server and the benchmark DB. It also hosts a website with various dashboards that

are used by rustc developers to analyse the performance of the compiler.

• Perfbot GitHub bot that receives benchmarking commands from users and posts

comments on pull requests. It is deployed as a part of the perf.RLO server.

All of these components are implemented in the rustc-perf repository.

Here is a diagram that shows the individual components and how do they communicate

together:

https://github.com/rust-lang/rustc-perf/blob/master/database/schema.md
https://github.com/rust-lang/rustc-perf/blob/master/database/schema.md
https://perf.rust-lang.org/
https://perf.rust-lang.org/
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf

Icons for the diagram were sourced from svgrepo.com.

I included “sequence numbers” in the diagram to hint at what can be the approximate

order of the displayed events and actions. Below I’ll describe what is happening in more

detail, by walking through the whole workflow of benchmarking a single rustc artifact

(a single benchmark collection):

1. Creating a rustc artifact The first thing that has to happen when we want to

measure the performance of some artifact (version of the compiler) is that the

artifact must be created. This usually happens in one of two ways:

◦ A pull request is merged into the master branch of rust-lang/rust . This

launches a corresponding CI job, which compiles a heavily (PGO/BOLT/

LTO-)optimized build of rustc , which is then uploaded to a remote storage (S3

at the moment), and later downloaded by the collector server. After the recent

optimizations, usually around 8-12 PRs are merged each day, and all of them have

to be benchmarked.

◦ We want to know if a specific pull request has any effect on the compiler’s

performance, before it is merged. In that case, we can instruct our merge-queue

bot (homu/bors) to prepare a rustc artifact from the latest commit of the PR

using a so-called try build. When a try build is performed, the PR is rebased onto

the current master commit and built with all the CI optimizations, as if it was a

merged commit. This try build is then again uploaded to remote storage and later

downloaded by the collector server. Try builds can be triggered by posting a

comment containing @bors try on a pull request (if your account has the

appropriate permissions).

Each artifact has a default baseline (parent) artifact, against which it is compared by

default. For master artifacts, it is the preceding (parent) master commit, and for

try artifacts it is the master commit upon which its PR was rebased. We can of

course select a different baseline for comparison in the perf.RLO UI manually, if we

want to.

Note that currently we only benchmark artifacts built for the x86_64-unknown-
linux-gnu target, i.e. 64-bit Linux, which is probably the most common target used

by Rust developers. We do not benchmark the performance of rustc on other

platforms and operating systems.

2. Queuing the artifact Once an archive with the compiled artifact is available for

download, we need to add it to the benchmark queue. For master commits, this

happens automatically through unrelated Rust infrastructure that gets this data from

GitHub. For try builds, users have to manually enqueue the build using the @rust-
timer queue command posted in a comment on the pull request of the try build.

Queuing the artifact means storing it into the benchmark database. Once it is there, it

will appear in the status page, which shows both the current queue and the artifact

https://www.svgrepo.com/
https://www.svgrepo.com/
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang-ci/rust/actions/runs/5887977731/job/15968290261
https://github.com/rust-lang-ci/rust/actions/runs/5887977731/job/15968290261
https://kobzol.github.io/rust/rustc/2023/07/30/optimizing-rust-ci-2023.html
https://kobzol.github.io/rust/rustc/2023/07/30/optimizing-rust-ci-2023.html
https://github.com/rust-lang/homu
https://github.com/rust-lang/homu
https://github.com/rust-lang/homu
https://github.com/rust-lang/rustc-perf/blob/43d16fe5da8b9a48c72a75dcc861f86f5dcf3823/collector/src/lib.rs#L271
https://github.com/rust-lang/rustc-perf/blob/43d16fe5da8b9a48c72a75dcc861f86f5dcf3823/collector/src/lib.rs#L271
https://perf.rust-lang.org/status.html
https://perf.rust-lang.org/status.html

that is currently being benchmarked. There is a certain ordering of the queue, which is

usually not that interesting. What is important is that we first benchmark the baseline/

parent artifact of artifact X before benchmarking X itself, otherwise we won’t have

anything to compare against.

I think that the status page is a bit confusing at the moment, and misses some useful

information, so I’m planning to redesign it soon.

3. Running the benchmark The collector server basically runs an endless loop, in which

it queries the perf.RLO service, asking for the next artifact that it should benchmark.

Once it receives a response, it downloads the artifact archive (containing rustc ,

cargo , the standard library, LLVM and all other toolchain components), extracts it

and uses it to run the whole benchmark suite. It continuously stores data into the

database during the benchmark execution, so that the benchmark progress can be

observed on the status page, which reads the data from the DB. It also records any

possible compilation errors that sometimes happens e.g. when a PR breaks some

functionality of rustc . After the benchmark collection is finished, it notifies perf.RLO

that it has finished, and starts asking for the next artifact to be benchmarked.

4. Posting the performance summary Once the benchmark collection has completed,

the perfbot will perform an analysis of the performance results, and create a short

summary that compresses the most useful results into a few tables, which are then

posted as a comment to the pull request associated with the artifact. If the analysis

heuristics consider the change to be a regression, it will mark the pull request with the

perf-regression label, and it will hint to the PR author that they might want to

take a look at the performance results and potentially try to do something about

them. It will also ping the wg-compiler-performance group. Someone from the

group will then usually chime in, and either cooperate with the PR author to resolve

the regression, or consider the regression to be noise or to be acceptable and add

perf-regression-triaged label to the pull request, marking the regression as

triaged.

5. Analysing results in perf.RLO The posted summary comment contains several links

pointing to the perf.RLO website, which contains many useful views for examining the

performance of rustc . Probably the most commonly used page is the comparison

page. It contains comparisons of results of the individual benchmarks between the

benchmarked artifact and its baseline/parent artifact. This data can be filtered and

further analysed with various summaries.

The individual benchmark results also contain links to a detailed query page ,

which contains very detailed information about the benchmark execution, recorded by

the compiler’s self-profile machinery. While this information will probably only be

grokkable by expert rustc developers, it is sometimes an invaluable tool to

understand what exactly has caused the performance perturbation. The page also

contains example commands which can be executed locally to display a difference

https://github.com/rust-lang/rustc-perf/pull/1675
https://github.com/rust-lang/rustc-perf/pull/1675
https://github.com/rust-lang/rustc-perf/blob/master/collector/collect.sh
https://github.com/rust-lang/rustc-perf/blob/master/collector/collect.sh
https://github.com/rust-lang/rust/pull/114894#issuecomment-1681236006
https://github.com/rust-lang/rust/pull/114894#issuecomment-1681236006
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/detailed-query.html?commit=bd138e2ae11050ea9ca7a187345a1b606697a8db&base_commit=745efcc7d9b59d31674bf9445269924377019c5c&benchmark=regex-1.5.5-opt&scenario=incr-patched:%20compile%20one
https://perf.rust-lang.org/detailed-query.html?commit=bd138e2ae11050ea9ca7a187345a1b606697a8db&base_commit=745efcc7d9b59d31674bf9445269924377019c5c&benchmark=regex-1.5.5-opt&scenario=incr-patched:%20compile%20one
https://perf.rust-lang.org/detailed-query.html?commit=bd138e2ae11050ea9ca7a187345a1b606697a8db&base_commit=745efcc7d9b59d31674bf9445269924377019c5c&benchmark=regex-1.5.5-opt&scenario=incr-patched:%20compile%20one

between Cachegrind profiles of the two artifacts, which can be further used to

analyse the performance changes.

And that’s (mostly) it. This workflow is repeated several times each day, and serves as an

invaluable tool to help us monitor the performance of our beloved compiler.

Decision policy
Apart from the technical details of how are the benchmarks executed, one important

aspect of the benchmarking process is also the decision-making policy which deals with

performance regressions. The performance aspect of (new) code in the compiler is quite

important to us. If we find out that a PR causes too large regressions before it is merged,

it might be a reason to hold off the PR temporarily, until we can find a way to reduce the

regressions. Sometimes, regressions can even be the reason why a PR is abandoned

completely! If we only find out about the regression after the PR has been merged, we can

decide to either revert the PR completely, or ask its author (or someone else) to try to send

a PR that will hopefully resolve the performance issue.

Now, the question of course becomes: What is a “too large regression” and how do we

recognize it? I’m afraid that I don’t have a perfect answer for that . Our infrastructure is

quite good at alerting us when something regarding performance changes, but then we

still have to do (at least) two more steps:

1. Decide if the change is noise or not. I’ll talk more about noise below.

2. If we consider the change to be real (i.e. not just noise), decide if a regression is

acceptable or not.

Note that we generally consider all improvements to be acceptable Although

sometimes it can still be valuable to examine why exactly has something been

improved (when it wasn’t expected).

These two steps are fairly manual, and unless the regressions are truly large, usually

someone from the wg-compiler-performance or compiler teams (or the PR author)

decides on their own whether the regression is acceptable or not, based on the pull

request contents. If the situation is more complicated, more people usually chime in to the

pull request and discuss the performance results together.

Currently, the process is heavily based on judgement calls and experience – people that

are familiar with the compiler often have a pretty good guess if a change is noise or not, or

if a regression is “small enough” so as not to warrant any further investigation or

resolution. Sadly, this experience is hard to transfer to new rustc contributors, which is

something that we should strive to improve.

Dealing with noise

One of the most limiting factors of introducing more automation into the decision-making

process of regression handling is the ever-present noise, which requires us (humans) to

make judgement calls. There are two main sources of noise that affect the results of

compilation benchmarks:

• Measurement noise This is probably the first thing that comes into mind when “noise”

is mentioned. Some background process might execute a few instructions on the

collector server while a benchmark is being measured, or a kernel interrupt or context

switch arrives at an unfavorable time, or someone opens the window in the room

where the machine is located, thus affecting the room temperature and in turn

possibly also the CPU’s performance . This noise is what makes the wall-time
metric pretty much unusable for comparing small changes to the compiler. However,

since we mostly focus on the instruction count metric, which is relatively immune to

this kind of noise, it is not usually the main culprit.

• Codegen noise This one is perhaps a little less obvious, but it is actually quite

devious. Both rustc and LLVM contain many heuristics that perform decisions like:

◦ Should this function be inlined?

◦ Should this loop be unrolled?

◦ What instruction should this IR (Intermediate Representation) construct be

lowered to?

These decisions can have a non-trivial effect on the runtime performance of the

program being compiled, and they can also be quite “contagious” – deciding to inline

a single function can result in a myriad of other compiler analyses, transformations

and optimizations suddenly being performed.

Ok, but how does that concern us? Well, rustc is a program that is compiled with

rustc (and LLVM). Therefore, if some of its (performance critical) functions are

near a threshold of some heuristic, seemingly innocent and unrelated changes to its

source code can make these functions go over (or under) that threshold, and thus

alter the performance of rustc in a big way! You add an innocent println! line to

one rustc function, and suddenly that function might not pass an inlining threshold

and not get inlined, which can regress the compiler’s performance.

What’s worse, if some part of the compiler is near such threshold, it’s possible that it

will go back and forth and oscillate around the threshold. This situation is quite

annoying, and frequently causes “noise blips”, where a benchmark suddenly

regresses/improves out of nowhere, only to go back in the opposite direction a few

commits later. Since these differences in codegen affect the amount of instructions

executed by rustc , not even the (normally quite stable) instruction count metric is

immune to this effect.

Even though this phenomenon can happen for pretty much any non-trivial program,

there is an additional second order effect in play here, because the final build of the

compiler is compiled using its own source code (a “stage-2 build”). Therefore, rustc

https://www.youtube.com/watch?v=oUIjG-y4zaA
https://www.youtube.com/watch?v=oUIjG-y4zaA

source code changes can both directly affect its own codegen quality, and also the

codegen decisions it makes when it compiles other Rust crates, both of which can

have an effect on its compilation performance.

Encountering results that are (or look like) noise is sadly not uncommon. So what do we

do when we’re not sure whether something is noise or not?

• Analyse the historical variance of the regressed metric/benchmark combination,

using historical charts. This helps us notice if there were e.g. some suspicious “blips”

in the recent history.

• Use the profiling machinery (usually Cachegrind) offered by the collector to

compare execution profiles between the two compared artifacts. These profile

differences can often show us that a change in instruction counts is benign and was

caused by an uninteresting codegen difference.

• Ask @lqd . He always seems to know exactly when some source of noise has

started occurring, and in general has an incredible insight into what is currently going

on with rustc PRs and their performance effects.

The perf.RLO site also has some built-in noise filtering that helps to combat noise. It uses

simple statistical analysis based on historical data for a given metric/benchmark

combination, which computes a significance threshold. The more variance is present in

the historical data (=the more noisy benchmark is), the higher the threshold. If a change

does not go above this threshold, it will be hidden by default in the artifact comparison

page, and it also will not be shown in the PR comment with the performance

measurement summary. This works relatively well, but even with the threshold, noisy

results still crop up from time to time (mostly because of codegen noise).

Weekly triages
Apart from observing and reacting to the results of individual PR benchmark results, there

is also a periodical process called the “weekly triage”. There is a roster of rustc
developers who take turns analysing all PRs that modified the performance of the

compiler over the last week and preparing a “triage report” that summarizes the compiler

performance changes over that week. They also go through PRs that caused regressions

and decide to either mark these regressions as unimportant or expected, or to ask the PR

author to examine how could the regression be reverted.

The creation of the triage report is partially automated by rustc-perf , which generates

a template for the report using data from the benchmark database and GitHub. This

makes the process much easier for the person doing the weekly triage.

The weekly triage is then presented at the Rust compiler team meetings on Zulip, and it

can be also found in the This Week in Rust newsletter.

https://perf.rust-lang.org/index.html
https://perf.rust-lang.org/index.html
https://github.com/lqd
https://github.com/lqd
https://github.com/rust-lang/rustc-perf/blob/master/docs/comparison-analysis.md
https://github.com/rust-lang/rustc-perf/blob/master/docs/comparison-analysis.md
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://perf.rust-lang.org/compare.html
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings/topic/.5Bweekly.5D.202023-08-10/near/383654603
https://rust-lang.zulipchat.com/#narrow/stream/238009-t-compiler.2Fmeetings/topic/.5Bweekly.5D.202023-08-10/near/383654603
https://this-week-in-rust.org/blog/2023/08/09/this-week-in-rust-507/#rust-compiler-performance-triage
https://this-week-in-rust.org/blog/2023/08/09/this-week-in-rust-507/#rust-compiler-performance-triage

Future
Before concluding, I’d like to mention a few things that are in the works for our

benchmarking infrastructure. I have already mentioned runtime benchmarks several

times, which I will describe in a future blog post, but there are also some other things on

the horizon:

• Parallel frontend The Rust compiler is currently only multithreaded when performing

code generation using LLVM, otherwise it executes serially. There is an ongoing (and

promising!) effort to parallelize also the “frontend” part of the compiler (parsing,

macro expansion, type checking, type resolving, linting, etc.), which could provide

further speed-ups. However, it might also require some rethinking of how we perform

the benchmarks, e.g. by introducing some new configurations (like the number

threads used for compiling) or by adding new profiling methods that would help us

better analyze multithreaded performance.

• Alternative codegen backends Another ongoing effort that promises to speed-up

compilation (but also perhaps modify/improve the runtime performance of Rust

programs) is the development of different “codegen backends” (other than LLVM).

The most developed backends at the moment are the Cranelift and GCC
backends. Once these backends can be used as a reasonable replacement for LLVM

(and once they are integrated into our CI, so we can easily distribute them to end

users and the collector server), we might want to introduce another configuration

option for the benchmarks, which would allow us to test compilation performance

using different codegen backends.

• Multiple collector servers The current collector server sometimes struggles to keep

up, especially since we now merge more PRs per day, and each benchmark collection

is slower because of the newly added runtime benchmarks. We might eventually hit a

point where we will need to distribute the benchmarking across multiple machines,

which will further complicate the whole infrastructure and make us deal with things

like managing noise and different hardware parameters across different machines.

Contributions are welcome!
Nothing that I have described in this blog post is set in stone! There are a lot of things that

can still be improved, modified or streamlined. Contributing to rustc-perf can be

perhaps less intimidating than jumping directly into the compiler, since it’s not such a

massive piece of code, and it is relatively self-contained.

It also contains contribution opportunities in many different areas! Sometimes we need to

write SQL queries, implement a CLI command in Rust, improve our statistical analysis

algorithms, or modify a web frontend written in Vue. There is something for everyone, so if

you would like to try to contribute to it, don’t hesitate to contact me, or ask around in the

https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/bjorn3/rustc_codegen_cranelift
https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/rust-lang/rustc_codegen_gcc
https://github.com/rust-lang/rustc-perf/pull/1657
https://github.com/rust-lang/rustc-perf/pull/1657
https://github.com/rust-lang/rustc-perf/pull/1691
https://github.com/rust-lang/rustc-perf/pull/1691
https://github.com/rust-lang/rustc-perf/pull/1489
https://github.com/rust-lang/rustc-perf/pull/1489
https://github.com/rust-lang/rustc-perf/pull/1689
https://github.com/rust-lang/rustc-perf/pull/1689

t-compiler/performance Zulip stream :)

Conclusion
There is a lot of other details and things that I have not mentioned or glossed over in this

post (and even then it’s quite long), but I hope that I got the gist of our benchmarking

process across. I think that the way in which Rust developers monitor the performance of

the compiler is quite cool, and I’m happy that I have the opportunity to be a part of it, and

to contribute to making the process better.

If we want to keep making the compiler faster and faster, having (and maintaining!)

infrastructure for monitoring its performance is a necessary component. And it seems to

be paying off - since one year ago, the performance of the compiler has actually improved

quite a lot!.

If you have any comments or questions about the rustc benchmarking suite, or want to

join our benchmarking efforts, let me know on Reddit.

1. We could probably make the compiler faster by rewriting half of it in assembly, but

Rust developers probably wouldn’t be happy if it then took 10 years to implement a

single new feature into the language :) ↩

2. Yes, I know, bytecode compilation and JIT and different interpreters… Let’s not get into

the weeds :) ↩

3. Probably in addition to tens or hundreds of header files :) ↩

4. No, really. Please ignore these compilation time numbers and don’t make any

conclusions out of them. This “benchmark” is surely apples vs oranges in many ways.

I just wanted to demonstrate the difference between compiling everything from

scratch and using precompiled dependencies that have to be provided via external

means, which is not always that simple. ↩

5. Unless they stop compiling on the stable rustc channel, which does happen

sometimes, for example when an unsoundness hole or some UB is fixed in the

language. ↩

�. The :u suffix comes from perf , and specifies that instructions executed in the

kernel are not included. ↩

7. Running tokei on the rust-lang/rust repository tells me that the compiler itself

has almost 600 000 lines of Rust code, and the standard library contains an additional

500 000 lines. And that’s without the 200+ external Rust crate dependencies used by

the compiler! ↩

https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance
https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance
https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance
https://github.com/rust-lang/rustc-perf/pulls/kobzol
https://github.com/rust-lang/rustc-perf/pulls/kobzol
https://perf.rust-lang.org/compare.html?start=2022-08-17&end=2023-08-17&stat=instructions%3Au
https://perf.rust-lang.org/compare.html?start=2022-08-17&end=2023-08-17&stat=instructions%3Au
https://www.reddit.com/r/rust/comments/15ukro3/exploring_the_rust_compiler_benchmark_suite/
https://www.reddit.com/r/rust/comments/15ukro3/exploring_the_rust_compiler_benchmark_suite/
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#fnref:bytecode
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#fnref:bytecode
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#fnref:headers
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#fnref:headers
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#fnref:benchmark
https://kobzol.github.io/rust/rustc/2023/08/18/rustc-benchmark-suite.html#fnref:benchmark
https://github.com/rust-lang/rustc-perf/pull/1629
https://github.com/rust-lang/rustc-perf/pull/1629
https://github.com/XAMPPRocky/tokei
https://github.com/XAMPPRocky/tokei
https://github.com/XAMPPRocky/tokei

�. Just kidding (although I really have no idea where is that machine located). ↩

Kobzol's blog

berykubik@gmail.com

RSS

kobzol Blog about programming stuff.

Kobzol's blog

mailto:berykubik@gmail.com
mailto:berykubik@gmail.com
https://kobzol.github.io/feed.xml
https://kobzol.github.io/feed.xml
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol
https://github.com/kobzol

