:{:I\}/IDI_ = U TURE

Blog Projects Contact GitHub

Rewriting the Modern Web in Rust

Building a modern web app with Rust, Bazel, Yew and Axum.

Earlier this year | rewrote my website with Nextjs, React, tsx, and mdx. Having
tried full-stack rust in the past, | didn't think its developer experience was on
par with the Next js stack. Well times have changed, and | wanted to see just
how far | could push rust to feel like Next js. So | did what any developer would
do and rewrote my personal site.. again.

The Destination

This post is a summary of my journey to a full-stack rust web application. I'lL
give an overview of how | used Yew and Axum to build a single-page
application (SPA) with server-side rendering (SSR), Hooks (Yew function
components), Markdown with embedded Yew components (MDX), and code
syntax highlighting with Prismjs. The entire build uses Bazel's rust support,
including a local development server, cross-compiling to linux with zig, and
assembling a container image for deployment to a serverless or container
runtime.

Let's get started!

https://implfuture.dev/
https://implfuture.dev/
https://implfuture.dev/
https://implfuture.dev/
https://implfuture.dev/blog
https://implfuture.dev/blog
https://implfuture.dev/blog
https://implfuture.dev/blog
https://implfuture.dev/projects
https://implfuture.dev/projects
https://implfuture.dev/projects
https://implfuture.dev/projects
https://twitter.com/4kevinking
https://twitter.com/4kevinking
https://github.com/kcking/implfuture.dev
https://github.com/kcking/implfuture.dev
https://implfuture.dev/blog/building-a-blog-like-its-2022
https://implfuture.dev/blog/building-a-blog-like-its-2022

Feel free to checkout out the source code directly on GitHub.

Yew Function Components (Hooks)

When | last rewrote my personal site, | found React Hooks to be an elegant way
to write Ul state and render logic. | wanted a similar experience for this rewrite,
and was stoked to see Yew now has Hooks, by the name of Function
Components.

A function component is a modular Ul element represented as a function. The
function takes in parameters (called Props), evaluates any necessary business
logic, sets up interactive callbacks (like onclick handlers), and finally returns
an HTML-like rendering of the Ul. Function components map onto MVC where
the Props are the model, the function body is the controller, and the return
value is the view.

// A simple function component
#[function_component]
fn Counter() -> Html {
// store an integer count
let count = use_state(|]| 0);
// 1ncrement on click
let click = use_callback(|_, [count]]| count.set(**count + 1)

html! {
<button onclick={ click }>
{"Counter "}{*count}
</button>

The above code renders as: Counter 0 . It's that easy to create an interactive

component that stores state and responds to input. It's also trivial to compose
them by just adding <ComponentName /> to the return value of the parent
component.

Single-Page Application (SPA) Routing

https://github.com/kcking/implfuture.dev
https://github.com/kcking/implfuture.dev
https://github.com/kcking/implfuture.dev
https://github.com/kcking/implfuture.dev
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://yew.rs/docs/concepts/function-components/introduction
https://yew.rs/docs/concepts/function-components/introduction
https://yew.rs/docs/concepts/function-components/introduction
https://yew.rs/docs/concepts/function-components/introduction

Now that we've covered the core app logic using function components, the
next piece of the puzzle is how components are organized in a hierarchy.

One advantage of writing an application as a SPA is that the browser does not
‘reload” or flash when the user navigates to another page. Instead, when the
user clicks a button or link, local application code on the frontend renders and
replaces the DOM. This also eliminates the latency of requesting a new page
from the server.

Yew comes with SPA support included in the form of yew—router. Similar to

react-router, yew—router lets you define a hierarchy of application
routes, and then map each route to a specific component. Here's how my
website is structured:

// My website routes

enum Route {
#lat("/")]
Home,
#lat("/blog")]
BlogIndex,
#[at("/blog/:slug")]
BlogPost { slug: String },
#lat("/projects")]
Projects,

Each variant of the Route enum is a different page on my website. The
#lat(..)] attribute macro tells Yew what the path of each page should be.
Routes can even have parameters, which | used in the BlogPost variant to
specify which post should be rendered.

Here's the (simplified) route-to-component routing logic for this website:

fn switch(route: Route) -> Html {
match route {
Route::Home => html! {
<h1>{"impl Future {}"}</h1>
I
Route::BlogIndex => blog::blog_index(),
Route::BlogPost{slug} => blog::render(&slug),
Route::Projects => html! {

https://docs.rs/yew-router
https://docs.rs/yew-router
https://docs.rs/yew-router
https://v5.reactrouter.com/web/guides/quick-start
https://v5.reactrouter.com/web/guides/quick-start
https://v5.reactrouter.com/web/guides/quick-start

<Projects />

i

Since Route is arust enum, | am forced to implement every possible route. If |
were to add another route to the enum, the compiler would error until | also
implement the render logic in this switch function. The BlogPost variant
takes advantage of the arbitrary structure of rust enums - | know that if route
is BlogPost, thereisalsoavalid slug: String field that was parsed by
yew—-router.

Server-Side Rendering (SSR)

SPAs are great but pose a couple of problems:

- The client has to download all of the application code (in this case WASM) before
the page can be rendered.

- Web crawlers will run a limited amount of code to understand the content of your

website, resulting in bad Search Engine Optimization (SEO).

Similar issues exist in the React/javascript world, and the most common
solution is Server-Side Rendering. Here is the typical SSR flow:

- The server receives the initial HTTP request from the client

- The server runs its own copy of the application code on the path of the request

- The resulting DOM is serialized to a string and injected into the initial HTML
response

- The client immediately renders the initial HTML page and downloads the
application code

- The client starts the local application, attaching to the initial DOM nodes (also
called hydration)

Luckily, Yew has implemented both the render-to-string and hydration steps!
This just leaves tying it all together with a web server.

Let's see how we can make this all work with Axum.

The basic logic we need to handle an incoming request is:

https://yew.rs/docs/next/advanced-topics/server-side-rendering
https://yew.rs/docs/next/advanced-topics/server-side-rendering
https://yew.rs/docs/next/advanced-topics/server-side-rendering
https://yew.rs/docs/next/advanced-topics/server-side-rendering
https://docs.rs/axum
https://docs.rs/axum

- If the path matches a path in our Yew app, serve index.html with the first render
of that page injected into it.

- Otherwise, try serving a static file from static/.

For the first part, we need a tower service that detects whether a path matches
our Yew app, and otherwise calls another fallback service. | couldn't find
anything in axum or tower that would do this out of the box, so | wrote my own

service:

// tower service that matches a request to a Yew App route, or
// another service (lots of boilerplate omitted)
struct RoutableService<s, F> {

yew_service: S,

fallback_service: F,

}
impl <R, S, F> Service for RoutableService
where
R: yew_router::Routable, S: Service, F: Service,
{
fn call(&mut self, req: Request<Body>) -> Self::Future {
match <R as Routable>::recognize(req.uri().path()).is_sc
// 1f request path matches Yew route, serve S
true => self.yew_service.call(req),
// else serve F
false => self.fallback_service.call(req),
}
}
}

For the full version, check it out on GitHub.

With a Yew-route-aware service, everything can now be pulled together:

fn yew_ssr(req: Request) -> impl IntoResponse {
let props = ServerAppProps {
path: url.uri().path().to_owned().into(),
gueries,
Iy
let mut out = String::new();
yew: :ServerRenderer: :<implfuture: :ServerApp>::with_props(prc
.render_to_string(&mut out)
.await;
// index.html contents read at compile-time, with first rer
// into <body>

https://github.com/kcking/implfuture.dev/blob/814f23dfa63065368dae0ba5e8f348592a8ae20d/server/src/main.rs#L113
https://github.com/kcking/implfuture.dev/blob/814f23dfa63065368dae0ba5e8f348592a8ae20d/server/src/main.rs#L113
https://github.com/kcking/implfuture.dev/blob/814f23dfa63065368dae0ba5e8f348592a8ae20d/server/src/main.rs#L113
https://github.com/kcking/implfuture.dev/blob/814f23dfa63065368dae0ba5e8f348592a8ae20d/server/src/main.rs#L113

INDEX_HTML.replace("<body>", &format!("<body>{}", out));

// static files like wasm, js, images, and css
let static_serve = tower_http::ServeDir::new("static");

// Try Yew app first, fall-back to static files.
let serve = RoutableService {

yew_service: yew_ssr,

fallback_service: static_serve,

+;

MDX

While Yew's html! macro is great for writing small components, writing a blog
post out by hand would be painstaking. | loved using MDX with embedded
typescript React components in my last website rewrite, and wanted to bring
the same experience to rust/yew.

| added an mdx! macro to the yew_macro crate which lets me write

mdx! {r#"

Title

A list of things:
thing One
thing Two
" rust
// rust code block
fn main() {}

Il#}

instead of the equivalent html! syntax:

html! {
<h1> {"Title"} </h1>
<p>{"A list of things:"}</p>

{"thing One"}</1i>
{"thing Two"}</1i>

<pre><code>

https://github.com/kcking/yew/blob/mdx/packages/yew-macro/src/mdx/mod.rs
https://github.com/kcking/yew/blob/mdx/packages/yew-macro/src/mdx/mod.rs
https://github.com/kcking/yew/blob/mdx/packages/yew-macro/src/mdx/mod.rs
https://github.com/kcking/yew/blob/mdx/packages/yew-macro/src/mdx/mod.rs

// rust code block
fn main() {}
</code></pre>

Note: the string literal wrapper in mdx! is a work-around to have a

whitespace-sensitive proc-macro. If anyone knows a cleaner alternative let me
kRnow!

The mdx! proc-macro is a Markdown frontend to the yew: :html! macro. It

uses the pulldown—-cmark crate to convert # to <hl></h1>, "to <code></
code>, and so on.

Yew components can be embedded with their usual html syntax:

fn MyComponent() { html! {<p>{"Component"}</p>}}

mdx! {r#"

<Component />
ll#}

| also added support for replacing all instances of a markdown element with a
custom Yew component. For example, all header tags on my blog are labelled
with an id based on their text and are turned into clickable links.

mdx_style!/(
hi: MyH1,
);

fn MyH1(c: &ChildProps) -> Html {
let slug = /* turn header text into string */;
html! {
// Make all headers deeplink-able

<h1 id={tag}>
{c.children.clone()}
</h1>

https://docs.rs/pulldown-cmark
https://docs.rs/pulldown-cmark
https://docs.rs/pulldown-cmark

To top it off, | added an include_mdx! macro to parse an external Markdown
file from rust code. This lets me write Markdown with all of the usual IDE
support, and without the r#""# wrapper.

blog.mdx
#

> Subtitle

fn blog() -> Html {
include_mdx!("blog.mdx")

}

All of these features can be previewed in the mdx macro unit tests.

Bazel

deep breath..

Alright, we've covered a lot already. Between SSR, wasm, and external
Markdown files, our build is already more than a little complicated.

When starting this project, | initially used trunk to build the wasm. Then |
used normal cargo to build the native server binary and include! -ed the
compiled yew wasm to serve at runtime. | tied all of this together with a bash
scriptand cargo—-watch to automatically re-compile the server on every
code change. Unfortunately, | ran into issues with cargo-watch not always
recognizing when to re-compile that | never figured out how to completely fix. |
also couldn't figure out a way to parallelize the building of the app and the
server, and instead just built them sequentially. Things got even more
complicated when incorporating TailwindCSS and other tooling we'll cover
later in this post.

Along comes Bazel, Google's open-source version of their internal blaze build
system. Bazel is a hermetic build system, where each build step (also called a
rule) declares its dependencies, outputs, and how to build it. This explicitness

https://github.com/kcking/yew/blob/mdx/packages/yew-macro/tests/mdx_macro_test.rs
https://github.com/kcking/yew/blob/mdx/packages/yew-macro/tests/mdx_macro_test.rs
https://github.com/kcking/yew/blob/mdx/packages/yew-macro/tests/mdx_macro_test.rs
https://github.com/kcking/yew/blob/mdx/packages/yew-macro/tests/mdx_macro_test.rs
https://trunkrs.dev/
https://trunkrs.dev/
https://trunkrs.dev/
https://github.com/kcking/gaia/blob/2e115398a17ca06c2c1a90ddcdb5255dc44e6865/watch.sh
https://github.com/kcking/gaia/blob/2e115398a17ca06c2c1a90ddcdb5255dc44e6865/watch.sh
https://github.com/kcking/gaia/blob/2e115398a17ca06c2c1a90ddcdb5255dc44e6865/watch.sh
https://github.com/kcking/gaia/blob/2e115398a17ca06c2c1a90ddcdb5255dc44e6865/watch.sh
https://github.com/watchexec/cargo-watch
https://github.com/watchexec/cargo-watch
https://github.com/watchexec/cargo-watch
https://github.com/kcking/gaia/commit/2e115398a17ca06c2c1a90ddcdb5255dc44e6865#diff-30579e4e9d20f35567d5754061280981f9e104f63e2ce830ab733e694e5ee9c1
https://github.com/kcking/gaia/commit/2e115398a17ca06c2c1a90ddcdb5255dc44e6865#diff-30579e4e9d20f35567d5754061280981f9e104f63e2ce830ab733e694e5ee9c1
https://bazel.build/
https://bazel.build/

allows bazel to know exactly what needs to be re-built and what can be

parallelized.

For the rest of this post, bazel will be the glue with which we tie everything

together.

Bazel Rust Project Layout

The rules_rust project adds rust support to bazel, including support for
crates.io and wasm_bindgen.

The project is split into the core Yew application based in the root directory,
and the web server in the server/ directory. The root BUILD file defines the

Yew app twice:

- first as a library for our server to use in SSR

- second as a binary to run on the web client in “*hydration” mode

/BUILD
rust_library(
name = "implfuture",

srcs = glob(
include = [
"src/**/*.rs",
1
exclude hydration entry-point
exclude = ["src/bin/**"],
)
include mdx files for include_mdx! ()
compile_data = glob(["src/**/*.mdx"]),
edition = "2021",
pulls crates from crates.io/crates_universe
deps = all_crate_deps(
normal = True,
)
)

hydration wasm
rust_binary(
name = "app",
srcs = ["src/bin/app.rs"],
edition = "2021",
deps = all_crate_deps(
normal = True,

) + [

https://github.com/bazelbuild/rules_rust
https://github.com/bazelbuild/rules_rust
https://github.com/bazelbuild/rules_rust

depends on core app logic
":implfuture",
"@rules_rust//wasm_bindgen/3rdparty:wasm_bindgen",

1

We can then compile our client-side hydrating application code to wasm using
the rust_wasm_bindgen rule from rules_rust:

/BUILD

rust_wasm_bindgen(

name = "app_wasm'",
target = "web",
wasm_file = ":app",

Finally, our server BUILD file ties it all together:

/server/BUILD

rust_binary(
name = '"server",
srcs = glob(["src/**/*.rs"]),
files served at runtime
data = [
"//:app_wasm",
"//:static_files",
1
deps = all_crate_deps(
normal = True,
) + [
application code for SSR
"//:implfuture"

1,

The data field tells bazel that the web server needs the app wasm code at
runtime. Bazel uses this information to know it can parallelize compilation of
the wasm code and the native code. Bazel also knows exactly what to
recompile. For example, if we change a CSS static file, bazel knows that it does
not need to recompile the server since CSS is just a runtime data dependency.

With all of this set up, we can run a local development server with

$ bazel run //server
iBazel: Starting...
starting server on 127.0.0.1:8080

If we want things to automatically rebuild, all we need to doisuse ibazel
instead of bazel

$ ibazel run //server
iBazel: Starting...
starting server on 127.0.0.1:8080

Tailwind

While writing React apps, | grew accustomed to using TailwindCSS for styling
individual elements. Tailwind defines many short class hames for commonly
used CSS. For example, class="py-4" in HTML will correspond to .py-4 {
padding-top: 1rem; padding-bottom: 1rem; } inCSS.

To minimize the size of Tailwind's CSS file, it scans your source code to see
which classes you are using. This is normally done on javascript or typescript,
but Tailwind can be configured to run on any file, including rust:

// /tailwind.config.js
module.exports = {
content: ["src/**/*.rs"],
/S

+;

https://github.com/bazelbuild/bazel-watcher
https://github.com/bazelbuild/bazel-watcher
https://github.com/bazelbuild/bazel-watcher
https://tailwindcss.com/
https://tailwindcss.com/

With Tailwind configured, we need a way for bazel to run the Tailwind cli,
tailwindcss, and generate our CSS file. Instead of relying on the developer
to have tailwindcss installed, we can do things the Bazel way and have a
specific version of the Tailwind toolchain installed.

A package. json file defines what libraries we need

// /package. json

{
"name": "implfuture",
"version": "0.1.0",
"dependencies": {},
"devDependencies": {

"tailwindcss": "A3.1.8"

}

}

And in our WORKSPACE file, we install those packages

/WORKSPACE
use bazel rules_nodesjs to install
yarn_install(
name = "root_npm",
package_json = "//:package.json",
yarn_lock = "//:yarn. lock",

The tailwindcss binary is now available to other bazel rules we write. Bazel
has a special rule called genrule that lets you define a rule using a shell
command. Here's the genrule to generate the tailwind CSS file.

/BUILD

genrule(
name = "tailwind",
include our rust files to scan for used class names, as we
tailwind configuration
srcs = glob(["src/**/*.rs"]) + ["tailwind.config.js"],
outs = ["static/tailwind.css"],
cmd = "$(execpath @root_npm//tailwindcss/bin:tailwindcss) --
pull in npm dependency

https://bazel.build/reference/be/general#genrule
https://bazel.build/reference/be/general#genrule
https://bazel.build/reference/be/general#genrule

tools = ["@root_npm//tailwindcss/bin:tailwindcss"],
visibility = ["//:_pkg_ "],

PrismJS

No good developer blog post is complete without syntax highlighting. | tried to
find a rust-native implementation of syntax highlighting, but | couldn't find
anything as full-featured as PrismJS (which is what | used for the previous
rewrite of this site). While | had avoided javascript for as long as possible, |
thought this might be a good opportunity to try incorporating a JS library with a
Yew app.

My approach was to create a separate Javascript file that would bundle any JS
dependencies our app uses and link to it in the index.html file. In the
interest of keeping things bazel-y, | defined another package. json for
runtime dependencies in the bundle/ folder:

// /bundle/package. json

{
"name": "implfuture",
"version": "0.1.0",
"dependencies": {
"prismjs": "A1.28.0"
}
}

/WORKSPACE

yarn_install(
name = "app_npm",
package_json = "//bundle:package.json",
yarn_lock = "//bundle:yarn. lock",

Since there are bazel rules for it, | used the esbuild bundler to bundle prism.
There's even an esbuild prismjs plugin that helps configure PrismJS features

https://esbuild.github.io/
https://esbuild.github.io/
https://esbuild.github.io/
https://npm.io/package/esbuild-plugin-prismjs
https://npm.io/package/esbuild-plugin-prismjs
https://npm.io/package/esbuild-plugin-prismjs
https://npm.io/package/esbuild-plugin-prismjs

and included languages.

The whole app bundle is pulled together in the bundle/BUILD file:

/bundle/BUILD

typescript bundle entrypoint
ts_project(

name = "tsproject",

srcs = |

"app.tS",

1

deps = ["@app_npm//prismjs"],
)

output bundle, served by web server

esbuild(
name = "bundle",
config = ":esbuild_config",

entry_point = "app.ts",
visibility = ["//:_pkg__"],
deps = [
":tsproject",
1
)

esbuild_config(
name = "esbuild_config",
includes configuration of PrismJS
config_file = "esbuild.config.mjs",
deps = [
"@root_npm//esbuild",
"@root_npm//esbuild-plugin-prismjs",

1,

With PrismJS available to my app at runtime, | could now use it from Yew.
PrismJS can be configured to automatically syntax highlight any code it finds in
the DOM, but care must be taken when using Yew. Yew expects to be the only
code manipulating the DOM. If something else adds or removes DOM nodes, it
can cause unexpected behavior when Yew comes back to re-render that part
of the page.

To have full control over when Prism highlights a code block, | chose to use the
Prism.highlightElement function. First, it must be defined in rust as

extern fn:

mod prism {
use wasm_bindgen: :prelude::*;
#[wasm_bindgen]
extern "C" {
#[wasm_bindgen(js_namespace = Prism)]
pub fn highlightElement(element: web_sys::Element);

Then | defined a Yew component that highlights code:

fn HighlightCode(c: &super::ChildProps) -> Html {
// save code tag to be used for highlighting
let code_ref = use_state_eq(|]| NodeRef::default());
let mut code_tag = c.children.iter().next().unwrap().clone()
match &mut code_tag {
VNode::VTag(t) => t.node_ref = (*code_ref).clone(),
~- = {3
iy

use_effect_with_deps(
move |_| {
// highlight code whenever children change, causes
// nodes under .codecontainer div
let element = code_ref.cast::<Element>().unwrap();
prism::highlightElement(element.clone());

// cleanup: remove DOM nodes created by Prism
move || {
element
.closest(".codecontainer")
.ok ()
.flatten()
.map(|e| e.remove());

¥
3

c.children.clone(),

);

html! {
// wrap everything in a .codecontainer div for easier c
<div class='"codecontainer'">
<pre class="overflow-auto m-4 p-6 bg-gray-300/5 rour
{code_tag}
</pre>
</div>

This component makes use of use_effect_with_deps to re-highlight code
whenever the contents of the DOM node change. The closure returned in
use_effect_with_deps isthe cleanup code, and is run whenever this
component is un-mounted from the DOM. The cleanup code is meant to
restore the DOM to its previous state before the Prism highlighting. It works in
practice, but | still get a warning from Yew (app_wasm. js:437 Node not
found to remove VTag)when | navigate away from a page with syntax
highlighting. Clearly this still needs some tweaking (= .

WASM Code-Size Optimization

One obstacle with compiling rust to wasm is that the resulting wasm file can be
pretty large. As of writing this blog, the unoptimized wasm for this site is 5.1MB.
This is clearly way too big for a website. Even though SSR will give the user a
contentful page immediately, all interactivity like onclick s and

use_effect sis delayed until the app wasm fully loads and hydration runs.

The rustwasm book has some great tips on optimizing wasm code size.

wasm-opt

wasm—opt is a part of the Emscripten SDK and is included in its bazel
toolchain. wasm—-opt optimizes wasm code for both performance and code-
size. Using wasm—-opt -0s reduced the app wasm size from 4.9MB to 1.3MB.

Incorporating wasm—opt into bazel in a cross-platform way was a little tricky.
The emsdk bazel toolchain exposes wasm—opt at different paths depending
on the platform. This meant that a genrule would have to be aware of which
platform it was running on in order to locate the correct wasm-opt . Instead, |
wrote a custom rule that invokes wasm—-opt using starlark:

/emsdk/emsdk.bzl

expects exactly one .wasm file and one output path

https://docs.rs/yew/latest/yew/functional/fn.use_effect_with_deps.html
https://docs.rs/yew/latest/yew/functional/fn.use_effect_with_deps.html
https://docs.rs/yew/latest/yew/functional/fn.use_effect_with_deps.html
https://rustwasm.github.io/docs/book/game-of-life/code-size.html
https://rustwasm.github.io/docs/book/game-of-life/code-size.html
https://rustwasm.github.io/docs/book/game-of-life/code-size.html
https://rustwasm.github.io/docs/book/game-of-life/code-size.html
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://github.com/emscripten-core/emsdk/blob/26a0dea0d3bbf616fa7f0a908e5b08aab406f7c4/bazel/emscripten_deps.bzl#L117
https://bazel.build/extending/rules
https://bazel.build/extending/rules

def _wasmopt_impl(ctx):
tc = ctx.toolchains["//emsdk:toolchain_type"]
info = tc.emsdkinfo
wasm_srcs = [f for f in ctx.attr.src.files.to_list() if f.pe
if len(wasm_srcs) != 1:
fail("expected 1 wasm file, got %s'" % wasm_srcs)
wasm_src = wasm_srcs[0]

ctx.actions.run(
inputs = [wasm_src],
outputs = [ctx.outputs.out],
executable = info.wasmopt,
arguments = ["-0s", wasm_src.path, "-0", ctx.outputs.out

This rule uses the bazel toolchain construct to select the version of emsdk
compatible with the host. | also defined emsdk toolchains, similar to how
rust or go toolchains are defined:

/emsdk/emsdk.bzl

def declare_toolchains(name):
for tc in TOOLCHAINS:

emsdk_toolchain(
name = "emsdk_{tc}".format(tc = tc),
linker_files = "@emscripten_bin_{tc}//:1linker_files'

)

native.toolchain(
name = "emsdk_{tc}_toolchain".format(tc = tc),
toolchain = ":emsdk_{tc}".format(tc = tc),
exec_compatible_with = TOOLCHAINS[tc]["exec"],
toolchain_type = "//emsdk:toolchain_type",

)

def register_toolchains():
native.register_toolchains(
*["//emsdk:emsdk_{tc}_toolchain".format(tc = tc) for tc

)

Any bazel project then just needs to call register_toolchains() inits
WORKSPACE file and the correct emsdk will be downloaded when the
wasmopt ruleis used.

Brotli

https://bazel.build/extending/toolchains
https://bazel.build/extending/toolchains

While wasm—-opt brought the app down from 4.9MB to 1.3MB, that's still way
too big. The next option | looked at was compression. After experimenting with
flate, gzip, and brotli, | found that brotli achieved the smallest size. With both
wasm-opt -0s and brotli -9, the wasm file came down to 331KB in total.

Incorporating brotli into bazel was pretty simple since it's a Google project that
already uses bazel for its build. First added it to my WORKSPACE :

/WORKSPACE

git_repository(
name = "brotli",
commit "9801a2c5d6c67c467ffad676ac301379bb877fc3", # 2022
remote "https://github.com/google/brot1li",

Then | wrote a simple genrule to compress the output of wasm—-opt:

/BUILD
genrule(
name = "app_wasm_opt_br",
srcs = [":app_wasm_opt"],
outs = ["app_wasm_bg_opt.wasm.br"],

cmd = "$(execpath @brotli) -9 $<",
tools = ["@brotli"],

Referencing @brotli inthe tools argument automatically compiles
brotli for the host architecture. This way, | can be sure exactly which version
of brotli is being used, and don't need to rely on any host having it installed

beforehand.

Deployment

To top it all off, | needed a way to package and host the web app. When using
Next,js, Vercel was the obvious option. Instead, | decided to cross-compile the
web server to linux and package it into a container.

https://github.com/google/brotli
https://github.com/google/brotli

Cross-Compilation

Rust includes support for cross-compilation, and adding the platforms |
needed was as simple as adding these lines to my WORKSPACE :

/WORKSPACE

rust_register_toolchains(extra_target_triples = |
"wasm32-unknown-unknown",
"x86_64-unknown-1linux-gnu",
"aarch64-unknown-linux-gnu",

D

rules_rust usesthe same bazel toolchain abstraction | mentioned in the
wasm—-opt section of this post, and the cross-compilation really Just Works.

However, many rust crates also use C or C++, and | needed a toolchain that
could cross-compile those languages. When looking for the easiest cross-
compilation toolchain to use, | stumbled upon the blog post “Zig Makes Go
Cross Compilation Just Work" and a follow-on “Zig Makes Rust Cross
Compilation Just Work". These posts showcase using zig as a drop-in
replacement for a C compiler and linker with great success.

Luckily, the bazel-zig—cc project provides bazel toolchain abstractions for
the zig C/C++ toolchain. After recommending a small fix to address how
cargo invokes z1ig as a linker, all | had to do was register the linux zig
toolchains in my WORKSPACE .

One minor issue | ran into was that cargo would have issues when using a
cross-compilation toolchain and compiling for the host architecture. To address
this, | wrote a wrapper around zig toolchain registration that omits the zig
toolchain for the host architecture.

Container Image

With my cross-compiled server binary ready to go, the next step was
packaging it into a container. rules_docker provides bazel rules to create

and manage OCI containers.

https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://dev.to/kristoff/zig-makes-go-cross-compilation-just-work-29ho
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://actually.fyi/posts/zig-makes-rust-cross-compilation-just-work/
https://git.sr.ht/~motiejus/bazel-zig-cc
https://git.sr.ht/~motiejus/bazel-zig-cc
https://git.sr.ht/~motiejus/bazel-zig-cc
https://git.sr.ht/~motiejus/bazel-zig-cc/commit/79674a1d966b5c196a6f729ac7423223dc05cf83
https://git.sr.ht/~motiejus/bazel-zig-cc/commit/79674a1d966b5c196a6f729ac7423223dc05cf83
https://git.sr.ht/~motiejus/bazel-zig-cc/commit/79674a1d966b5c196a6f729ac7423223dc05cf83
https://git.sr.ht/~motiejus/bazel-zig-cc/commit/79674a1d966b5c196a6f729ac7423223dc05cf83
https://github.com/kcking/implfuture.dev/blob/490e84277c365cbdc332ffc15219308a809569d9/zig/zig.bzl
https://github.com/kcking/implfuture.dev/blob/490e84277c365cbdc332ffc15219308a809569d9/zig/zig.bzl
https://github.com/bazelbuild/rules_docker
https://github.com/bazelbuild/rules_docker
https://github.com/bazelbuild/rules_docker

| first used the built-in pkg_tar rule to bundle all of the relevant files into one
archive:

/server/BUILD

pkg_tar(
name = "opt_tar",
:opt refers to optimized server artifacts that have passec
wasm-opt and brotli
srcs = [":opt"],
include_runfiles = True,
package_dir = "/app",
keeps relative path consistent for static files in both de
strip_prefix = "/server",

Then a single container_image rule packages everything into a container:

/server/BUILD

container_image(

name = "image-amd64",

architecture = "amd64",

References google-maintained base image defined in /WORKSF
base = "@cc_base//image",

cmd ["/app/opt"],

env {

configure binary for production
"HTTP_LISTEN_ADDR": "0.0.0.0:8080",

T
tars = [":opt_tar"],
workdir = "/app",

Note: container_image uses a custom go library to build the image instead
of requiring a Docker cli/daemon, however this tool doesn't currently work on
Windows.

Serverless

Infrastructure-wise, all | really needed was custom domain support, TLS
termination, and some execution environment. The first thing that came to

https://github.com/bazelbuild/rules_docker/blob/master/container/go/pkg/oci/image.go
https://github.com/bazelbuild/rules_docker/blob/master/container/go/pkg/oci/image.go
https://github.com/bazelbuild/rules_docker/blob/master/container/go/pkg/oci/image.go
https://github.com/bazelbuild/rules_docker/blob/master/container/go/pkg/oci/image.go

mind was something like AWS ECS (Elastic Container Service), but keeping a
container running all the time for just a personal website felt wasteful.

Instead, | settled on AWS Lambda, with a TLS certificate stored in ACM, and API
Gateway as a frontend. This setup provided unlimited auto-scaling, and didn't
even require setting up my own load balancer (lLoad balancers are usually the
most expensive part of deploying a small project).

All I needed was for my web server to support lambda instead of expecting
incoming TCP traffic. Luckily, there's an awesome lambda-web crate that
adapts common rust web servers like Axum to the lambda runtime API. AlL |
had to add to my web server was:

// /server/src/main.rs

if lambda_web::is_running_on_lambda() {
lambda_web: :run_hyper_on_lambda(route_service)
.await
.map_err(...)?;
} else {
// tcp listen code...
}

With lambda-web, the same axum handlers, including static file serving and
SSR, work for both my local development server and the production lambda
runtime.

Wrapping Up

Thank you for joining me on this rust + bazel journey! | was able to push full-
stack rust much further than | thought | would be able to. | converged on a
relatively convenient developer and deployment experience, building on the
shoulders of giants like bazel, rules_rust, and zig.

Don't get me wrong, there's still quite a few improvements | would like to see in
this project / the rust web ecosystem in general. To name a few:

- code splitting (right now the entire application wasm is loaded no matter which

https://github.com/hanabu/lambda-web
https://github.com/hanabu/lambda-web
https://github.com/hanabu/lambda-web

page the user is on)
- hot-reloading of app wasm so | can see updates without refreshing the page

- bazel remote build cache to speed up github worker builds (currently takes 20-30m
on a free worker)

- blog table of contents (could likely be implemented in a component that scans the
blog DOM after first render)

- compiling the server to wasi architecture

| hope you learned a bit about rust, wasm, or bazel along the way! See you next
post!

https://github.com/kcking/implfuture.dev/actions
https://github.com/kcking/implfuture.dev/actions
https://github.com/kcking/implfuture.dev/actions
https://github.com/kcking/implfuture.dev/actions

