
Sutter’s Mill

Herb Sutter on software development

C++ safety, in context

Herb Sutter 2024-03-112024-04-07 28 Minutes
Scope. To talk about C++’s current safety problems and solutions well, I need to include the context of the broad landscape of security
and safety threats facing all software. I chair the ISO C++ standards committee and I work for Microsoft, but these are my personal
opinions and I hope they will invite more dialog across programming language and security communities.

Acknowledgments. Many thanks to people from the C, C++, C#, Python, Rust, MITRE, and other language and security
communities whose feedback on drafts of this material has been invaluable, including: Jean-François Bastien, Joe Bialek, Andrew
Lilley Brinker, Jonathan Caves, Gabriel Dos Reis, Daniel Frampton, Tanveer Gani, Daniel Griffing, Russell Hadley, Mark Hall, Tom
Honermann, Michael Howard, Marian Luparu, Ulzii Luvsanbat, Rico Mariani, Chris McKinsey, Bogdan Mihalcea, Roger Orr,
Robert Seacord, Bjarne Stroustrup, Mads Torgersen, Guido van Rossum, Roy Williams, Michael Wong.

Terminology (see ISO/IEC 23643:2020 (https://www.iso.org/standard/76517.html)). “Software security” (or
“cybersecurity” or similar) means making software able to protect its assets from a malicious attacker. “Software safety” (or “life
safety” or similar) means making software free from unacceptable risk of causing unintended harm to humans, property, or the
environment. “Programming language safety” means a language’s (including its standard libraries’) static and dynamic
guarantees, including but not limited to type and memory safety, which helps us make our software both more secure and more safe.
When I say “safety” unqualified here, I mean programming language safety, which benefits both software security and software
safety.

We must make our software infrastructure more secure against the rise in cyberattacks (such as on
power grids, hospitals, and banks), and safer against accidental failures with the increased use of
software in life-critical systems (such as autonomous vehicles and autonomous weapons).

The past two years in particular have seen extra attention on programming language safety as a way
to help build more-secure and -safe software; on the real benefits of memory-safe languages (MSLs);
and that C and C++ language safety needs to improve — I agree.

But there have been misconceptions, too, including focusing too narrowly on programming language
safety as our industry’s primary security and safety problem — it isn’t. Many of the most damaging
recent security breaches happened to code written in MSLs (e.g., Log4j (https://www.cisa.gov/news-
events/news/apache-log4j-vulnerability-guidance)) or had nothing to do with programming
languages (e.g., Kubernetes Secrets stored on public GitHub repos (https://blog.aquasec.com/the-
ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets)).

In that context, I’ll focus on C++ and try to:

◦ highlight what needs attention (what C++’s problem “is”), and how we can get there by building
on solutions already underway;

◦ address some common misconceptions (what C++’s problem “isn’t”), including practical
considerations of MSLs; and

◦ leave a call to action for programmers using all  languages.

tl;dr: I don’t want C++ to limit what I can express efficiently. I just want C++ to let me enforce our
already-well-known safety rules and best practices by default, and make me opt out explicitly if that’s
what I want. Then I can still use fully modern C++… just nicer.

Let’s dig in.

  

https://herbsutter.com/
https://herbsutter.com/
https://herbsutter.com/
https://herbsutter.com/
https://herbsutter.com/
https://herbsutter.com/author/herbsutter/
https://herbsutter.com/author/herbsutter/
https://www.iso.org/standard/76517.html
https://www.iso.org/standard/76517.html
https://www.iso.org/standard/76517.html
https://www.iso.org/standard/76517.html
https://www.iso.org/standard/76517.html
https://www.iso.org/standard/76517.html
https://www.iso.org/standard/76517.html
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets


 (https://herbsutter.com/wp-content/

uploads/2024/03/image.png)

 (https://herbsutter.com/wp-

content/uploads/2024/03/image-1.png)

The immediate problem “is” that it’s Too Easy By
Default™ to write security and safety vulnerabilities in C+
+ that would have been caught by stricter enforcement of
known rules for type,
bounds,
initialization,
and
lifetime
language safety

https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png
https://herbsutter.com/wp-content/uploads/2024/03/image-1.png


 (https://herbsutter.com/wp-content/

uploads/2024/03/image-2.png)

In C++, we need to start with improving these four categories. These are the main four sources of
improvement provided by all the MSLs that NIST/NSA/CISA/etc. recommend using instead of C++
(example (https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-
MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF)), so by definition addressing these four would
address the immediate NIST/NSA/CISA/etc. issues with C++. (More on this under “The problem
‘isn’t’… (1)” below.)

And in all recent years including 2023 (see figures 1’s four highlighted rows, and figure 2), these four
constitute the bulk of those oft-quoted 70% of CVEs (https://en.wikipedia.org/wiki/
Common_Vulnerabilities_and_Exposures) (Common [Security] Vulnerabilities and Exposures)
related to language memory unsafety. (However, that “70% of language memory unsafety CVEs” is
misleading; for example, in figure 1, most of MITRE’s 2023 “most dangerous weaknesses” (https://
cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView) did not involve language safety
and so are outside that denominator. More on this under “The problem ‘isn’t’… (3)” below.)

The C++ guidance literature already broadly agrees on safety rules in those categories. It’s true
that there is some conflicting guidance literature, particularly in environments that ban exceptions or
run-time type support and so use some alternative rules. But there is consensus on core safety rules,
such as banning unsafe casts, uninitialized variables, and out-of-bounds accesses (see Appendix).

C++ should provide a way to enforce them by default, and require explicit opt-out where needed.
We can and do write “good” code and secure applications in C++. But it’s easy even for experienced
C++ developers to accidentally write “bad” code and security vulnerabilities that C++ silently
accepts, and that would be rejected as safety violations in other languages. We need the standard
language to help more by enforcing the known best practices, rather than relying on additional
nonstandard tools to recommend them.

These are not the only four aspects of language safety we should address. They are just the
immediate ones, a set of clear low-hanging fruit where there is both a clear need and clear way to
improve (see Appendix).

https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://herbsutter.com/wp-content/uploads/2024/03/image-2.png
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView


Note: And safety categories are of course interrelated. For example, full type safety (that an accessed object is
a valid object of its type) requires eliminating out-of-bounds accesses to unallocated objects. But, conversely,
full bounds safety (that accessed memory is inside allocated bounds) similarly requires eliminating type-
unsafe downcasts to larger derived-type objects that would appear to extend beyond the actual allocation.

Software safety is also important. Cyberattacks are urgent, so it’s natural that recent discussions
have focused more on security and CVEs first. But as we specify and evolve default language safety
rules, we must also include our stakeholders who care deeply about functional safety issues that are
not reflected in the major CVE buckets but are just as harmful to life and property when left in code.
Programming language safety helps both software security and software safety, and we should start
somewhere, so let’s start (but not end) with the known pain points of security CVEs.

In those four buckets, a 10-50x improvement (90-98% reduction)
is sufficient

If there were 90-98% fewer C++ type/bounds/initialization/lifetime vulnerabilities we wouldn’t be
having this discussion. All languages have CVEs, C++ just has more (and C still more). [Updated:

Removed count of 2024 Rust vs C/C++ CVEs because MITRE.org search doesn’t have a great way of accurately
counting the latter.] So zero isn’t the goal; something like a 90% reduction is necessary, and a 98%
reduction is sufficient, to achieve security parity with the levels of language safety provided by
MSLs… and has the strong benefit that I believe it can be achieved with perfect backward link
compatibility (i.e., without changing C++’s object model, and its lifetime model which does not depend
on universal tracing garbage collection and is not limited to tree-based data structures) which is
essential to our being able to adopt the improvements in existing C++ projects as easily as we can
adopt other new editions of C++. — After that, we can pursue additional improvements to other
buckets, such as thread safety and overflow safety.

Aiming for 100%, or zero CVEs in those four buckets, would be a mistake:

◦ 100% is not necessary because none of the MSLs we’re being told to use instead are there either.
More on this in “The problem ‘isn’t’… (2)” below.

◦ 100% is not sufficient because many cyberattacks exploit security weaknesses other than memory
safety.

And getting that last 2% would be too costly, because it would require giving up on link
compatibility and seamless interoperability (or “interop”) with today’s C++ code. For example, Rust’s
object model and borrow checker deliver great guarantees, but require fundamental incompatibility
with C++ and so make interop hard beyond the usual C interop level. One reason is that Rust’s safe
language pointers are limited to expressing tree-shaped data structures that have no cycles; that
unique ownership is essential to having great language-enforced aliasing guarantees, but it also
requires programmers to use ‘something else’ for anything more complex than a tree (e.g., using Rc,
or using integer indexes as ersatz pointers); it’s not just about linked lists (https://rust-
unofficial.github.io/too-many-lists/) but those are a simple well-known illustrative example.

If we can get a 98% improvement and still have fully compatible interop with existing C++, that
would be a holy grail worth serious investment.

https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/
https://rust-unofficial.github.io/too-many-lists/


A 98% reduction across those four categories is achievable in
new/updated C++ code, and partially in existing code

Since at least 2014, Bjarne Stroustrup has advocated addressing safety in C++ via a “subset of a
superset”: That is, first “superset” to add essential items not available in C++14, then “subset” to
exclude the unsafe constructs that now all have replacements.

As of C++20, I believe we have achieved the “superset,” notably by standardizing span,
string_view, concepts, and bounds-aware ranges. We may still want a handful more features, such as
a null-terminated zstring_view, but the major additions already exist.

Now we should “subset”: Enable C++ programmers to enforce best practices around type and
memory safety, by default, in new code and code they can update to conform to the subset.
Enabling safety rules by default would not limit the language’s power but would require explicit opt-
outs for non-standard practices, thereby reducing inadvertent risks. And it could be evolved over
time, which is important because C++ is a living language and adversaries will keep changing their
attacks.

ISO C++ evolution is already pursuing Safety Profiles for C++ (https://open-std.org/JTC1/SC22/
WG21/docs/papers/2023/p2816r0.pdf). The suggestions in the Appendix are refinements to that, to
demonstrate specific enforcements and to try to maximize their adoptability and useful impact. For
example, everyone agrees that many safety bugs will require code changes to fix. However, how many
safety bugs could be fixed without manual source code changes, so that just recompiling existing code
with safety profiles enabled delivers some safety benefits? For example, we could by default inject a
call-site bounds check 0 <= b < a.size() on every subscript expression a[b] when a.size() exists and a is
a contiguous container, without requiring any source code changes and without upgrading to a new
internally bounds-checked container library; that checking would Just Work out of the box with every
contiguous C++ standard container, span, string_view, and third-party custom container with no
library updates needed (including therefore also no concern about ABI breakage).

Rules like those summarized in the Appendix would have prevented (at compile time, test time or
run time) most of the past CVEs I’ve reviewed in the type, bounds, and initialization categories,
and would have prevented many of the lifetime CVEs. I estimate a roughly 98% reduction in those
categories is achievable in a well-defined and standardized way for C++ to enable safety rules by
default, while still retaining perfect backward link compatibility. See the Appendix for a more
detailed description.

We can and should emphasize adoptability and benefit also for C++ code that cannot easily be
changed. Any code change to conform to safety rules carries a cost; worse, not all code can be easily
updated to conform to safety rules (e.g., it’s old and not understood, it belongs to a third party that
won’t allow updates, it belongs to a shared project that won’t take upstream changes and can’t easily
be forked). That’s why above (and in the Appendix) I stress that C++ should seriously try to deliver as
many of the safety improvements as practical without requiring manual source code changes, notably
by automatically making existing code do the right thing when that is clear (e.g., the bounds checks
mentioned above, or emitting static_cast pointer downcasts as effectively dynamic_cast without
requiring the code to be changed), and by offering automated fixits that the programmer can choose
to apply (e.g., to change the source for static_cast pointer downcasts to actually say dynamic_cast).
Even though in many cases a programmer will need to thoughtfully update code to replace inherently
unsafe constructs that can’t be automatically fixed, I believe for some percentage of cases we can

https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf


deliver safety improvements by just recompiling existing code in the safety-rules-by-default mode,
and we should try because it’s essential to maximizing safety profiles’ adoptability and impact.

What the problem “isn’t”: Some common
misconceptions

(1) The problem “isn’t” defining what we mean by “C++’s most
urgent language safety problem.” We know the four kinds of safety
that most urgently need to be improved: type, bounds,
initialization, and lifetime safety.

We know these four are the low-hanging fruit (see “The problem ‘is’…” above). It’s true that these are
just four of perhaps two dozen kinds of “safety” categories, including ones like safe integer

arithmetic. But:

◦ Most of the others are either much smaller sources of problems, or are primarily important
because they contribute to those four main categories. For example, the integer overflows we care
most about are indexes and sizes, which fall under bounds safety.

◦ Most MSLs don’t address making these safe by default either, typically due to the checking cost.
But all languages (including C++) usually have libraries and tools to address them. For example,
Microsoft ships a SafeInt library (https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?
view=msvc-170) for C++ to handle integer overflows, which is opt-in. C# has a checked arithmetic
language feature (https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
statements/checked-and-unchecked) to handle integer overflows, which is opt-in. Python’s built-
in integers are overflow-safe by default because they automatically expand; however, the popular
NumPy fixed-size integer types do not check for overflow by default and require using checked
functions, which is opt-in.

Thread safety is obviously important too, and I’m not ignoring it. I’m just pointing out that it is not
one of the top target buckets: Most of the MSLs that NIST/NSA/CISA/etc. recommend over C++
(except uniquely Rust, and to a lesser extent Python) address thread safety impact on user data
corruption about as well as C++. The main improvement MSLs give is that a program data race will
not corrupt the language’s own virtual machine (whereas in C++ a data race is currently all-bets-are-off
undefined behavior). Some languages do give some additional protection, such as that Python
guarantees two racing threads cannot see a torn write of an integer and reduces other possible
interleavings because of the global interpreter lock (GIL).

(2) The problem “isn’t” that C++ code is not formally provably safe.

Yes, C++ code makes it too easy to write silently-unsafe code by default (see “The problem ‘is’…”
above).

https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked


But I’ve seen some people claim we need to require languages to be formally provably safe, and that
would be a bridge too far. Much to the chagrin of CS theorists, mainstream commercial programming
languages aren’t formally provably safe. Consider some examples:

◦ None of the widely-used languages we view as MSLs (except uniquely Rust) claim to be thread-
safe and race-free by construction, as covered in the previous section. Yet we still call C#, Go, Java,
Python, and similar languages “safe.” Therefore, formally guaranteeing thread safety properties
can’t be a requirement to be considered a sufficiently safe language.

◦ That’s because a language’s choice of safety guarantees is a tradeoff: For example, in Rust, safe
code uses tree-based dynamic data structures only. This feature lets Rust deliver stronger thread
safety guarantees than other safe languages, because it can more easily reason about and control
aliasing. However, this same feature also requires Rust programs to use unsafe code more often to
represent common data structures that do not require unsafe code to represent in other MSLs such
as C# or Java, and so 30% to 50% of Rust crates use unsafe code (https://thenewstack.io/unsafe-
rust-in-the-wild/), compared for example to 25% of Java libraries (https://dl.acm.org/doi/
abs/10.1145/2814270.2814313).

◦ C#, Java, and other MSLs still have use-before-initialized and use-after-destroyed type safety
problems too: They guarantee not accessing memory outside its allocated lifetime, but object
lifetime is a subset of memory lifetime (objects are constructed after, and destroyed/disposed
before, the raw memory is allocated and deallocated; before construction and after dispose, the

memory is allocated but contains “raw bits” that likely don’t represent a valid object of its type). If
you doubt, please run (don’t walk) and ask ChatGPT about Java and C# problems with: access-
unconstructed-object bugs (e.g., in those languages, any virtual call in a constructor is “deep” and
executes in a derived object before the derived object’s state is initialized); use-after-dispose bugs;
“resurrection” bugs; and why those languages tell people never to use their finalizers. Yet these
are great languages and we rightly consider them safe languages. Therefore, formally guaranteeing
no-use-before-initialized and no-use-after-dispose can’t be a requirement to be considered a
sufficiently safe language.

◦ Rust, Go, and other languages support sanitizers (https://rustc-dev-guide.rust-lang.org/
sanitizers.html) too, including ThreadSanitizer and undefined behavior sanitizers (https://
github.com/rust-lang/miri), and related tools like fuzzers. Sanitizers are known to be still needed
as a complement to language safety, and not only for when programmers use ‘unsafe’ code;
furthermore, they go beyond finding memory safety issues. The uses of Rust at scale that I know
of also enforce use of sanitizers. So using sanitizers can’t be an indicator that a language is unsafe
— we should use the supported sanitizers for code written in any language.

Note: “Use your sanitizers” does not mean to use all of them all the time. Some sanitizers conflict with each
other, so you can only use those one at a time. Some sanitizers are expensive, so they should only be run
periodically. Some sanitizers should not be run in production, including because their presence can create
new security vulnerabilities.

(3) The problem “isn’t” that moving the world’s C and C++ code to
memory-safe languages (MSLs) would eliminate 70% of security
vulnerabilities.

MSLs are wonderful! They just aren’t a silver bullet.

An oft-quoted number (https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-

https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/


security/) is that “70%” of programming language-caused CVEs (reported security vulnerabilities) in C
and C++ code are due to language safety problems. That number is true and repeatable, but has been
badly misinterpreted in the press: No security expert I know believes that if we could wave a magic
wand and instantly transform all the world’s code to MSLs, that we’d have 70% fewer CVEs, data
breaches, and ransomware attacks. (For example, see this February 2024 example analysis paper
(https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/).)

Consider some reasons.

◦ That 70% is of the subset of security CVEs that can be addressed by programming language safety.
See figure 1 again: Most of 2023’s top 10 “most dangerous software weaknesses” were not related
to memory safety. Many of 2023’s largest data breaches and other cyberattacks and cybercrime
had nothing to do with programming languages at all. In 2023, attackers reduced their use of
malware because software is getting hardened and endpoint protection is effective (CRN)
(https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023), and
attackers go after the slowest animal in the herd. Most of the issues listed in NISTIR-8397 (https://
nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf) affect all languages equally, as they go
beyond memory safety (e.g., Log4j (https://www.cisa.gov/news-events/news/apache-log4j-
vulnerability-guidance)) or even programming languages (e.g., automated testing, hardcoded
secrets, enabling OS protections, string/SQL injections, software bills of materials). For more

detail see the Microsoft response to NISTIR-8397 (https://learn.microsoft.com/en-us/cpp/code-
quality/build-reliable-secure-programs?view=msvc-170), for which I was the editor. (More on this
in the Call to Action.)

◦ MSLs get CVEs too, though definitely fewer (again, e.g., Log4j (https://www.cisa.gov/news-
events/news/apache-log4j-vulnerability-guidance)). For example, see MITRE list of Rust CVEs
(https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust), including six so far in 2024. And all
programs use unsafe code; for example, see the Conclusions section of Firouzi et al. (https://
www.researchgate.net/
publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_
Overflow)’s study of uses of C#’s unsafe on StackOverflow and prevalence of vulnerabilities, and
that all programs eventually call trusted native libraries or operating system code.

◦ Saying the quiet part out loud: CVEs are known to be an imprecise metric. We use it because it’s
the metric we have, at least for security vulnerabilities, but we should use it with care. This may
surprise you, as it did me, because we hear a lot about CVEs. But whenever I’ve suggested
improvements for C++ and measuring “success” via a reduction in CVEs (including in this essay),
security experts insist to me that CVEs aren’t a great metric to use… including the same experts
who had previously quoted the 70% CVE number to me. — Reasons why CVEs aren’t a great
metric include that CVEs are self-reported and often self-selected, and not all are equally
exploitable; but there can be pressure to report a bug as a vulnerability even if there’s no
reasonable exploit because of the benefits of getting one’s name on a CVE. In August 2023, the
Python Software Foundation became a CVE Numbering Authority (CNA) (https://www.cve.org/
Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA) for Python
and pip distributions, and now has more control over Python and pip CVEs. The C++ community
has not done so.

◦ CVEs target only software security vulnerabilities (cyberattacks and intrusions), and we also need
to consider software safety (life-critical systems and unintended harm to humans).

(4) The problem “isn’t” that C++ programmers aren’t trying hard
enough / using the existing tools well enough. The challenge is

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA


making it easier to enable them.

Today, the mitigations and tools we do have for C++ code are an uneven mix, and all are off-by-
default:

◦ Kind. They are a mix of static tools, dynamic tools, compiler switches, libraries, and language
features.

◦ Acquisition. They are acquired in a mix of ways: in-the-box in the C++ compiler, optional
downloads, third-party products, and some you need to google around to discover.

◦ Accuracy. Existing rulesets mix rules with low and high false positives. The latter are effectively
unadoptable by programmers, and their presence makes it difficult to “just adopt this whole set of
rules.”

◦ Determinism. Some rules, such as ones that rely on interprocedural analysis of full call trees, are
inherently nondeterministic (because an implementation gives up when fully evaluating a case
exceeds the space and time available; a.k.a. “best effort” analysis). This means that two
implementations of the identical rule can give different answers for identical code (and therefore
nondeterministic rules are also not portable, see below).

◦ Efficiency. Existing rulesets mix rules with low and high (and sometimes impossible) cost to

diagnose. The rules that are not efficient enough to implement in the compiler will always be
relegated to optional standalone tools.

◦ Portability. Not all rules are supported by all vendors. “Conforms to ISO/IEC 14882 (Standard C+
+)” is the only thing every C++ tool vendor supports portably.

To address all these points, I think we need the C++ standard to specify a mode of well-agreed and
low-or-zero-false-positive deterministic rules that are sufficiently low-cost to implement in-the-box at
build time.

Call(s) to action

As an industry generally, we must make a major improvement in programming language memory
safety — and we will.

In C++ specifically, we should first target the four key safety categories that are our perennial
empirical attack points (type, bounds, initialization, and lifetime safety), and drive vulnerabilities in
these four areas down to the noise for new/updated C++ code — and we can.

But we must also recognize that programming language safety is not a silver bullet to achieve
cybersecurity and software safety. It’s one battle (not even the biggest) in a long war: Whenever we
harden one part of our systems and make that more expensive to attack, attackers always switch to
the next slowest animal in the herd. Many of 2023’s worst data breaches did not involve malware, but
were caused by inadequately stored credentials (e.g., Kubernetes Secrets (https://blog.aquasec.com/
the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets) on public GitHub repos),
misconfigured servers (e.g., DarkBeam (https://cybernews.com/security/darkbeam-data-leak/
#google_vignette), Kid Security (https://cybernews.com/security/kidsecurity-parental-control-data-
leak/)), lack of testing, supply chain vulnerabilities, social engineering, and other problems that are
independent of programming languages. Apple’s white paper (https://www.apple.com/newsroom/
pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf) about 2023’s

https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://blog.aquasec.com/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/darkbeam-data-leak/#google_vignette
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf


 (https://herbsutter.com/wp-content/

uploads/2024/03/image-7.png)

rise in cybercrime emphasizes improving the handling, not of program code, but of the data: “it’s
imperative that organizations consider limiting the amount of personal data they store in readable
format while making a greater effort to protect the sensitive consumer data that they do store
[including by using] end-to-end [E2E] encryption.”

No matter what programming language we use, security hygiene is essential:

◦ Do use your language’s static analyzers and sanitizers. Never pretend using static analyzers and
sanitizers is unnecessary “because I’m using a safe language.” If you’re using C++, Go, or Rust,
then use those languages’ supported analyzers and sanitizers. If you’re a manager, don’t allow
your product to be shipped without using these tools. (Again: This doesn’t mean running all
sanitizers all the time; some sanitizers conflict and so can’t be used at the same time, some are
expensive and so should be used periodically, and some should be run only in testing and never in
production including because their presence can create new security vulnerabilities.)

◦ Do keep all your tools updated. Regular patching is not just for iOS and Windows, but also for

https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png
https://herbsutter.com/wp-content/uploads/2024/03/image-7.png


 (https://herbsutter.com/wp-content/

uploads/2024/03/image-3.png)

your compilers, libraries, and IDEs.

◦ Do secure your software supply chain. Do use package management for library dependencies. Do
track a software bill of materials for your projects.

◦ Don’t store secrets in code. (Or, for goodness’ sake, on GitHub!)

◦ Do configure your servers correctly, especially public Internet-facing ones. (Turn authentication
on! Change the default password!)

◦ Do keep non-public data encrypted, both when at rest (on disk) and when in motion (ideally
E2E… and oppose proposed legislation that tries to neuter E2E encryption with ‘backdoors only
good guys will use’ because there’s no such thing).

◦ Do keep investing long-term in keeping your threat modeling current, so that you can stay
adaptive as your adversaries keep trying different attack methods.

We need to improve software security and software safety across the industry, especially by
improving programming language safety in C and C++, and in C++ a 98% improvement in the four
most common problem areas is achievable in the medium term. But if we focus on programming
language safety alone, we may find ourselves fighting yesterday’s war and missing larger past and
future security dangers that affect software written in any language.

Sadly, there are too many bad actors. For the foreseeable future, our software and data will continue
to be under attack, written in any language and stored anywhere. But we can defend our programs
and systems, and we will.

Be well, and may we all keep working to have a safer and more secure 2024.

 (https://herbsutter.com/wp-content/uploads/2024/03/image-5.png)

https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-3.png
https://herbsutter.com/wp-content/uploads/2024/03/image-5.png
https://herbsutter.com/wp-content/uploads/2024/03/image-5.png
https://herbsutter.com/wp-content/uploads/2024/03/image-5.png
https://herbsutter.com/wp-content/uploads/2024/03/image-5.png
https://herbsutter.com/wp-content/uploads/2024/03/image-5.png
https://herbsutter.com/wp-content/uploads/2024/03/image-5.png


Appendix: Illustrating why a 98% reduction is feasible

This Appendix exists to support why I think a 98% reduction in type/bounds/initialization/lifetime
CVEs in C++ code is believable. This is not a formal proposal, but an overview of concrete ways to
achieve such an improvement it in new and updatable code, and ways to even get some fraction of
that improvement in existing code we cannot update but can recompile. These notes are aligned with
the proposals currently being pursued in the ISO C++ safety subgroup, and if they pan out as I expect
in ongoing discussions and experiments, then I intend to write further details about them in a future
paper.

There are runtime and code size overheads to some of the suggestions in all four buckets, notably
checking bounds and casts. But there is no reason to think those overheads need to be inherently
worse in C++ than other languages, and we can make them on by default and still provide a way to
opt out to regain full performance where needed.

Note: For example, bounds checking can cause a major impact on some hot loops, when using a compiler

whose optimizer does not hoist bounds checks; not only can the loops incur redundant checking, but they also
may not get other optimizations such as not being vectorized. This is why making bounds-checking on by
default is good, but all performance-oriented languages also need to provide a way to say “trust me” and
explicitly opt out of bounds checking tactically where needed.

This appendix refers to the “profiles” in the C++ Core Guidelines safety profiles (https://
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles), a set of about two dozen
enforceable rules for type and memory safety of which I am a coauthor. I refer to them only as
examples, to show “what” already-known rules exist that we can enforce, to support that my claimed
improvement is possible. They are broadly consistent with rules in other sources, such as: The C++
Programming Language (https://www.amazon.com/C-Programming-Language-4th/dp/0321563840)’s
advice on type safety; C++ Coding Standards (https://www.amazon.com/Coding-Standards-Rules-
Guidelines-Practices/dp/0321113586)’ section on type safety; the Joint Strike Fighter Coding Standards
(https://www.stroustrup.com/JSF-AV-rules.pdf); High Integrity C++ (https://www.perforce.com/
resources/qac/high-integrity-cpp-coding-standard); the C++ Core Guidelines section on safety
profiles (https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles) (a small
enforceable set of safety rules); and the recently-released MISRA C++:2023 (https://misra.org.uk/
product/misra-cpp2023/).

The best way for “how” to let the programmer control enabling those rules (e.g., via source code
annotations, compiler switches, and/or something else) is an orthogonal UX issue that is now being
actively discussed in the C++ standards committee and community.

Type safety

Enforce the Pro.Type safety profile (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#SS-type) by default. That includes either banning or checking all unsafe casts
and conversions (e.g., static_cast pointer downcasts, reinterpret_cast), including implicit unsafe type
punning via C union and vararg.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/C-Programming-Language-4th/dp/0321563840
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.amazon.com/Coding-Standards-Rules-Guidelines-Practices/dp/0321113586
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://misra.org.uk/product/misra-cpp2023/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type


However, these rules haven’t yet been systematically enforced in the industry. For example, in recent
years I’ve painfully observed a significant set of type safety-caused security vulnerabilities whose root
cause was that code used static_cast instead of dynamic_cast for pointer downcasts, and “C++” gets
blamed even when the actual problem was failure to follow the well-publicized guidance to use the
language’s existing safe recommended feature. It’s time for a standardized C++ mode that enforces
these rules by default.

Note: On some platforms and for some applications, dynamic_cast has problematic space and time
overheads that hinder its use. Many implementations bundle dynamic_cast indivisibly with all C++ run-
time typing (RTTI) features (e.g., typeid), and so require storing full potentially-heavyweight RTTI data even
though dynamic_cast needs only a small subset. Some implementations also use needlessly inefficient
algorithms for dynamic_cast itself. So the standard must encourage (and, if possible, enforce for conformance,
such as by setting algorithmic complexity requirements) that dynamic_cast implementations be more
efficient and decoupled from other RTTI overheads, so that programmers do not have a legitimate
performance reason not to use the safe feature. That decoupling could require an ABI break; if that is
unacceptable, the standard must provide an alternative lightweight facility such as a fast_dynamic_cast that
is separate from (other) RTTI and performs the dynamic cast with minimum space and time cost.

Bounds safety

Enforce the Pro.Bounds safety profile (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#probounds-bounds-safety-profile) by default, and guarantee bounds checking.
We should additionally guarantee that:

◦ Pointer arithmetic is banned (use std::span instead); this enforces that a pointer refers to a single
object. Array-to-pointer decay, if allowed, will point to only the first object in the array.

◦ Only bounds-checked iterator arithmetic is allowed (also, prefer ranges instead).

◦ All subscript operations are bounds-checked at the call site, by having the compiler inject an
automatic subscript bounds check on every expression of the form a[b], where a is a contiguous
sequence with a size/ssize function and b is an integral index. When a violation happens, the
action taken can be customized using a global bounds violation handler; some programs will want
to terminate (the default), others will want to log-and-continue, throw an exception, integrate with
a project-specific critical fault infrastructure.

Importantly, the latter explicitly avoids implementing bounds-checking intrusively for each
individual container/range/view type. Implementing bounds-checking non-intrusively and
automatically at the call site makes full bounds checking available for every existing standard and
user-written container/range/view type out of the box: Every subscript into a vector, span, deque, or
similar existing type in third-party and company-internal libraries would be usable in checked mode
without any need for a library upgrade.

It’s important to add automatic call-site checking now before libraries continue adding more subscript
bounds checking in each library, so that we avoid duplicating checks at the call site and in the callee.
As a counterexample, C# took many years to get rid of duplicate caller-and-callee checking, but
succeeded and .NET Core addresses this better now; we can avoid most of that duplicate-check-
elimination optimization work by offering automatic call-site checking sooner.

Language constructs like the range-for loop are already safe by construction and need no checks.

In cases where bounds checking incurs a performance impact, code can still explicitly opt out of the

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile


bounds check in just those paths to retain full performance and still have full bounds checking in the
rest of the application.

Initialization safety

Enforce initialization-before-use by default. That’s pretty easy to statically guarantee, except for
some cases of the unused parts of lazily constructed array/vector storage. Two simple alternatives we
could enforce are (either is sufficient):

◦ Initialize-at-declaration as required by Pro.Type (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#SS-type) and ES.20 (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#Res-always); and possibly zero-initialize data by default as currently
proposed in P2723 (https://wg21.link/p2723). These two are good but with some drawbacks;
both have some performance costs for cases that require ‘dummy’ writes that are never used but
hard for optimizers to eliminate, and the latter has some correctness costs because it ‘fixing’ some
uninitialized cases where zero is a valid value but masks others for which zero is not a valid
initializer and so the behavior is still wrong, but because a zero has been jammed in it’s harder for

sanitizers to detect.

◦ Guaranteed initialization-before-use, similar to what Ada and C# successfully do. This is still
simple to use, but can be more efficient because it avoids the need for artificial ‘dummy’ writes,
and can be more flexible because it allows alternative constructors to be used for the same object
on different paths. For details, see: example diagnostic (https://youtu.be/ELeZAKCN4tY?
si=HKzgS8CUBdGREDAN&t=4305); definite-first-use rules (https://youtu.be/ELeZAKCN4tY?
si=MnhZGU5xoRhTGF_V&t=4556).

Lifetime safety

Enforce the Pro.Lifetime safety profile (https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#SS-type) by default, ban manual allocation by default, and guarantee null
checking. The Lifetime profile is a static analysis that diagnoses many common sources of dangling
and use-after-free, including for iterators and views (not just raw pointers and references), in a way
that is efficient enough to run during compilation. It can be used as a basis to iterate on and further
improve. And we should additionally guarantee that:

◦ All manual memory management is banned by default (new, delete, malloc, and free). Corollary:
‘Owning’ raw pointers are banned by default, since they require delete or free. Use RAII instead,
such as by calling make_unique or make_shared.

◦ All dereferences are null-checked. The compiler injects an automatic check on every expression of
the form *p or p-> where p can be compared to nullptr to null-check all dereferences at the call site
(similar to bounds checks above). When a violation happens, the action taken can be customized
using a global null violation handler; some programs will want to terminate (the default), others
will want to log-and-continue, throw an exception, integrate with a project-specific critical fault
infrastructure.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://wg21.link/p2723
https://wg21.link/p2723
https://wg21.link/p2723
https://wg21.link/p2723
https://wg21.link/p2723
https://wg21.link/p2723
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=HKzgS8CUBdGREDAN&t=4305
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://youtu.be/ELeZAKCN4tY?si=MnhZGU5xoRhTGF_V&t=4556
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type


Note: The compiler could choose to not emit this check (and not perform optimizations that benefit from the
check) when targeting platforms that already trap null dereferences, such as platforms that mark low memory
pages as unaddressable. Some C++ features, such as delete, have always done call-site null checking.

Reducing undefined behavior and semantic bugs

Tactically, reduce some undefined behavior (UB) and other semantic bugs (pitfalls), for cases
where we can automatically diagnose or even fix well-known antipatterns. Not all UB is bad; any
performance-oriented language needs some. But we know there is low-hanging fruit where the
programmer’s intent is clear and any UB or pitfall is a definite bug, so we can do one of two things:

(A – Good) Make the pitfall a diagnosed error, with zero false positives — every violation is a real
bug. Two examples mentioned above are to automatically check a[b] to be in bounds and *p and p->
to be non-null.

(B – Ideal) Make the code actually do what the programmer intended, with zero false positives —
i.e., fix it by just recompiling. An example, discussed at the most recent ISO C++ November 2023
meeting, is to default to an implicit return *this; (https://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2023/p2973r0.html) when the programmer writes an assignment operator for their type C
that returns a C& (note: the same type), but forgets to write a return statement. Today, that is
undefined behavior. Yet it’s clear that the programmer meant return *this; — nothing else can be
valid. If we make return *this; be the default, all the existing code that accidentally omits the return is
not just “no longer UB,” but is guaranteed to do the right and intended thing.

An example of both (A) and (B) is to support chained comparisons (https://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2018/p0893r1.html), that makes the mathematically valid chains work
correctly and rejects the mathematically invalid ones at compile time. Real-world code does write such
chains by accident (see: [a] (https://stackoverflow.com/q/8889522/2069064) [b] (https://
stackoverflow.com/q/5939077/2069064) [c] (https://stackoverflow.com/q/14433884/2069064) [d]
(https://stackoverflow.com/q/46806239/2069064) [e] (https://stackoverflow.com/
q/25965157/2069064) [f] (https://stackoverflow.com/q/38643022/2069064) [g] (https://
stackoverflow.com/q/45385837/2069064) [h] (https://stackoverflow.com/q/20989496/2069064) [i]
(https://stackoverflow.com/q/35564553/2069064) [j] (https://stackoverflow.com/
q/42335710/2069064) [k] (https://stackoverflow.com/q/37470518/2069064)).

◦ For (A): We can reject all mathematically invalid chains like a != b > c at compile time. This
automatically diagnoses bugs in existing code that tries to do such nonsense chains, with perfect
accuracy.

◦ For (B): We can fix all existing code that writes would-be-correct chains like 0 <= index < max.
Today those silently compile but are completely wrong, and we can make them mean the right
thing. This automatically fixes those bugs, just by recompiling the existing code.

These examples are not exhaustive. We should review the list of UB in the standard for a more
thorough list of cases we can automatically fix (ideally) or diagnose.

Summarizing: Better defaults for C++

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/8889522/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/5939077/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/14433884/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/46806239/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/25965157/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/38643022/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/45385837/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/20989496/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/35564553/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/42335710/2069064
https://stackoverflow.com/q/37470518/2069064
https://stackoverflow.com/q/37470518/2069064
https://stackoverflow.com/q/37470518/2069064
https://stackoverflow.com/q/37470518/2069064
https://stackoverflow.com/q/37470518/2069064
https://stackoverflow.com/q/37470518/2069064


C++ could enable turning safety rules on by default that would make code:

◦ fully type-safe,

◦ fully bounds-safe,

◦ fully initialization-safe,

and for lifetime safety, which is the hardest of the four, and where I would expect the remaining
vulnerabilities in these categories would mostly lie:

◦ fully null-safe,

◦ fully free of owning raw pointers,

◦ with lifetime-safety static analysis that diagnoses most common pointer/iterator/view lifetime
errors;

and, finally:

◦ with less undefined behavior including by automatically fixing existing bugs just by recompiling
code with safety enabled by default.

All of this is efficiently implementable and has been implemented. Most of the Lifetime rules have

been implemented in Visual Studio and CLion, and I’m prototyping a proof-of-concept mode of C++
that includes all of the other above language safeties on-by-default in my cppfront compiler (https://
github.com/hsutter/cppfront/), as well as other safety improvements including an implementation
of the current proposal for ISO C++ contracts. I haven’t yet used the prototype at scale. However, I can
report that the first major change request I received from early users was to change the bounds
checking and null checking from opt-in (off by default) to opt-out (on by default).

Note: Please don’t be distracted by that cppfront uses an experimental alternate syntax for C++. That’s
because I’m additionally trying to see if we can reach a second orthogonal goal: to make the C++ language
itself simpler, and eliminate the need to teach ~90% of the C++ guidance literature related to language
complexity and quirks. This essay’s language safety improvements are orthogonal to that, however, and can
be applied equally to today’s C++ syntax.

Solutions need to distinguish between (A) “solution for new-or-
updatable code” and (B) “solution for existing code.”

(A) A “solution for new-or-updatable code” means that to help existing code we have to change/
rewrite our code. This includes not only “(re)write in C#/Rust/Go/Python/…,” but also “annotate
your code with SAL (https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?
view=msvc-170)” or “change your code to use std::span.”

One of the costs of (A) is that anytime we write/change code to fix bugs, we also introduce new bugs;
change is never free. We need to recognize that changing our code to use std::span often means non-
trivially rewriting parts of it which can also create other bugs. Even annotating our code means
writing annotations that can have bugs (this is a common experience in the annotation languages I’ve
seen used at scale, such as SAL). All these are significant adoption barriers.

Actually switching to another language means losing a mature ecosystem. C++ is the well-trod path:
It’s taught, people know it, the tools exist, interop works, and current regulations have an industry

https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170


around C++ (such as for functional safety). It takes another decade at least for another language to
become the well-trod path, whereas a better C++, and its benefits to the industry broadly, can be here
much sooner.

(B) A “solution for existing code” emphasizes the adoptability benefits of not having to make
manual code changes. It includes anything that makes existing code more secure with “just a
recompile” (i.e., no binary/ABI/link issues; e.g., ASAN, compiler switches to enable stack checks,
static analysis that produces only true positives, or a reliable automated code modernizer).

We will still need (B) no matter how successful new languages or new C++ types/annotations are.
And (B) has the strong benefit that it is easier to adopt. Getting to a 98% reduction in CVEs will
require both (A) and (B), but if we can deliver even a 30% reduction using just (B) that will be a major
benefit for adoption and effective impact in large existing code bases that are hard to change.

Consider how the ideas earlier in this appendix map onto (A) and (B):

In C++, by
default enforce
…

(A) Solution for new/updated code
(can require code changes — no
link/binary changes)

(B) Solution for existing code (requires
recompile only — no manual code
changes, no link/binary changes)

Type safety
Ban all inherently unsafe casts and

conversions

Make unsafe casts and conversions with

a safe alternative do the safe thing

Bounds safety
Ban pointer arithmetic Ban
unchecked iterator arithmetic

Check in-bounds for all allowed iterator
arithmetic Check in-bounds for all
subscript operations

Initialization
safety

Require all variables to be initialized
(either at declaration, or before first
use)

—

Lifetime safety
Statically diagnose many common
pointer/iterator lifetime error cases

Check not-null for all pointer
dereferences

Less undefined
behavior

Statically diagnose known UB/bug
cases, to error on actual bugs in
existing code with just a recompile
and zero false positives:
Ban mathematically invalid
comparison chains
(add additional cases from UB
Annex review)

Automatically fix known UB/bug cases,
to make current bugs in existing code be
actually correct with just a recompile
and zero false positives:
Define mathematically valid
comparison chains
Default return *this; for C assignment
operators that return C&
(add additional cases from UB Annex
review)

By prioritizing adoptability, we can get at least some of the safety benefits just by recompiling existing
code, and make the total improvement easier to deploy even when code updates are required. I think
that makes it a valuable strategy to pursue.

Finally, please see again the main post’s conclusion: Call(s) to action.

Tagged:
coding,
cybersecurity,
programming,

https://herbsutter.com/tag/coding/
https://herbsutter.com/tag/coding/
https://herbsutter.com/tag/coding/
https://herbsutter.com/tag/coding/
https://herbsutter.com/tag/coding/
https://herbsutter.com/tag/cybersecurity/
https://herbsutter.com/tag/cybersecurity/
https://herbsutter.com/tag/cybersecurity/
https://herbsutter.com/tag/cybersecurity/
https://herbsutter.com/tag/cybersecurity/
https://herbsutter.com/tag/programming/
https://herbsutter.com/tag/programming/
https://herbsutter.com/tag/programming/
https://herbsutter.com/tag/programming/
https://herbsutter.com/tag/programming/


security,
technology

Published by Herb Sutter

Herb Sutter is an author and speaker, a technical fellow at Citadel Securities, and serves as chair of the ISO C++
standards committee and chair of the Standard C++ Foundation. View all posts by Herb Sutter

Blog at WordPress.com.

https://herbsutter.com/tag/security/
https://herbsutter.com/tag/security/
https://herbsutter.com/tag/security/
https://herbsutter.com/tag/security/
https://herbsutter.com/tag/security/
https://herbsutter.com/tag/technology/
https://herbsutter.com/tag/technology/
https://herbsutter.com/tag/technology/
https://herbsutter.com/tag/technology/
https://herbsutter.com/tag/technology/
https://herbsutter.com/author/herbsutter/
https://herbsutter.com/author/herbsutter/
https://wordpress.com/?ref=footer_blog
https://wordpress.com/?ref=footer_blog
https://wordpress.com/?ref=footer_blog
https://wordpress.com/?ref=footer_blog
https://wordpress.com/?ref=footer_blog

