
Serhii Potapov
Blog About Tags

A blog about software development.

Property-Based Testing in Rust with Arbitrary
Serhii Potapov October 21, 2022 #rust #testing #arbitrary #fuzzing

In my opinion, arbitrary is one of the most underrated Rust crates. What is so special about it? It

provides the Arbitrary trait. If a type implements Arbitrary , then a value of that type can be

obtained from Unstructured , which is essentially just a sequence of bytes.

This is a foundation for fuzz testing in the Rust ecosystem. Whilst fuzzing is not a common

practice for every project, Arbitrary can be also used for property-based testing.

Property-based testing VS fuzzing
Property-based testing and fuzzing have the same idea behind them: generate random

structured input and feed it to software aiming to make it break or behave incorrectly. However,

fuzzing is generally a black-box testing method and can last for very long (e.g. months), while

property-based tests rather belong to a unit test suite and may run for a fraction of second.

I find that property-based testing in some situations can be a very good replacement for

classical unit tests, when we need to test symmetrical data conversion, like:

▪ Serialization and deserializaiton

▪ Converting between domain models and DTOs

▪ Converting between domain models and persistence layer (database records).

Introduction to the problem
Let's say we have a domain model Vehicle defined as the following:

#[derive(Debug, PartialEq, Clone)]
struct Vehicle {

id: VehicleId,
vehicle_type: VehicleType,

}

#[derive(Debug, PartialEq, Clone)]
struct VehicleId(i32);

#[derive(Debug, PartialEq, Clone)]
enum VehicleType {
 Car {
 fuel: Fuel,
 max_speed_kph: Option<u32>,

Support Ukraine. DONATE.

https://www.greyblake.com/
https://www.greyblake.com/
https://www.greyblake.com/
https://www.greyblake.com/
https://www.greyblake.com/
https://www.greyblake.com/about/
https://www.greyblake.com/about/
https://www.greyblake.com/tags/
https://www.greyblake.com/tags/
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/
https://www.greyblake.com/tags/rust/
https://www.greyblake.com/tags/rust/
https://www.greyblake.com/tags/testing/
https://www.greyblake.com/tags/testing/
https://www.greyblake.com/tags/arbitrary/
https://www.greyblake.com/tags/arbitrary/
https://www.greyblake.com/tags/fuzzing/
https://www.greyblake.com/tags/fuzzing/
https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary
https://docs.rs/arbitrary/latest/arbitrary/struct.Unstructured.html
https://docs.rs/arbitrary/latest/arbitrary/struct.Unstructured.html
https://docs.rs/arbitrary/latest/arbitrary/struct.Unstructured.html
https://savelife.in.ua/en/
https://savelife.in.ua/en/

},
 Bicycle,
}

#[derive(Debug, PartialEq, Clone)]
enum Fuel {
 Electricity,
 Diesel,
}

A vehicle can be either a car or a bicycle; a car has fuel associated with it and an optional

maximum speed in kilometers per hour.

If we want to store a such model in a relational database like PostgreSQL, we'd need to convert

it into a flat structure, that resembles a record in the database:

#[derive(Debug, PartialEq, Clone)]
struct VehicleRecord {

id: i32,

// Either "Car" or "Bicycle".
kind: String,

// Always None for Bicycle. "Electricity" or "Diesel" for Car.
fuel: Option<String>,

// Always None for Bicycle. Optional for Car.
// NOTE: PostgreSQL has no unsigned integers, so we use i32 here.
max_speed_kph: Option<i32>,

}

And we'll need the functions for bidirectional conversion between Vehicle and VehicleRecord .

fn vehicle_to_record(vehicle: Vehicle) -> VehicleRecord {
let Vehicle { id , vehicle_type } = vehicle;
let (kind, fuel, max_speed_kph) = match vehicle_type {

VehicleType::Car { fuel, max_speed_kph } => {
(

"Car".to_owned(),
Some(fuel_to_str(fuel).to_owned()),

 max_speed_kph.map(|speed| speed.try_into().unwrap())
)

}
 Bicycle => {

(
"Bicycle".to_owned(),
None,
None,

)
}

};
let id = id.0;

 VehicleRecord { id, kind, fuel, max_speed_kph }
}

fn record_to_vehicle(record: VehicleRecord) -> Vehicle {
let VehicleRecord { id, kind, fuel, max_speed_kph } = record;
let id = VehicleId(id);
let vehicle_type = match kind.as_str() {

"Car" => {
let fuel: String = fuel.expect("Car must have fuel");
VehicleType::Car {

 fuel: fuel_from_str(&fuel),
 max_speed_kph: max_speed_kph.map(|speed| speed.try_into().unwrap()),

}
},
"Bicycle" => VehicleType::Bicycle,

 unknown => panic!("Unknown vehicle type: {unknown}")
};

 Vehicle { id, vehicle_type }
}

fn fuel_from_str(s: &str) -> Fuel {
match s {

"Electricity" => Fuel::Electricity,
"Diesel" => Fuel::Diesel,

 unknown_fuel => panic!("Unknown fuel: {unknown_fuel}")
}

}

fn fuel_to_str(fuel: Fuel) -> &'static str {
match fuel {

Fuel::Electricity => "Electricity",
Fuel::Diesel => "Diesel",

}
}

Finally, let's implement a unit test to verify conversion from Vehicle to VehicleRecord and vice

versa. If everything works correctly, we should get the same model back:

#[test]
fn test_vehicle_record_mapping() {

let vehicle = Vehicle {
 id: VehicleId(123),
 vehicle_type: VehicleType::Car {
 fuel: Fuel::Electricity,
 max_speed_kph: None,

}
};
let record = vehicle_to_record(vehicle.clone());
let same_vehicle = record_to_vehicle(record);
assert_eq!(vehicle, same_vehicle);

}

Even though the test is correct, it's not exhaustive and the following cases are missing:

▪ fuel is Fuel::Diesel

▪ max_speed_kph is present

▪ vehicle_type is Vehicle::Bicycle

Shall we copy-paste write 2-3 tests more? Or just pretend it's sufficient?

Welcome Arbitrary
Let's introduce arbitrary to the project:

cargo add arbitrary --features=derive

We also want to derive Arbitrary trait for our models:

https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary

use arbitrary::Arbitrary;

#[derive(Debug, PartialEq, Clone, Arbitrary)]
struct Vehicle {

id: VehicleId,
vehicle_type: VehicleType,

}
// And so for VehicleId, VehicleType and Fuel

Now we can play with it a little to get a better feeling how it works:

fn main() {
// Some random bytes
let bytes: [u8; 16] = [255, 40, 179, 24, 184, 113, 24, 73, 143, 51, 152, 121, 133, 143
let mut u = arbitrary::Unstructured::new(&bytes);
let vehicle = Vehicle::arbitrary(&mut u).unwrap();
dbg!(&vehicle);

}

Output:

&vehicle = Vehicle {
 id: VehicleId(
 414394623,
),
 vehicle_type: Car {
 fuel: Electricity,
 max_speed_kph: Some(
 3870351,
),
 },
}

Is it not wonder? Out of nothing random bytes we have obtained a structured vehicle! If we can

keep those bytes coming, we can generate an endless amount of vehicles to feed the unit test.

Rewriting the test with Arbitrary and arbtest
If we want to use Arbitrary for property-based testing, a tiny library like arbtest comes handy.

It's a bit raw but it gets the job done. Let's rewrite our test:

#[test]
fn test_vehicle_record_mapping() {

fn prop(u: &mut arbitrary::Unstructured<'_>) -> arbitrary::Result<()> {
let vehicle = Vehicle::arbitrary(u)?;
let record = vehicle_to_record(vehicle.clone());
let same_vehicle = record_to_vehicle(record);
assert_eq!(vehicle, same_vehicle);
Ok(())

}
arbtest::builder().run(prop);

}

It's similar to the old test, but with a few innovations: the assertions are now within prop

function. The prop function receives Unstructured , which is used to obtain an arbitrary vehicle.

The responsibility of the builder is to generate Unstructured and feed it to prop() . In fact, prop

https://crates.io/crates/arbtest
https://crates.io/crates/arbtest

is invoked multiple times within a single test and by default, the arbtest runs it for 200ms.

OK, let's run the tests and see if it works:

failures:

---- test_vehicle_record_mapping stdout ----
thread 'test_vehicle_record_mapping' panicked at 'called `Result::unwrap()` on an `Err` value: TryFromInt
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

arb_test failed!
 Seed: 0x25dc50a20000003e

Oh no! Our bullet-proof code panics on line 49 within vehicle_to_record() :

max_speed_kph.map(|speed| speed.try_into().unwrap())

arbtest also printed the seed 0x25dc50a20000003e . With this seed, we can deterministically

reproduce the failure and fix the test.

Let's slightly tweak our test:

#[test]
fn test_vehicle_record_mapping() {

fn prop(u: &mut arbitrary::Unstructured<'_>) -> arbitrary::Result<()> {
let vehicle = Vehicle::arbitrary(u)?;
dbg!(&vehicle);
let record = vehicle_to_record(vehicle.clone());
let same_vehicle = record_to_vehicle(record);
assert_eq!(vehicle, same_vehicle);
Ok(())

}
arbtest::builder().seed(0x25dc50a20000003e).run(prop);

}

We added dbg!(&vehicle); to see which vehicle exactly causes problems and the builder is

now initialized with .seed(0x25dc50a20000003e) , that allows us to reproduce the same failure.

When we run it again, we can also see the vehicle details:

&vehicle = Vehicle {
 id: VehicleId(
 1455468422,
),
 vehicle_type: Car {
 fuel: Diesel,
 max_speed_kph: Some(
 2207965846,
),
 },
}

Having all that information, the failure becomes now very plain to explain: we use u32 for

max_speed_kph in the domain model, but i32 in the DB record. And 2207965846 is above the

maximum i32 value (2^31-1).

So how do we fix it? We go to the product owner and ask a weird question.

"Hey! Do we plan to expand our system to support tracking of spaceships with speeds over

65535 km/h?"

"Oh God, no."

"Is there any possibility that we will have to support any other vehicles with speeds over 65535

km/h?" - we continue.

"Of course not! Our business is about the city's transportation network, which implies..."

"I know, I know, thank you. I just wanted to double-check."

So that means we can replace u32 with u16 and we're fine:

#[derive(Debug, PartialEq, Clone, Arbitrary)]
enum VehicleType {
 Car {
 fuel: Fuel,
 max_speed_kph: Option<u16>,

},
 Bicycle,
}

We run the tests and they pass. To be extra sure we can set the time budget to 1 minute and run

it locally once:

arbtest::builder().budget_ms(60_000).run(prop);

Still no failure, so we're good to go.

Conclusions
As it was shown in this article, property-based testing can be very handy for testing symmetrical

data conversions. It has number of advantages over classical unit tests:

▪ Much less test code needs to be written. Especially it becomes a noticeable win, when you

deal with much larger data structures.

▪ The test inputs are not biased, what is never the case when test inputs created by a human

beings (aka developers).

P.S.
In real production application, we'd rather return errors, instead of just panicking in the

conversions.

Someone may prefer implementing From traits instead of vehicle_to_record() and

record_to_vehicle() functions. It's rather a question taste, but there 2 main reasons I did not

go with From :

▪ I don't want From to panic

▪ I don't want the conversions to be exposed outside of the infrastructure layer.

Instead of implementing fuel_from_str and fuel_to_str , we could derive FromStr and

Dislpay , using strum crate.

If you're confused about why we need both Vehicle and VehicleRecord , I'd recommend reading

Domain Modeling Made Functional by Scott Wlaschin. This is out of scope for this article, but

long story short: we want to keep the domain model Vehicle as expressive as possible, so it's

easy to work with it in the domain layer. Whilst VehicleRecord is easy to persist in a relational

database.

Links
▪ Discussion on Reddit

▪ arbitrary crate

▪ arbtest crate

▪ Fuzzing vs property testing by Ted Kaminski

▪ Domain Modeling Made Functional by Scott Wlaschin

Back to top

Copyright © 2025 Serhii Potapov (greyblake)

About Sitemap

https://crates.io/crates/strum
https://crates.io/crates/strum
https://pragprog.com/titles/swdddf/domain-modeling-made-functional/
https://pragprog.com/titles/swdddf/domain-modeling-made-functional/
https://www.reddit.com/r/rust/comments/yi3y33/propertybased_testing_in_rust_with_arbitrary/
https://www.reddit.com/r/rust/comments/yi3y33/propertybased_testing_in_rust_with_arbitrary/
https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary
https://crates.io/crates/arbitrary
https://www.tedinski.com/2018/12/11/fuzzing-and-property-testing.html
https://www.tedinski.com/2018/12/11/fuzzing-and-property-testing.html
https://pragprog.com/titles/swdddf/domain-modeling-made-functional/
https://pragprog.com/titles/swdddf/domain-modeling-made-functional/
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/#
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/#
https://www.greyblake.com/atom.xml
https://www.greyblake.com/atom.xml
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/#Ymxha2UxMzEzMTNAZ21haWwuY29t
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/#Ymxha2UxMzEzMTNAZ21haWwuY29t
https://twitter.com/greyblake/
https://twitter.com/greyblake/
https://www.linkedin.com/in/serhii-potapov/
https://www.linkedin.com/in/serhii-potapov/
https://gitlab.com/greyblake/
https://gitlab.com/greyblake/
https://github.com/greyblake/
https://github.com/greyblake/
https://www.greyblake.com/about/
https://www.greyblake.com/about/
https://www.greyblake.com/sitemap.xml
https://www.greyblake.com/sitemap.xml
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/#
https://www.greyblake.com/blog/property-based-testing-in-rust-with-arbitrary/#

