
Home Log in

fasterthanlime

Mar 05, 2023 17 min #rust · #docker · #shipyard

Using the Shipyard private
crate registry with Docker

From the series Building a Rust service with Nix

1 2 3 4 5 6 7 8 9 10 11 12

 This page was last updated ~2 years ago. Just so you know.

Thanks to my sponsors: Colin VanDervoort, Max Heaton, Scott Steele, qrpth, Neil Blakey‐Milner, Beat Scherrer, Marco

Carmosino, Andy Gocke, Marty Penner, Tanner Muro, Luke Yue, Dom, Matt Jackson, prairiewolf, Gorazd Brumen,

Lyssieth, Dylan Anthony, James Leitch, Herman J. Radtke III, Toon Willems and 266 more

Wait wait wait, so we’re not talking about nix yet?

Well, no! The service we have is pretty simple, and I want to complicate things a bit, to show how

things would work in both the Dockerfile and the nix scenario.

And because I don’t like contrived examples, we’re going to do something somewhat real‐world:

we’re going to geo‐locate visitors, and track how many visits we get from each country.

Search... CtrK

https://fasterthanli.me/
https://fasterthanli.me/
https://fasterthanli.me/
https://fasterthanli.me/about
https://fasterthanli.me/about
https://fasterthanli.me/about
https://fasterthanli.me/about
https://fasterthanli.me/about
https://fasterthanli.me/tags/rust
https://fasterthanli.me/tags/rust
https://fasterthanli.me/tags/docker
https://fasterthanli.me/tags/docker
https://fasterthanli.me/tags/shipyard
https://fasterthanli.me/tags/shipyard
https://fasterthanli.me/series/building-a-rust-service-with-nix
https://fasterthanli.me/series/building-a-rust-service-with-nix
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-1
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-1
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-1
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-2
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-2
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-2
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-3
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-3
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-3
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-4
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-4
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-4
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-5
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-5
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-5
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-6
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-6
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-6
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-8
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-8
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-8
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-9
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-9
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-9
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-10
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-10
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-10
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-11
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-11
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-11
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-12
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-12
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-12
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#

But we’re not logging IP addresses, right?

No, that would be problematic re: a bunch of privacy protection laws. I feel like the country is

broad enough that it’s okay to store somewhere.

Very well, if we must.

Creating another crate

In that particular context, it would make sense to have a cargo workspace, with both our main

(web server) crate, and our “geo‐locate and count visitors by country” crate in the same Git

repository.

But for demonstration purposes, we’re going to make an entirely separate repository for it.

Let’s call it… locat . For location. And cat.

Let’s stub out our API:

$ cd ~
$ cargo new --lib locat
 Created library `locat` package
$ cd locat/

use std::net::IpAddr;

/// Allows geo-locating IPs and keeps analytics
pub struct Locat {}

impl Locat {
pub fn new(_geoip_country_db_path: &str, _analytics_db_path: &str) -> Self {

// TODO: read geoip db, create analytics db
Self {}

}

/// Converts an address to an ISO 3166-1 alpha-2 country code
pub fn ip_to_iso_code(&self, _addr: IpAddr) -> Option<&str> {

 None
}

/// Returns a map of country codes to number of requests
pub fn get_analytics(&self) -> Vec<(String, u64)> {

Default::default()
}

}

Now’s a good time to create a repository on GitHub (or wherever), do an initial commit, and push

locat to it.

Publishing the crate privately

Normally we’d be able to add a dependency on the crate simply by doing something like:

Or even:

But that’s not what I want to show off here.

I also don’t want to publish it to crates.io, since it’s probably too specific and I don’t want to

assume the maintenance burden of it.

Instead, let’s publish it to Shipyard, a private crate registry that popped up recently.

They have a free tier, and we’re only going to publish a free crate there, so, let’s try it!

Signing up for Shipyard should give you a crate registry of your own, and the next step is to add it

to the Cargo config for locat :

(My registry is named catscii , yours will probably be named something else).

Next we amend the Cargo manifest to indicate that the crate should only be published to our

private registry:

in `catscii/Cargo.toml`

[dependencies]
locat = { path = "../locat" }

in `catscii/Cargo.toml`

[dependencies]
locat = { git = "https://github.com/fasterthanlime/locat", rev = "some_commit_hash" }

in `catscii/.cargo/config.toml`

[registries.catscii]
index = "https://git.shipyard.rs/catscii/crate-index.git"

in `catscii/Cargo.toml`

[package]
name = "locat"
version = "0.1.0"
edition = "2021"
only publish there!

https://crates.io/
https://crates.io/
https://shipyard.rs/
https://shipyard.rs/

Now that we have all that set up, let’s try publishing the crate with cargo publish :

That didn’t work! We need to authenticate in some way.

At the time of this writing, the proper authentication model isn’t done cooking yet, so I’m hesitant

to show it here. Instead, we’ll use the hack that works on Rust stable.

First we need to generate a token over at https://shipyard.rs/tokens, and then, just so it’s shared

across all our repositories, we can put it in the directory that contains both catscii and locat . In

my VM, that’s just the home directory, /home/amos , or ~ for short:

This is a pretty bad workaround, since that’ll get sent with every request cargo makes, let’s make a

note to try it the Rust nightly way after that.

Also: this is only half the authentication story. This takes care of making API requests to the crate

registry, which is required when publishing a crate, but it doesn’t help with cloning the index,

which is just a git repository.

publish = ["catscii"]

[dependencies]

$ cargo publish
note: Found `catscii` as only allowed registry. Publishing to it automatically.
 Updating `catscii` index
error: failed to update registry `catscii`

Caused by:
 failed to fetch `https://git.shipyard.rs/catscii/crate-index.git`

Caused by:
 failed to authenticate when downloading repository

 * attempted to find username/password via git's `credential.helper` support, but failed

 if the git CLI succeeds then `net.git-fetch-with-cli` may help here
 https://doc.rust-lang.org/cargo/reference/config.html#netgit-fetch-with-cli

Caused by:
 failed to acquire username/password from local configuration

in `~/.cargo/config.toml`

[http]
user-agent = "shipyard YOUR_TOKEN_HERE"

this makes troubleshooting much easier: it forces using the `git` cli rather
than `libgit2`. The latter is famously finicky with authentication
[net]
git-fetch-with-cli = true

https://shipyard.rs/tokens
https://shipyard.rs/tokens

Shipyard, like most private crate registries, provides SSH‐based authentication, but this can be

annoying to set up in CI. It also provides HTTPS authentication, which is annoying for other

reasons.

HTTPS authentication

Because we set our registry URL as https://git.shipyard.rs/REGISTRY/crate-index.git , it’s

expecting HTTPs authentication, so let’s try that first.

In ~/.gitconfig , we’ll add:

And in ~/.git-credentials , we’ll add our Gitea username (find it here) and password, URL‐encoded.

Unless you changed it, this is the same password you signed up for Shipyard with, see their docs

for details.

Cool Bear's hot tip

To get URI‐encoding right, you can use encodeURIComponent("blah") in some browser

dev tools.

For me, this managed to clone the repository, but it failed with:

Cool Bear's hot tip

You may also encounter:

You can run ssh git@ssh.shipyard.rs and accept the host key to fix it.

Running cargo login talks about crates.io , so that’s certainly wrong. Running cargo login --

registry catscii does a little better but… you can tell third‐party crate registries wasn’t on top of

mind…

[credential]
helper = store

https://uriencodedusername:uriencodedpassword@git.shipyard.rs

$ cargo publish
note: Found `catscii` as only allowed registry. Publishing to it automatically.
 Updating `catscii` index
error: no upload token found, please run `cargo login` or pass `--token`

error: unknown SSH host key
 The SSH host key for `ssh.shipyard.rs` is not known and cannot be validated.

$ cargo login --registry catscii

https://shipyard.rs/git-index
https://shipyard.rs/git-index
https://docs.shipyard.rs/configuration/git-https-auth.html
https://docs.shipyard.rs/configuration/git-https-auth.html

…because the URL it generates is crates.io ‐specific. Anyway, we have a token we generated earlier

(it’s in ~/.cargo/config.toml), we can just paste it here.

Finally, publishing works:

The crate publishes successfully, and we can see it from the Shipyard UI:

please paste the API Token found on https://crates.shipyard.rs/me below

(it's now waiting for input)

(continued)
REDACTED=
 Login token for `catscii` saved

$ cargo publish
note: Found `catscii` as only allowed registry. Publishing to it automatically.
 Updating `catscii` index
warning: manifest has no description, license, license-file, documentation, homepage or repository.
See https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata for more info.
 Packaging locat v0.1.0 (/home/amos/locat)
 Verifying locat v0.1.0 (/home/amos/locat)
 Compiling locat v0.1.0 (/home/amos/locat/target/package/locat-0.1.0)
 Finished dev [unoptimized + debuginfo] target(s) in 0.90s
 Uploading locat v0.1.0 (/home/amos/locat)
 Updating `catscii` index

However, this didn’t spark joy. Let’s try SSH authentication, too.

SSH authentication

To reset the state a little, first let’s bump the version of our locat crate:

Then we’ll straight up:

• remove ~/.git-credentials

• remove the [credential] section from ~/.gitconfig

• delete ~/.cargo/config.toml (the ~ one, not the locat one)

And also, we’ll need to wipe the cloned crate index, to make sure it can do it again.

In locat’s cargo config, we now need to use an ssh URL:

Then we need to generate an SSH key from within the VM:

in `locat/Cargo.toml`

[package]
name = "locat"
bumped!
version = "0.2.0"
edition = "2021"
publish = ["catscii"]

[dependencies]

$ ls ~/.cargo/registry/index
github.com-1ecc6299db9ec823 git.shipyard.rs-somehash
$ rm -rf ~/.cargo/registry/index/git.shipyard.rs-*

in `locat/.cargo/config.toml`

[registries.catscii]
index = "ssh://git@ssh.shipyard.rs/catscii/crate-index.git"

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/amos/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/amos/.ssh/id_rsa
Your public key has been saved in /home/amos/.ssh/id_rsa.pub
The key fingerprint is:

Then we need to add it to Shipyard, through the web UI.

Cool Bear's hot tip

Make sure to back up that SSH key for later, when we set up everything again from

scratch!

And now, let’s try everything again!

This ended up failing for me because VS Code forwarded my host SSH agent (which is 1Password),

so it only tried using the SSH keys I had on the host, as opposed to the key I just generated on the

VM.

That’s fine, I can just add one of my host’s SSH keys to Shipyard instead.

I ended up having to mess with this a little more, and add back:

SHA256:AS0UXGvbfbTa2cVgJ2aOK/X5Ttek2HcpYptAO+aJN6c amos@miles
The key's randomart image is:
+---[RSA 3072]----+
| o++. |
| o... |
| .+ B .|
| . + . B * |
| S.. + + +|
| . .. O *+|
| =.o+.B.B|
| +o=o+ .+o|
| ..E+o .o|
+----[SHA256]-----+

$ cargo publish
note: Found `catscii` as only allowed registry. Publishing to it automatically.
 Updating `catscii` index
error: failed to update registry `catscii`

Caused by:
 failed to fetch `ssh://git@ssh.shipyard.rs/catscii/crate-index.git`

Caused by:
 failed to authenticate when downloading repository

 * attempted ssh-agent authentication, but no usernames succeeded: `git`

 if the git CLI succeeds then `net.git-fetch-with-cli` may help here
 https://doc.rust-lang.org/cargo/reference/config.html#netgit-fetch-with-cli

Caused by:
 Gitea: Unauthorized
 ; class=Ssh (23); code=Eof (-20)

[net]

https://shipyard.rs/git-index#add-ssh-key-container
https://shipyard.rs/git-index#add-ssh-key-container

…otherwise nothing would work. Things are complicated by the fact that I have other SSH keys

associated to another shipyard account, so I think I’m hitting an edge case you hopefully will not

hit yourselves.

After that, publishing catscii@0.2.0 worked:

But keep in mind that it’s re‐using the cargo login step from the “HTTP authentication” section:

our token is still stored in here:

Depending on locat from catscii

Now we can add a dependency on locat ! First we need to set the registry URL:

And then, add the dependency! I wonder if cargo add will work there.

Yes it will! Here’s the resulting Cargo.toml bit:

git-fetch-with-cli = true

$ cargo publish
note: Found `catscii` as only allowed registry. Publishing to it automatically.
 Updating `catscii` index
warning: manifest has no description, license, license-file, documentation, homepage or repository.
See https://doc.rust-lang.org/cargo/reference/manifest.html#package-metadata for more info.
 Packaging locat v0.2.0 (/home/amos/locat)
 Verifying locat v0.2.0 (/home/amos/locat)
 Compiling locat v0.2.0 (/home/amos/locat/target/package/locat-0.2.0)
 Finished dev [unoptimized + debuginfo] target(s) in 1.65s
 Uploading locat v0.2.0 (/home/amos/locat)
 Updating `catscii` index

$ cat ~/.cargo/credentials
[registries.catscii]
token = "REDACTED="

in `locat/.cargo/config.toml`

[registries.catscii]
index = "ssh://git@ssh.shipyard.rs/catscii/crate-index.git"

[net]
git-fetch-with-cli = true

$ cargo add locat --registry catscii
 Updating `catscii` index
 Adding locat v0.2.0 to dependencies

in `locat/Cargo.toml`

Wonderful. Let’s do a quick cargo check just to see…

Ah. So there’s actually three halves to cargo authentication:

• Cloning the registry index (over Git: HTTPS or SSH)

• The publish API (token)

• The download API (token)

I said we’d try the nightly thing, so let’s try the nightly thing.

Switching to Rust nightly

We only need to do that in the catscii directory. Let’s pin to a recent‐ish nightly:

And set up our catscii registry:

Our next cargo check invocation downloads that nightly version:

[dependencies]
locat = { version = "0.2.0", registry = "catscii" }

$ cargo check
 Updating `catscii` index
error: failed to download from `https://crates.shipyard.rs/api/v1/crates/locat/0.2.0/download`

Caused by:
 failed to get successful HTTP response from `https://crates.shipyard.rs/api/v1/crates/locat/0.2.0/download`, got 40
 body:
 {"errors":[{"detail":"Unlike Crates.io, Shipyard.rs requires authentication for all API requests, including crate d

in `catscii/rust-toolchain.toml`

[toolchain]
channel = "nightly-2022-12-24"
components = ["rustfmt", "clippy", "rust-src"]

in `catscii/.cargo/config.toml`

[registries.catscii]
index = "ssh://git@ssh.shipyard.rs/catscii/crate-index.git"

cargo check
info: syncing channel updates for 'nightly-2022-12-24-x86_64-unknown-linux-gnu'
info: latest update on 2022-12-24, rust version 1.68.0-nightly (af3e06f1b 2022-12-23)
info: downloading component 'cargo'
(cut)
info: installing component 'cargo'
(cut)
error: failed to download `locat v0.2.0 (registry `catscii`)`

And complains that we haven’t set the right experimental flags.

Let’s fix that:

And then… it just works!

Using locat from catscii

Normally we’d have to make some code changes to get to the IP address, but since we’re deploying

to fly.io, we’re behind a proxy already, and they set a header for that, so we can just use it.

We’ll add a locat field in our ServerState struct:

Initialize it:

And call it from root_get :

Caused by:
 unable to get packages from source

Caused by:
 authenticated registries require `-Z registry-auth`

in `catscii/.cargo/config.toml`

[registries.catscii]
index = "ssh://git@ssh.shipyard.rs/catscii/crate-index.git"

new!
[unstable]
registry-auth = true

// in `catscii/src/main.rs`

use std::sync::Arc;
use locat::Locat;

#[derive(Clone)]
struct ServerState {

client: reqwest::Client,
locat: Arc<Locat>,

}

let state = ServerState {
client: Default::default(),
locat: Arc::new(Locat::new("todo_geoip_path.mmdb", "todo_analytics.db")),

};

// in `catscii/src/main.rs`
Show a 34 ines

https://fly.io/docs/reference/runtime-environment/#fly-client-ip
https://fly.io/docs/reference/runtime-environment/#fly-client-ip

Running our changes locally

Even though we’re building the production version of our app using Docker, it should still run with

cargo run , so let’s try that:

Trying to visit localhost:8080 from my host’s browser prints… nothing. Because the fly-client-ip

header isn’t set.

We can try it with curl (in another terminal) and set an arbitrary IP there:

And the server shows:

Which makes perfect sense, since we haven’t yet connected the GeoIP database and everything.

This is neat, because it lets us experiment with deploying the new code without breaking anything.

Running our changes in production

Even though our new code doesn’t do anything useful yet, let’s try deploying it to production.

We should probably make a Justfile , so we don’t forget which commands to run.

You can install just with cargo install just for now, and then:

fn get_client_addr(headers: &HeaderMap) -> Option<IpAddr> {
let header = headers.get("fly-client-ip")?;
let header = header.to_str().ok()?;
let addr = header.parse::<IpAddr>().ok()?;
Some(addr)

}

async fn root_get(headers: HeaderMap, State(state): State<ServerState>) -> Response<BoxBody> {
let tracer = global::tracer("");
let mut span = tracer.start("root_get");

 span.set_attribute(KeyValue::new(
"user_agent",

 headers
.get(header::USER_AGENT)
.map(|h| h.to_str().unwrap_or_default().to_owned())
.unwrap_or_default(),

$ cargo run
(cut)
{"timestamp":"2022-12-24T15:03:56.138667Z","level":"INFO","fields":{"message":"Listening on 0.0.0.0:8080"},"target":"

$ curl --output /dev/null --header 'fly-client-ip: 8.8.8.8' localhost:8080
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 105k 100 105k 0 0 165k 0 --:--:-- --:--:-- --:--:-- 165k

{"timestamp":"2022-12-24T15:05:14.740401Z","level":"WARN","fields":{"message":"Could not determine country for IP add

Now tell me cool bear: do you think this’ll go smoothly?

You’re asking, so… probably not?

You’re absolutely correct. It’s time for.. more Docker golfing!

Missing COPY

Contest number one! It says it can’t find a registry named catscii . And yet, the .cargo/

config.toml is right there on disk.

Yes, but… looks at heading it’s not in the build context? We need to copy it?

Correct!

in `catscii/Justfile`

just manual: https://github.com/casey/just#readme

_default:
 just --list

deploy:
 DOCKER_BUILDKIT=1 docker build --target app --tag catscii .
 fly deploy --local-only

$ just deploy
(cut)
 => ERROR [builder 7/7] RUN --mount=type=cache,target=/root/.rustup --mount=type=cache,target=/root/.cargo/regist

 > [builder 7/7] RUN --mount=type=cache,target=/root/.rustup --mount=type=cache,target=/root/.cargo/registry
#18 0.159 + cargo build --release
#18 0.241 error: failed to parse manifest at `/app/Cargo.toml`
#18 0.241
#18 0.241 Caused by:
#18 0.241 no index found for registry: `catscii`

executor failed running [/bin/sh -c set -eux; cargo build --release; objcopy --compress-debug-sect
error: Recipe `deploy` failed on line 7 with exit code 1

Copy sources and build them
WORKDIR /app
COPY src src
new!
COPY .cargo .cargo
COPY Cargo.toml Cargo.lock ./

Git’s not here, man

You know what else is a compile‐time dependency now?

That’s right! It’s the square hole Git!

Does that mean it needs to re‐download and re‐install all packages from scratch on the next

docker build run? You betcha!

It’s been two minutes already. I guess that was an unlucky run. How are you doing today? Is it a

lovely day for you? Not necessarily the weather, but, you know, your internal weather? Have you

been tending to your inner garden? It’s important, you know. Sometimes self‐care might feel like

you’re being selfish, but really you’re just getting yourself in a position where you can actually help

others again, whereas if y‐ oh would you look at that, it finished.

What’s an ssh?

$ just deploy
(cut)
 > [builder 8/8] RUN --mount=type=cache,target=/root/.rustup --mount=type=cache,target=/root/.cargo/registry
#19 0.163 + cargo build --release
#19 0.233 Updating `catscii` index
#19 0.234 error: failed to get `opentelemetry-honeycomb` as a dependency of package `catscii v0.1.0 (/app)`
#19 0.234
#19 0.234 Caused by:
#19 0.234 failed to load source for dependency `opentelemetry-honeycomb`
#19 0.234
#19 0.234 Caused by:
#19 0.234 Unable to update registry `catscii`
#19 0.234
#19 0.234 Caused by:
#19 0.234 failed to fetch `ssh://git@ssh.shipyard.rs/catscii/crate-index.git`
#19 0.234
#19 0.234 Caused by:
#19 0.234 could not execute process `git fetch --force --update-head-ok 'ssh://git@ssh.shipyard.rs/catscii/crate-in
#19 0.234
#19 0.234 Caused by:
#19 0.234 No such file or directory (os error 2)

executor failed running [/bin/sh -c set -eux; cargo build --release; objcopy --compress-debug-sect
error: Recipe `deploy` failed on line 7 with exit code 1

Install compile-time dependencies
RUN set -eux; \

apt update; \
apt install --yes --no-install-recommends \
new!
git-core curl ca-certificates gcc libc6-dev pkg-config libssl-dev \
;

#19 0.485 Caused by:
#19 0.485 process didn't exit successfully: `git fetch --force --update-head-ok 'ssh://git@ssh.shipyard.rs/catscii/

Oh for crying out loud.

Well I guess we have time for more chit chat. What songs are you listening to right now? I’ve been

trying to find Winter‐themed music that isn’t offensive to my sensibilities. That mostly means

Frank Sinatra, or some other jazz pianists. Teddy Wilson’s “As Times Goes By” is surprisingly g‐ oh,

break’s over!

Host key verification failed

Oh. Uh. A little web search pointed to this, let’s try it:

No, wait, nevermind:

Okay, sure:

#19 0.485 --- stderr
#19 0.485 error: cannot run ssh: No such file or directory
#19 0.485 fatal: unable to fork

Install compile-time dependencies
RUN set -eux; \

apt update; \
apt install -y --no-install-recommends \
new!
openssh-client git-core curl ca-certificates gcc libc6-dev pkg-config libssl-dev \
;

#19 0.965 Caused by:
#19 0.965 process didn't exit successfully: `git fetch --force --update-head-ok 'ssh://git@ssh.shipyard.rs/catscii/
#19 0.965 --- stderr
#19 0.965 Host key verification failed.
#19 0.965 fatal: Could not read from remote repository.
#19 0.965
#19 0.965 Please make sure you have the correct access rights
#19 0.965 and the repository exists

Copy sources and build them
WORKDIR /app
COPY src src
COPY .cargo .cargo
COPY Cargo.toml Cargo.lock ./

RUN ssh-keyscan ssh.shipyard.rs >> ~/.ssh/known_hosts
RUN --mount=type=cache,target=/root/.rustup \
(etc.)

 > [builder 8/9] RUN ssh-keyscan ssh.shipyard.rs >> ~/.ssh/known_hosts:
#19 0.159 /bin/sh: 1: cannot create /root/.ssh/known_hosts: Directory nonexistent

I’m fairly sure that defeats the purpose, but oh well.

Permission denied (publickey)

Ok. I’ll save you the trouble. BuildKit also lets us “mount our SSH agent” (to Docker, every problem

is mount‐shaped), so we can do this:

Permission denied (publickey), still

The error message is exactly the same, except it includes --mount=type=ssh .

This is because, you need to tell docker build to share your SSH credentials. Otherwise any

Dockerfile could just steal them. I still think the security model is kinda wonky there, but, we’ve

written our own Dockerfile from start to finish and I trust it somewhat.

Let’s adjust our docker build invocation in the Justfile :

Because, again, I have multiple Shipyard accounts, and my SSH agent offers keys that are

RUN mkdir --parents ~/.ssh/ && ssh-keyscan ssh.shipyard.rs >> ~/.ssh/known_hosts

#20 1.208 Caused by:
#20 1.208 process didn't exit successfully: `git fetch --force --update-head-ok 'ssh://git@ssh.shipyard.rs/catscii/
#20 1.208 --- stderr
#20 1.208 Warning: Permanently added the ECDSA host key for IP address '15.204.143.93' to the list of known hosts.
#20 1.208 git@ssh.shipyard.rs: Permission denied (publickey).
#20 1.208 fatal: Could not read from remote repository.
#20 1.208
#20 1.208 Please make sure you have the correct access rights
#20 1.208 and the repository exists

Copy sources and build them
WORKDIR /app
COPY src src
COPY .cargo .cargo
COPY Cargo.toml Cargo.lock ./
RUN --mount=type=cache,target=/root/.rustup \
 --mount=type=cache,target=/root/.cargo/registry \
 --mount=type=cache,target=/root/.cargo/git \

--mount=type=cache,target=/app/target \
new!
--mount=type=ssh \
set -eux; \
cargo build --release; \
objcopy --compress-debug-sections ./target/release/catscii ./catscii

deploy:
 # new!
 DOCKER_BUILDKIT=1 docker build --ssh default --target app --tag catscii .
 fly deploy --local-only

associated with the wrong account (an edge case you shouldn’t be hitting), I set up another agent

quickly:

Failed to get successful HTTP response, got 401

Here’s our next error:

Wait wait wait wait. I know this one. Can I try something?

Sure?

THIS IS FOR MY WEIRD EDGE CASE ONLY
(You probably don't need it)
$ sudo apt install keychain
$ keychain

 * keychain 2.8.5 ~ http://www.funtoo.org
 * Starting ssh-agent...

$ source ~/.keychain/miles-sh
$ ssh-add ~/.ssh/id_rsa
$ ssh-add -l
3072 SHA256:AS0UXGvbfbTa2cVgJ2aOK/X5Ttek2HcpYptAO+aJN6c amos@miles (RSA)

 > [builder 9/9] RUN --mount=type=cache,target=/root/.rustup --mount=type=cache,target=/root/.cargo/registry
#20 0.136 + cargo build --release
#20 0.184 Updating `catscii` index
#20 1.943 Downloading crates ...
#20 2.566 error: failed to download from `https://crates.shipyard.rs/api/v1/crates/locat/0.2.0/download`
#20 2.566
#20 2.566 Caused by:
#20 2.566 failed to get successful HTTP response from `https://crates.shipyard.rs/api/v1/crates/locat/0.2.0/downloa
#20 2.566 body:
#20 2.566 {"errors":[{"detail":"Unlike Crates.io, Shipyard.rs requires authentication for all API requests, includi

RUN --mount=type=cache,target=/root/.rustup \
 --mount=type=cache,target=/root/.cargo/registry \
 --mount=type=cache,target=/root/.cargo/git \

--mount=type=cache,target=/app/target \
--mount=type=ssh \
set -eux; \

rustc --version; \
exit 251; \
(etc.)

$ just deploy
(cut)
#20 0.120 + rustc --version
#20 0.156 rustc 1.66.0 (69f9c33d7 2022-12-12)

AhAh! It’s not using the right version of Rust inside Docker, because…

…because rust-toolchain.toml is not part of the build context.

Whoa, these are easy to miss, you weren’t kidding!

Yeah! But you know what? Some developers actually love technologies that make it easy to make

mistakes, because then there’s always something to do! Every single one of these commits counts

towards some metric, and it makes them look very productive: “saving the day” is usually

remembering one of a hundred footguns and applying the same fix, over and over.

Huh. Funny how this works out.

Yes yep. Anyway:

(Also don’t forget to remove exit 251 from the Dockerfile)

No token found, again

Ah. So that one only worked locally because we had done cargo login . I see.

Well… this is a docker. Every problem is a mount away. Even secrets!

Because we’re going to commit that file, let’s make sure it’s encrypted with git-crypt first.

#20 0.156 + exit 251

now also copying the toolchain file
COPY Cargo.toml Cargo.lock rust-toolchain.toml ./

#20 0.281 Downloading crates ...
#20 0.300 error: failed to download `locat v0.2.0 (registry `catscii`)`
#20 0.300
#20 0.300 Caused by:
#20 0.300 unable to get packages from source
#20 0.300
#20 0.300 Caused by:
#20 0.300 no token found for `catscii`, please run `cargo login --registry catscii`
#20 0.300 or use environment variable CARGO_REGISTRIES_CATSCII_TOKEN

in `.gitattributes`

Then we can store just the value of our token in secrets/shipyard-token :

(Make sure that file has no trailing newline!)

Let’s make sure git-crypt picks it up:

Now we can mount it as a secret:

And pass it to docker build :

And finally, just deploy works!

Visiting the site, I can see this in my logs:

.envrc filter=git-crypt diff=git-crypt
new!
secrets/* filter=git-crypt diff=git-crypt

REDACTED

$ git-crypt status -e
 encrypted: secrets/shipyard-token
 encrypted: .envrc

RUN --mount=type=cache,target=/root/.rustup \
 --mount=type=cache,target=/root/.cargo/registry \
 --mount=type=cache,target=/root/.cargo/git \

--mount=type=cache,target=/app/target \
--mount=type=ssh \
new!
--mount=type=secret,id=shipyard-token \
set -eux; \
also new!
export CARGO_REGISTRIES_CATSCII_TOKEN=$(cat /run/secrets/shipyard-token); \
rustc --version; \
cargo build --release; \
objcopy --compress-debug-sections ./target/release/catscii ./catscii

deploy:
 DOCKER_BUILDKIT=1 docker build \
 --ssh default \
 # there we go
 --secret id=shipyard-token,src=secrets/shipyard-token \
 --target app \
 --tag catscii \
 .
 fly deploy --local-only

$ fly logs
(cut)

Nice! Now we “just” need to make it do the thing!

You're reading the Building a Rust service with Nix series.

1 2 3 4 5 6 7 8 9 10 11 12

Comment on /r/fasterthanlime

Thanks to my sponsors: Paige Ruten, Yann Schwartz, Guillaume Demonet, medzernik, Shane Lillie, Michael Alyn

Miller, Jack Maguire, Mateusz Wykurz, Geoffroy Couprie, Dom, Simon Menke, G, Dominik Wagner, belzael, Mark,

compwhizii, Horváth‐Lázár Péter, Ross Williams, Noel, Torben Clasen and 266 more

My work is sponsored by people like you. Donate now so it can keep going:

Enter your Ko-fi emai address

or continue with

GitHub Patreon

Here's another article just for you:

2022-12-24T17:39:27Z app[fb691ea1] cdg [info]{"timestamp":"2022-12-24T17:39:27.906817Z","level":"WARN","fields":{"mes

Frustrated? It's not you, it's Rust
Aug 14, 2020 38 min #rust · #traits · #sized · #lifetimes

Learning Rust is… an experience. An emotional journey. I’ve rarely been more frustrated than in

my first few months of trying to learn Rust.

What makes it worse is that it doesn’t matter how much prior experience you have, in Java, C#,

C or C++ or otherwise ‐ it’ll still be unnerving.

In fact, more experience probably makes it worse! The habits have settled in deeper, and

there’s a certain expectation that, by now, you should be able to get that done in a shorter

amount of time.

Read more

Ko‐fi GitHub Sponsors Patreon

Bluesky Mastodon YouTube

https://fasterthanli.me/series/building-a-rust-service-with-nix
https://fasterthanli.me/series/building-a-rust-service-with-nix
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-1
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-1
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-1
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-2
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-2
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-2
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-3
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-3
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-3
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-4
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-4
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-4
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-5
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-5
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-5
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-6
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-6
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-6
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-8
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-8
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-8
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-9
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-9
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-9
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-10
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-10
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-10
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-11
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-11
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-11
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-12
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-12
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-12
https://fasterthanli.me/api/comments?url=https%3A%2F%2Ffasterthanli.me%2Fseries%2Fbuilding-a-rust-service-with-nix%2Fpart-7&title=Using+the+Shipyard+private+crate+registry+with+Docker
https://fasterthanli.me/api/comments?url=https%3A%2F%2Ffasterthanli.me%2Fseries%2Fbuilding-a-rust-service-with-nix%2Fpart-7&title=Using+the+Shipyard+private+crate+registry+with+Docker
https://fasterthanli.me/api/comments?url=https%3A%2F%2Ffasterthanli.me%2Fseries%2Fbuilding-a-rust-service-with-nix%2Fpart-7&title=Using+the+Shipyard+private+crate+registry+with+Docker
https://fasterthanli.me/api/comments?url=https%3A%2F%2Ffasterthanli.me%2Fseries%2Fbuilding-a-rust-service-with-nix%2Fpart-7&title=Using+the+Shipyard+private+crate+registry+with+Docker
https://fasterthanli.me/api/comments?url=https%3A%2F%2Ffasterthanli.me%2Fseries%2Fbuilding-a-rust-service-with-nix%2Fpart-7&title=Using+the+Shipyard+private+crate+registry+with+Docker
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/series/building-a-rust-service-with-nix/part-7#
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/tags/rust
https://fasterthanli.me/tags/rust
https://fasterthanli.me/tags/traits
https://fasterthanli.me/tags/traits
https://fasterthanli.me/tags/sized
https://fasterthanli.me/tags/sized
https://fasterthanli.me/tags/lifetimes
https://fasterthanli.me/tags/lifetimes
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/i-am-a-java-csharp-c-or-cplusplus-dev-time-to-do-some-rust
https://fasterthanli.me/articles/i-am-a-java-csharp-c-or-cplusplus-dev-time-to-do-some-rust
https://fasterthanli.me/articles/i-am-a-java-csharp-c-or-cplusplus-dev-time-to-do-some-rust
https://fasterthanli.me/articles/i-am-a-java-csharp-c-or-cplusplus-dev-time-to-do-some-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://fasterthanli.me/articles/frustrated-its-not-you-its-rust
https://ko-fi.com/fasterthanlime
https://ko-fi.com/fasterthanlime
https://ko-fi.com/fasterthanlime
https://ko-fi.com/fasterthanlime
https://ko-fi.com/fasterthanlime
https://github.com/sponsors/fasterthanlime
https://github.com/sponsors/fasterthanlime
https://github.com/sponsors/fasterthanlime
https://github.com/sponsors/fasterthanlime
https://github.com/sponsors/fasterthanlime
https://github.com/sponsors/fasterthanlime
https://patreon.com/fasterthanlime
https://patreon.com/fasterthanlime
https://patreon.com/fasterthanlime
https://patreon.com/fasterthanlime
https://patreon.com/fasterthanlime
https://patreon.com/fasterthanlime
https://bsky.app/profile/fasterthanli.me
https://bsky.app/profile/fasterthanli.me
https://bsky.app/profile/fasterthanli.me
https://bsky.app/profile/fasterthanli.me
https://bsky.app/profile/fasterthanli.me
https://bsky.app/profile/fasterthanli.me
https://hachyderm.io/@fasterthanlime
https://hachyderm.io/@fasterthanlime
https://hachyderm.io/@fasterthanlime
https://hachyderm.io/@fasterthanlime
https://hachyderm.io/@fasterthanlime
https://hachyderm.io/@fasterthanlime
https://youtube.com/@fasterthanlime
https://youtube.com/@fasterthanlime
https://youtube.com/@fasterthanlime
https://youtube.com/@fasterthanlime
https://youtube.com/@fasterthanlime
https://youtube.com/@fasterthanlime
https://www.tiktok.com/@fasterthanlime
https://www.instagram.com/fasterthanlime
https://fasterthanli.me/index.xml

TikTok Instagram RSS

About Legal Notice Privacy Policy Terms and Conditions

https://www.tiktok.com/@fasterthanlime
https://www.tiktok.com/@fasterthanlime
https://www.tiktok.com/@fasterthanlime
https://www.tiktok.com/@fasterthanlime
https://www.tiktok.com/@fasterthanlime
https://www.tiktok.com/@fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://www.instagram.com/fasterthanlime
https://fasterthanli.me/index.xml
https://fasterthanli.me/index.xml
https://fasterthanli.me/index.xml
https://fasterthanli.me/index.xml
https://fasterthanli.me/index.xml
https://fasterthanli.me/index.xml
https://fasterthanli.me/about
https://fasterthanli.me/about
https://fasterthanli.me/legal-notice
https://fasterthanli.me/legal-notice
https://fasterthanli.me/privacy-policy
https://fasterthanli.me/privacy-policy
https://fasterthanli.me/terms-and-conditions
https://fasterthanli.me/terms-and-conditions

