
Using Baze with Rust to Buid and
Depoy an Appication
28 minute read Updated: Juy 11, 2023

Enoch Chejieh

In this Series

Tabe of Contents

The artice discusses integrating Baze with Rust for improved buid speeds. Earthy

provides caching mechanisms that can acceerate buid times for Rust deveopers.

Check it out.

Buiding and depoying software can be a compicated and time-consuming process,

especiay as appications grow in size and compexity. One too that can hep simpify

this process is Baze, an open-source buid too deveoped by Googe. Baze is

designed to make it easy to buid and test arge and compex codebases and is

particuary we-suited for monorepos, which are codebases that contain mutipe

projects or components.

One of the key features of Baze is its abiity to speed up buids and tests. Bazeʼs

caching and dependency anaysis features faciitate fast, incrementa buids. This

makes it possibe to quicky iterate on code changes, which can be especiay usefu

for arge teams working on a codebase. Additionay, Baze supports mutipe

Introducing Earthy Lunar. Achieve engineering exceence with universa SDLC monitoring. Learn
More.

https://earthly.dev/blog/bazel-with-rust/#top
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://bazel.build/
https://bazel.build/
https://earthly.dev/blog/bazel-build
https://earthly.dev/blog/bazel-build
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/blog/bazel-with-rust/#top
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/earthly-lunar
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/
https://earthly.dev/

anguages and patforms, incuding Rust, and can be extended to support new

anguages.

In this artice, youʼ earn how to prepare your workspace, run, and test your code,

and deveop a basic appication using Rust with Baze. By the end of this artice, youʼ

know how to use Baze to streamine your deveopment workfow and improve the

efficiency of your buids and tests.

How Rust and Baze Work Together

Baze supports Rust through its buit-in rues, which are sets of instructions that te

Baze how to buid and test code written in specific anguages. These rues aow you

to buid and test Rust code using Bazeʼs powerfu execution capabiities.

In addition, Bazeʼs Rust rues provide a set of common macros, which make it easy to

perform common tasks, such as buiding ibraries, running tests, and creating binaries.

These macros can be used to simpify the deveopment process and reduce the

amount of boierpate code that you have to write.

https://github.com/bazelbuild/rules_rust
https://github.com/bazelbuild/rules_rust

Buid and Deveop a Rust Appication with Baze

Now that you know how Rust and Baze work together, etʼs create a basic Rust

appication that makes use of a custom substring Rust ibrary that youʼ buid and

depoy using Baze.

A the source code for this tutoria is avaiabe in this GitHub repository.

Insta Rust

To insta and set up Rust, you need to start by instaing rustup, the officia Rust

instaer. You can do so with the foowing command:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

This wi downoad and run the rustup instaer, which wi guide you through the

instaation process.

Once rustup is instaed, you can use it to insta the atest stabe version of Rust by

running the foowing command:

>_

https://github.com/ECJ222/rs_bazel
https://github.com/ECJ222/rs_bazel
https://rustup.rs/
https://rustup.rs/

rustup install stable

Insta Baze

Next, you need to insta and set up Baze by foowing the instructions on the Baze

website for your operating system. If youʼre using Windows, Linux, or macOS, Baze

recommends instaing it using Bazeisk, which is usefu for switching between

different versions of Baze and for keeping it updated to the atest reease.

Write a Basic Rust App

Once Baze is instaed, you need to create a new Rust project caed rs-bazel by

running the foowing command:

cargo new rs-bazel

Then change the directory to your newy created project:

cd rs-bazel

For this demonstration, you need to create a Rust crate inside your project. To do so,

run the foowing command in your current directory:

cargo new --lib substring-library

Here, you create the substring-library crate.

After foowing these steps, your fie structure shoud ook ike this:

[rs-bazel]

 src/

 - main.rs

 substring-library/

 src/

 - lib.rs

 Cargo.toml

>_

>_

>_

>_

https://bazel.build/start
https://bazel.build/start
https://bazel.build/start
https://bazel.build/start
https://earthly.dev/blog/makefiles-on-windows
https://earthly.dev/blog/makefiles-on-windows
https://bazel.build/install/bazelisk
https://bazel.build/install/bazelisk

 Cargo.toml

Open your lib.rs fie and add the foowing code:

The find_substring function takes in two parameters: s , a string sice with a ifetime

'a , and substring , a reference to a string sice. It returns an Option<&'a str> type

if the first occurrence of the substring was found within the s string; otherwise, it

returns None .

The replace_substring function takes in three parameters: references to string sices

s , from , and to . It repaces a occurrences of the from string with the to string

and returns a String type.

Next, you need to add tests for your crate. To do so, add the foowing ines of code to

the lib.rs fie:

// lib.rs

pub fn find_substring<'a>(s: &'a str, substring: &str) -> Option<&'a str> {

 s.find(substring).map(|i| &s[i..i + substring.len()])

}

pub fn replace_substring(s: &str, from: &str, to: &str) -> String {

 s.replace(from, to)

}

ib.rs Copy

// lib.rs

#[cfg(test)]

mod tests {

use crate::{find_substring, replace_substring};

#[test]

fn find() {

let s = "Dragons fly!";

let substring = find_substring(s, "fly");

ib.rs Copy

This test code checks the expected output of the find_substring() and

replace_substring() functions, which are expected to return the first occurrence of

a substring in a string and repace the substring, respectivey.

Next, navigate to your main.rs fie, which is the entry point of your Rust project, and

add the foowing code:

This code uses the substring_library crate you just created, which contains the

find_substring and replace_substring functions to find a substring within a string

and repace a substring with another one, respectivey. It uses the println! macro to

output the resuts.

assert_eq!(substring, Some("fly"));

}

#[test]

fn replace() {

let s = "Hello, World!";

let new_string = replace_substring(s, "World", "Rust");

assert_eq!(new_string, "Hello, Rust!");

}

}

// main.rs

extern crate substring_library;

use substring_library::{find_substring, replace_substring};

fn main() {

let s = "Hello, World!";

let substring = find_substring(s, "World");

println!("Found substring: {:?}", substring);

let new_string = replace_substring(s, "World", "Rust");

println!("New string: {}", new_string);

}

main.rs Copy

At this point, youʼve created your Rust program. Now, you need to set up your Baze

environment to be abe to test, buid, and depoy your program.

Buid and Test With Baze

To buid and test with Baze, create a WORKSPACE fie in your root directory. Your fie

structure shoud ook ike this:

The WORKSPACE fie in Baze serves as the root of your project. It defines the root and

specifies the externa dependencies that your project reies on. Itʼs ike a map that

guides Baze in finding a the necessary fies and dependencies for your project. It

heps Baze know where to start buiding your project and ensures that a the

dependencies are in pace.

Now, create a WORKSPACE fie in your current directory and add this code to it:

[rs-bazel]

 src/

 - main.rs

 substring-library/

 src/

 - lib.rs

 Cargo.toml

 Cargo.toml

 WORKSPACE

WORKSPACE Copy

./WORKSPACE

load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")

Downloads and extracts a compressed archived file from the \

specified URL and creates a new repository rule with the given name.

http_archive(

 name = "rules_rust",

 # Specifies the SHA-256 hash of the tar file. This is used to \

WORKSPACE Copy

The load function is responsibe for importing the necessary custom functions,

macros, and ogic needed in your BUILD fie and .bazelrc , which you wi earn more

about ater in this tutoria.

The http_archive function is used for downoading a Baze repository as a

compressed archive fie, decompresses it, and makes its targets avaiabe for binding,

which in this case is the rues for Rust that youʼ be using in your Baze environment.

Next, in the same WORKSPACE fie, add the foowing code:

This oads the rule_rust_dependencies and rust_register_toolchains functions.

Baze uses the rule_rust_dependencies function to know what dependencies your

project needs to successfuy run, buid, or test your appication.

In the same WORKSPACE fie, add the foowing ine of code:

The rust_register_toolchains function registers the Rust toochains with the given

 verify the integrity of the downloaded tar file.

 sha256 = "aaaa4b9591a5dad8d8907ae2dbe6e0eb49e6314946ce4c7149241648e56a1277",

 # Specifies the URL of a compressed archived file to download.

 urls = ["https://github.com/bazelbuild/rules_rust/releases/download/0.16.1/rules_rust-v0.

)

./WORKSPACE

Loads the `rules_rust_dependencies` and `rust_register_toolchains` \

function definitions.

load("@rules_rust//rust:repositories.bzl", "rules_rust_dependencies", \

"rust_register_toolchains")

WORKSPACE Copy

WORKSPACE

Adds the necessary dependencies for the Rust rules.

rules_rust_dependencies()

WORKSPACE Copy

https://bazel.build/run/bazelrc
https://bazel.build/run/bazelrc
https://bazel.build/run/bazelrc

versions and editions you wi need to use within your project.

And, in the same WORKSPACE fie, add this ine of code:

When another deveoper cones the project and runs the bazel build command,

Baze wi check for the Rust version specified in the rust_register_toolchains , and

if the correct version of Rust isnʼt aready instaed on the oca system, Baze wi

downoad and insta it before buiding the project.

It’s important to keep the Rust version in sync across all the developers working on the project, as

di�erent versions of Rust can cause compatibility issues and build errors.

Using Labes to Identify and Buid Specific Targets

In addition to specifying the correct version of Rust, Baze aso uses labels to

identify and buid specific targets within the project. A label is a unique identifier that

points to a specific target, such as a binary or a ibrary within the project.

Labels have the foowing format: //package:target , where package refers to the

package or directory containing the target and target refers to the specific target

within that package.

Baze uses labels to determine which targets to buid or run as we as to resove

dependencies between targets. By specifying the correct labels , deveopers can

easiy buid and run specific parts of their projects without having to navigate through

the entire codebase.

./WORKSPACE

Registers Rust toolchains with the given versions and editions.

rust_register_toolchains(

 versions=["1.66.0"],

 # Specifies the Rust edition to use for the registered toolchains

 edition = "2021",

)

WORKSPACE Copy

When buiding a Rust project with Baze, the foowing command is used for buiding

and running buid targets. Try running this command in the termina inside your current

directory:

bazel run //:rs_bazel

Here, the // signifies the root directory of the project. rs_bazel signifies the Rust

binary target defined in the BUILD fie within your root directory.

Aternativey, you coud aso run the bazel build //:rs_bazel command, but this

ony compies the target. The main difference between the bazel build and bazel

run commands is that bazel build compies the code, whie bazel run runs the

compied binary. The bazel run command aso buids the code if it hasnʼt been buit

yet.

Now, notice the error output from your termina:

Starting local Bazel server and connecting to it...

ERROR: Skipping '//:rs-bazel': no such package '': BUILD file not \

found in any of the following directories. Add a BUILD file to a \

directory to mark it as a package.

 - /Users/apple/Documents/rs-bazel

WARNING: Target pattern parsing failed.

ERROR: no such package '': BUILD file not found in any of the \

following directories. Add a BUILD file to a directory to \

mark it as a package.

 - /Users/apple/Documents/rs-bazel

INFO: Elapsed time: 4.276s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (0 packages loaded)

ERROR: Build failed. Not running target

As you can see, your Rust appication BUILD fie is missing.

The BUILD is a critica part of the Baze buid system because the BUILD fie is used

to describe the components of your appication and how they shoud be buit by Baze

and, in this case, your Rust appication.

>_

Output

Set Up Baze to Buid and Depoy Your Rust Appication

And now comes the exciting part! Youʼre going to set up Baze to buid and depoy

your basic Rust appication with the custom substring Rust ibrary you previousy

created.

To start, create a BUILD fie in the root of your project and paste the foowing code in

it:

This ine of code oads the defs.bzl fie from the @rules_rust//rust package,

specificay the rust_binary function definition. The rust_binary function is used to

define a Rust binary target that can be buit by Baze. This function can be used to

specify the dependencies, settings, and other information needed for buiding the Rust

binary.

Now, copy, and paste the foowing code into the BUILD fie:

./BUILD

Loads the Rust rules and the `rust_binary` function definition.

load("@rules_rust//rust:defs.bzl", "rust_binary")

BUILD.baze Copy

./BUILD

Declares a Rust binary target with the given name.

rust_binary(

 name = "rs_bazel",

 # Specifies the source file for the binary.

 srcs = ["src/main.rs"],

 # Specifies dependencies for the binary.

 deps = [

 # Depend on the `substring_library` target, which is \

 the crate you created.

 '//substring-library:substring_library'

],

BUILD.baze Copy

Before running Baze again, create another BUILD fie within your substring-library

crate directory. Your fie structure shoud ook simiar to this:

[rs-bazel]

 src/

 - main.rs

 substring-library/

 src/

 - lib.rs

 BUILD

 Cargo.toml

 BUILD

 Cargo.toml

 WORKSPACE

Then add the foowing code in the BUILD fie you just created within your substring-

library crate directory:

This is simiar to what you did earier when you imported the rust_binary function,

but this time, youʼre defining your crate and its tests using the rust_library and

rust_test functions. The rust_library and rust_test functions are used for

defining a Rust ibrary and Rust test target that can be buit by Baze.

Verify Your Baze Buid Is Working Correcty

To ensure your substring-library crate and itʼs tests are incuded in your Baze

buid, copy and paste the foowing code in the BUILD fie in that same crate directory:

 # Specifies the Rust edition to use for this binary.

 edition = "2021"

)

./substring-library/BUILD

load("@rules_rust//rust:defs.bzl", "rust_library", "rust_test")

BUILD.baze Copy

In your termina, try running Baze again with the foowing command:

bazel run //:rs_bazel

You shoud get the foowing error:

ERROR: /Users/apple/Documents/rs-bazel/BUILD:8:12: in rust_binary \

./substring-library/BUILD

Declares a Rust library target with the given name.

rust_library(

 name = "substring_library",

 # Specifies the source files for the library.

 srcs = ["src/lib.rs"],

 # Specifies the Rust edition to use for this library.

 edition = "2021"

)

Declares a Rust test target with the given name.

rust_test(

 name = "substring_library_test",

 # Specifies the source file for the test.

 srcs = ["src/lib.rs"],

 # Specifies dependencies for the test.

 deps = [

 # Depend on the library we just declared.

 ":substring_library",

],

 # Specifies the Rust edition to use for this test.

 edition = "2021"

)

BUILD.baze Copy

>_

Output

rule //:rs_bazel: target '//substring-library:substring_library' is \

not visible from target '//:rs_bazel'. Check the visibility declaration \

of the former target if you think the dependency is legitimate

ERROR: /Users/apple/Documents/rs-bazel/BUILD:8:12: Analysis of target \

'//:rs_bazel' failed

ERROR: Analysis of target '//:rs_bazel' failed; build aborted:

INFO: Elapsed time: 0.264s

INFO: 0 processes.

FAILED: Build did NOT complete successfully (1 packages loaded, \

2 targets configured)

ERROR: Build failed. Not running target

By defaut, a targets have their visibiity set to private, meaning that ony rues within

the same package can depend on them. So when you decared your Rust binary target

dependencies to depend on the substring-library crate you created, Baze returned

errors because it doesnʼt have access to the crate and is private by defaut.

Now, copy, and paste the foowing code directy beow your oad function within the

substring-library crate BUILD fie:

This code sets the defaut visibiity for the package to pubic. In Baze, visibiity

contros which rues and targets can depend on a given target. By setting the defaut

visibiity to pubic, it aows rues in other packages to depend on the targets defined in

this package, as ong as they are not expicity marked as private. This can be usefu if

you want to make the targets in this package avaiabe to other parts of your

codebase.

Now, try running the bazel run //:rs_bazel command again. You shoud see the

foowing outputs:

INFO: Analyzed target //:rs_bazel (0 packages loaded, 0 targets configured).

INFO: Found 1 target...

Target //:rs_bazel up-to-date:

Set the default visibility for the package to be public.

package(default_visibility = ["//visibility:public"])

BUILD.baze Copy

Output

 bazel-bin/rs_bazel

INFO: Elapsed time: 0.149s, Critical Path: 0.00s

INFO: 1 process: 1 internal.

INFO: Build completed successfully, 1 total action

INFO: Running command line: bazel-bin/rs_bazel

Found substring: Some("World")

New string: Hello, Rust!

And your appication has been buit successfuy!

One of the key features of Baze is its abiity to cache buid resuts so that it can avoid

rebuiding parts of the project that havenʼt changed.

As Baze buids a project, it keeps track of the inputs and outputs of each buid step.

When it encounters a buid step that it has previousy performed, it checks the inputs

and outputs against the cached resuts to see if they are the same. If they are the

same, Baze can reuse the cached output rather than perform the buid step again.

This can save a significant amount of time, especiay for arge projects with many

dependencies.

Overa, Baze caching heps to improve the buid performance and the repeatabiity of

your project.

Test Your Appication

Now, for testing, run the foowing command in your termina to run the tests present

within your crate:

bazel test //substring-library:substring_library_test

When using Baze to test a Rust project, the command bazel test //package:target

is used to run tests for a specific crate; in this case, bazel test //substring-

library:substring_library_test . Here, the // signifies the root directory of the

project. substring-library is the name of the crate foder, and

substring_library_test is the specific test target defined in the BUILD fie within

that crate.

After youʼve buit your appication, Baze creates the foowing fies within your root

directory:

• The bazel-bin directory contains the compied binary fies of your targets,

incuding the stand-aone binary.

• The bazel-out directory contains the output fies and dependency information of

your buid process.

• The bazel-testlogs directory contains the ogs generated during test runs. This

incudes the test output and the resuts of the test run.

• The bazel-rs-bazel directory contains the fies that are specific to the rs_bazel

target. This is where the fina binary of your target wi be ocated.

The buid executabe generated after running bazel run can be found in the bazel-

bin directory. This executabe, named rs_bazel , can be run just ike a norma Rust

program. Additionay, it can aso be distributed as a stand-aone binary, eiminating

the need for dependencies or Baze instaation on other machines.

In your termina, you can run the executabe by typing ./bazel-bin/rs_bazel . This

wi execute the binary created by Baze, and you shoud see the desired output:

Found substring: Some("World")

>_

Output

New string: Hello, Rust!

Concusion

In this artice, you earned how Baze can be used to speed up the buid and

depoyment process of a Rust appication whie sti everaging the features of the Rust

anguage. You aso saw how to set up a workspace and then run and test a Rust

appication using Bazeʼs rues for Rust.

Yet, whie Baze is a fantastic too for buiding Rust apps, it can aso be compex and

intricate. It may be overki for smaer projects or for teams that arenʼt famiiar with its

intricacies. Thatʼs where Earthy comes into the picture.

Earthy offers a simper approach to buiding monorepos and containerization,

focusing on streamining the buid process, maintaining a minima setup, and

promoting the use of best practices. It aims to simpify the buid system and make it

accessibe for more deveopers, offering a potentiay ower earning curve compared

to Baze. Earthy can hande both sma and arge projects, offering you scaabiity

without the additiona compexity.

Remember, the utimate goa is to choose a too that not ony suits your current needs

but aso has the capacity to grow with you and your project, a the whie ensuring a

simper, faster, and more efficient software deveopment process. Be it Baze, Docker,

Earthy, or any other too, the choice shoud make your buid process a breeze, not a

hurde.

Earthy Lunar: Monitoring for your SDLC

Achieve Engineering Exceence with universa SDLC monitoring that

works with every tech stack, microservice, and CI pipeine.

Get a Demo

Enoch Chejieh
Enoch Chejieh is a software engineer who enjoys teaching and sharing his
knowedge with others.

https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://cloud.earthly.dev/login
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/earthly-lunar/demo

You May Aso Enjoy

Using Baze with TypeScript
16 minute read

Learn how to use Baze with TypeScript to buid and test your projects faster
and more efficienty. Discover the benefits of Baze's advanced caching and
par...

Writers at Earthy work cosey with our taented editors to hep them create high quaity
content. This artice was edited by:

Baa Priya C
Baa is a technica writer who enjoys creating ong-form content. Her areas of
interest incude math and programming. She shares her earning with the
deveoper community by authoring tutorias, how-to guides, and more.

Updated: Juy 11, 2023

Pubished: May 23, 2023

Get notified about new artices!

Subscribe to the Newsetter

Emai Address

Subscribe

We won't send you spam. Unsubscribe at any time.

https://earthly.dev/blog/using-bazel-with-typescript/
https://earthly.dev/blog/using-bazel-with-typescript/
https://earthly.dev/blog/authors/bala/
https://earthly.dev/blog/authors/bala/

How to Buid Node.js Appication with Baze
6 minute read

Learn how to buid a Node.js appication with Baze, an open-source buid too
that speeds up buids and tests. This tutoria guides you through setting up t...

Lunar

Get a Demo

Overview

Earthfies

Docs

About Earthfies

Earthy Sateites

Sateites Pricing

Check Status

Resources

Bog

Newsetter

Newsroom

Videos & Webinars

FAQ

About Earthy

Made with on Panet Earth | We're hiring!

Terms of Service | Privacy Poicy | Security

https://earthly.dev/blog/build-nodejs-app-with-bazel/
https://earthly.dev/blog/build-nodejs-app-with-bazel/
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/earthly-lunar/demo
https://earthly.dev/
https://earthly.dev/
https://docs.earthly.dev/
https://docs.earthly.dev/
https://earthly.dev/earthfile
https://earthly.dev/earthfile
https://earthly.dev/earthly-satellites
https://earthly.dev/earthly-satellites
https://earthly.dev/pricing
https://earthly.dev/pricing
https://status.earthly.dev/
https://status.earthly.dev/
https://earthly.dev/blog
https://earthly.dev/blog
https://newsletter.earthly.dev/profile
https://newsletter.earthly.dev/profile
https://earthly.dev/newsroom
https://earthly.dev/newsroom
https://earthly.dev/videos
https://earthly.dev/videos
https://earthly.dev/faq
https://earthly.dev/faq
https://earthly.dev/about-earthly
https://earthly.dev/about-earthly
https://jobs.earthly.dev/
https://jobs.earthly.dev/
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://twitter.com/earthlytech
https://earthly.dev/slack
https://earthly.dev/slack
https://earthly.dev/slack
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://www.youtube.com/@EarthlyTech
https://earthly.dev/tos
https://earthly.dev/tos
https://earthly.dev/privacy-policy
https://earthly.dev/privacy-policy
https://earthly.dev/security
https://earthly.dev/security

