Andrew Gallant's Blog About Projects GitHub Sponsor Me

Error Handling in Rust

May 14, 2015

Like most programming languages, Rust encourages the programmer to
handle errors in a particular way. Generally speaking, error handling is
divided into two broad categories: exceptions and return values. Rust opts
for return values.

In this article, | intend to provide a comprehensive treatment of how to deal
with errors in Rust. More than that, | will attempt to introduce error handling
one piece at a time so that you'll come away with a solid working
knowledge of how everything fits together.

When done naively, error handling in Rust can be verbose and annoying.
This article will explore those stumbling blocks and demonstrate how to use
the standard library to make error handling concise and ergonomic.

Target audience: Those new to Rust that don't know its error handling
idioms yet. Some familiarity with Rust is helpful. (This article makes heavy
use of some standard traits and some very light use of closures and
macros.)

Update (2018/04/14): Examples were converted to ?, and some text was
added to give historical context on the change.

Update (2020/01/03): A recommendation to use failure was removed
and replaced with a recommendation to use either Box<Exrror + Send +
Sync> or anyhow.

Brief notes

All code samples in this post compile with Rust 1.0.0-beta.5. They should
continue to work as Rust 1.0 stable is released.

All code can be found and compiled in my blog's repository.

https://burntsushi.net/about/
https://burntsushi.net/about/
https://burntsushi.net/projects/
https://burntsushi.net/projects/
https://github.com/BurntSushi
https://github.com/BurntSushi
https://github.com/sponsors/BurntSushi
https://github.com/sponsors/BurntSushi
https://blog.burntsushi.net/
https://blog.burntsushi.net/
https://crates.io/crates/failure
https://crates.io/crates/failure
https://crates.io/crates/failure
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://github.com/BurntSushi/blog/tree/master/code/rust-error-handling
https://github.com/BurntSushi/blog/tree/master/code/rust-error-handling

The Rust Book has a section on error handling. It gives a very brief
overview, but doesn't (yet) go into enough detail, particularly when working
with some of the more recent additions to the standard library.

Run the code!

If you'd like to run any of the code samples below, then the following should
work:

$ git clone git://github.com/BurntSushi/blog
$ cd blog/code/rust-error-handling
$ cargo run --bin NAME-OF-CODE-SAMPLE [args ...]

Each code sample is labeled with its name. (Code samples without a name
aren't available to be run this way. Sorry.)

Table of Contents

This article is very long, mostly because | start at the very beginning with
sum types and combinators, and try to motivate the way Rust does error
handling incrementally. As such, programmers with experience in other
expressive type systems may want to jump around. Here's my very brief
guide:

e If you're new to Rust, systems programming and expressive type
systems, then start at the beginning and work your way through. (If
you're brand new, you should probably read through the Rust book
first.)

« If you've never seen Rust before but have experience with functional
languages (“algebraic data types” and “combinators” make you feel
warm and fuzzy), then you can probably skip right over the basics and
start by skimming multiple error types, and work your way into a full
read of standard library error traits. (Skimming the basics might be a
good idea to just get a feel for the syntax if you've really never seen
Rust before.) You may need to consult the Rust book for help with Rust
closures and macros.

e If you're already experienced with Rust and just want the skinny on
error handling, then you can probably skip straight to the end. You may
find it useful to skim the case study for examples.

http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/error-handling.html
http://doc.rust-lang.org/1.0.0-beta.5/book/error-handling.html
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/

The Basics
o Unwrapping explained
o The Option type
s Composing Option<T> values
o The Result type
= Parsing integers
= The Result type alias idiom
o A brief interlude: unwrapping isn't evil
Working with multiple error types
o Composing Option and Result
o The limits of combinators
o Early returns
o The try! macro/? operator
o Defining your own error type
Standard library traits used for error handling
o The Exrror trait
o The From trait
o The real try! macro/? operator
o Composing custom error types
o Advice for library writers
Case study: A program to read population data
o It's on Github
o Initial setup
Argument parsing
Writing the logic
Error handling with Box<Error>
Reading from stdin
Error handling with a custom type
o Adding functionality
e The short story

o

o

o

o

(@]

The Basics

| like to think of error handling as using case analysis to determine whether
a computation was successful or not. As we will see, the key to ergonomic
error handling is reducing the amount of explicit case analysis the
programmer has to do while keeping code composable.

Keeping code composable is important, because without that requirement,
we could panic whenever we come across something unexpected. (panic

https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
http://doc.rust-lang.org/std/macro.panic!.html
http://doc.rust-lang.org/std/macro.panic!.html
http://doc.rust-lang.org/std/macro.panic!.html

causes the current task to unwind, and in most cases, the entire program
aborts.) Here's an example:

panic-simple

// Guess a number between 1 and 10.
// If 1t matches the number I had in mind, return true. Else
fn guess(n: i32) -> bool {
ifn<1 || n>10 {
panic! ("Invalid number: {}", n);

o IV
Il
1
()

fn main() {
guess(11),;

(If you like, it's easy to run this code.)

If you try running this code, the program will crash with a message like this:

thread '<main>' panicked at 'Invalid number: 11', sxc/bin/pa

Here's another example that is slightly less contrived. A program that
accepts an integer as an argument, doubles it and prints it.

unwrap-double

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(1).unwrap(),; // error 1
let n: 132 = arg.parse().unwrap(); // error 2
println!("{}", 2 * n);

// $ cargo run --bin unwrap-double 5

/1 10

If you give this program zero arguments (error 1) or if the first argument isn't
an integer (error 2), the program will panic just like in the first example.

| like to think of this style of error handling as similar to a bull running
through a china shop. The bull will get to where it wants to go, but it will
trample everything in the process.

Unwrapping explained

In the previous example (unwrap-double), | claimed that the program
would simply panic if it reached one of the two error conditions, yet, the
program does not include an explicit call to panic like the first example
(panic-simple). This is because the panic is embedded in the calls to
unwrap.

To “unwrap"” something in Rust is to say, “Give me the result of the
computation, and if there was an error, just panic and stop the program.” It
would be better if | just showed the code for unwrapping because it is so
simple, but to do that, we will first need to explore the Option and Result
types. Both of these types have a method called unwrap defined on them.

The Option type

The Option type is defined in the standard library:

option-def

enum Option<T> {
None,
Some(T),

The Option type is a way to use Rust's type system to express the
possibility of absence. Encoding the possibility of absence into the type
system is an important concept because it will cause the compiler to force
the programmer to handle that absence. Let's take a look at an example that
tries to find a character in a string:

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html

option-ex-string-find

// Searches "haystack for the Unicode character " needle . I
// byte offset of the character is returned. Otherwise, "Non
fn find(haystack: &str, needle: char) -> Option<usize> ({
for (offset, c) in haystack.char_indices() {
if ¢ == needle {
return Some(offset);

None

(Pro-tip: don't use this code. Instead, use the find method from the
standard library.)

Notice that when this function finds a matching character, it doesn't just
return the offset. Instead, it returns Some (offset). Some is a variant or a
value constructor for the Option type. You can think of it as a function with
the type fn<T>(value: T) -> Option<T>. Correspondingly, None is also
a value constructor, except it has no arguments. You can think of None as a
function with the type fn<T>() -> Option<T>.

This might seem like much ado about nothing, but this is only half of the
story. The other half is using the find function we've written. Let's try to
use it to find the extension in a file name.

option-ex-string-find

fn main_find() {
let file_name = "foobar.rs";
match find(file_name, '.') {
None => println!("No file extension found."),
Some(i) => println!("File extension: {}", &file_name

This code uses pattern matching to do case analysis on the
Option<usize> returned by the find function. In fact, case analysis is the

http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/1.0.0-beta.5/book/patterns.html
http://doc.rust-lang.org/1.0.0-beta.5/book/patterns.html

only way to get at the value stored inside an Option<T>. This means that
you, as the programmer, must handle the case when an Option<T> is None
instead of Some(t).

But wait, what about unwrap used in unwrap-double? There was no case
analysis there! Instead, the case analysis was put inside the unwrap method
for you. You could define it yourself if you want:

option-def-unwrap

enum Option<T> {
None,
Some(T),

impl<T> Option<T> {
fn unwrap(self) -> T {
match self {
Option::Some(val) => val,
Option: :None =>
panic!("called "Option::unwrap() on a None"

The unwrap method abstracts away the case analysis. This is precisely the
thing that makes unwrap ergonomic to use. Unfortunately, that panic!
means that unwrap is not composable: it is the bull in the china shop.

Composing Option<T> values

In option-ex-string-find we saw how to use find to discover the
extension in a file name. Of course, not all file names have a . in them, so
it's possible that the file name has no extension. This possibility of absence
is encoded into the types using Option<T>. In other words, the compiler
will force us to address the possibility that an extension does not exist. In
our case, we just print out a message saying as such.

Getting the extension of a file name is a pretty common operation, so it

makes sense to put it into a function:

option-ex-string-find

// Returns the extension of the given file name, where the e
// as all characters succeeding the first

// If "file_name has no . , then "None 1is returned.
fn extension_explicit(file_name: &str) -> Option<&str> {
match find(file_name, '.') {

None => None,
Some(1i) => Some(&file_name[i+1l..]),

(Pro-tip: don't use this code. Use the extension method in the standard
library instead.)

The code stays simple, but the important thing to notice is that the type of
find forces us to consider the possibility of absence. This is a good thing
because it means the compiler won't let us accidentally forget about the
case where a file name doesn't have an extension. On the other hand, doing
explicit case analysis like we've done in extension_explicit every time
can get a bit tiresome.

In fact, the case analysis in extension_explicit follows a very common
pattern: map a function on to the value inside of an Option<T>, unless the
option is None, in which case, just return None.

Rust has parametric polymorphism, so it is very easy to define a combinator
that abstracts this pattern:

option-map

fn map<F, T, A>(option: Option<T>, f: F) -> Option<A> where
match option {
None => None,
Some(value) => Some(f(value)),

http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/path/struct.Path.html#method.extension

Indeed, map is defined as a method on Option<T> in the standard library.

Armed with our new combinator, we can rewrite our extension_explicit
method to get rid of the case analysis:

option-ex-string-find

// Returns the extension of the given file name, where the e
// as all characters succeeding the first

// If "file_name has no . , then "None 1is returned.

fn extension(file_name: &str) -> Option<&str> {
find(file_name, '.').map(|i| &file_name[i+1..])

}

One other pattern that | find is very common is assigning a default value to
the case when an Option value is None. For example, maybe your program
assumes that the extension of a file is rs even if none is present. As you
might imagine, the case analysis for this is not specific to file extensions—it
can work with any Option<T>:

option-unwrap-or

fn unwrap_ox<T>(option: Option<T>, default: T) -> T {
match option {
None => default,
Some(value) => value,

The trick here is that the default value must have the same type as the value
that might be inside the Option<T>. Using it is dead simple in our case:

option-ex-string-find

fn main() {
assert_eq! (extension("foobar.csv").unwrap_or("rs"), "csv
assert_eq! (extension("foobar").unwrap_or("rs"), "xrs");

http://doc.rust-lang.org/std/option/enum.Option.html#method.map
http://doc.rust-lang.org/std/option/enum.Option.html#method.map

(Note that unwrap_or is defined as a method on Option<T> in the standard
library, so we use that here instead of the free-standing function we defined
above. Don't forget to check out the more general unwrap_or_else
method.)

There is one more combinator that | think is worth paying special attention
to: and_then. It makes it easy to compose distinct computations that admit
the possibility of absence. For example, much of the code in this section is
about finding an extension given a file name. In order to do this, you first
need the file name which is typically extracted from a file path. While most
file paths have a file name, not all of them do. For example, ., .. or /.

So, we are tasked with the challenge of finding an extension given a file
path. Let's start with explicit case analysis:

option-ex-string-find

fn file_path_ext_explicit(file_path: &str) -> Option<&str> {
match file_name(file_path) {
None => None,
Some(name) => match extension(name) {
None => None,
Some(ext) => Some(ext),

fn file_name(file_path: &str) -> Option<&str> {
// implementation elided
unimplemented! ()

You might think that we could just use the map combinator to reduce the
case analysis, but its type doesn't quite fit. Namely, map takes a function
that does something only with the inner value. The result of that function is
then always rewrapped with Some. Instead, we need something like map, but
which allows the caller to return another Option. Its generic implementation
is even simpler than map:

http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else

option-and-then

fn and_then<F, T, A>(option: Option<T>, f: F) -> Option<A>
where F: FnOnce(T) -> Option<A> {
match option {
None => None,
Some(value) => f(value),

Now we can rewrite our file_path_ext function without explicit case
analysis:

option-ex-string-find

fn file_path_ext(file_path: &str) -> Option<&str> {
file_name(file_path).and_then(extension)

The Option type has many other combinators defined in the standard
library. It is a good idea to skim this list and familiarize yourself with what's
available—they can often reduce case analysis for you. Familiarizing
yourself with these combinators will pay dividends because many of them
are also defined (with similar semantics) for Result, which we will talk
about next.

Combinators make using types like Option ergonomic because they reduce
explicit case analysis. They are also composable because they permit the
caller to handle the possibility of absence in their own way. Methods like
unwrap remove choices because they will panic if Option<T> is None.

The Result type

The Result type is also defined in the standard library:

result-def

enum Result<T, E> {
Ok (T),

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/
http://doc.rust-lang.org/std/result/

Exr(E),

The Result type is a richer version of Option. Instead of expressing the
possibility of absence like Option does, Result expresses the possibility
of error. Usually, the error is used to explain why the result of some
computation failed. This is a strictly more general form of Option. Consider
the following type alias, which is semantically equivalent to the real
Option<T>in every way:

option-as-result

type Option<T> = Result<T, ()>;

This fixes the second type parameter of Result to always be ()
(pronounced “unit” or “empty tuple”). Exactly one value inhabits the ()
type: (). (Yup, the type and value level terms have the same notation!)

The Result type is a way of representing one of two possible outcomes in
a computation. By convention, one outcome is meant to be expected or “Ok"
while the other outcome is meant to be unexpected or "Exxr".

Just like Option, the Result type also has an unwrap method defined in
the standard library. Let's define it:

result-def

impl<T, E: ::std::fmt::Debug> Result<T, E> {
fn unwrap(self) -> T {
match self {
Result: :0k(val) => val,
Result: :Exr(err) =>
panic!("called "Result::unwrap() on an Err

This is effectively the same as our definition for Option: :unwrap, except it
includes the error value in the panic! message. This makes debugging

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap

easier, but it also requires us to add a Debug constraint on the E type
parameter (which represents our error type). Since the vast majority of
types should satisfy the Debug constraint, this tends to work out in practice.
(Debug on a type simply means that there's a reasonable way to print a
human readable description of values with that type.)

OK, let’s move on to an example.

Parsing integers

The Rust standard library makes converting strings to integers dead simple.
It's so easy in fact, that it is very tempting to write something like the
following:

result-num-unwrap

fn double_numbex (number_str: &str) -> i32 {
2 * number_str.parse::<i32>().unwrap()

fn main() {
let n: 132 = double_number("10");
assert_eq!(n, 20),

At this point, you should be skeptical of calling unwrap. For example, if the
string doesn't parse as a number, you'll get a panic:

thread '<main>' panicked at 'called "Result::unwrap() on an

This is rather unsightly, and if this happened inside a library you're using,
you might be understandably annoyed. Instead, we should try to handle the
error in our function and let the caller decide what to do. This means
changing the return type of double_numbexr. But to what? Well, that
requires looking at the signature of the parse method in the standard
library:

impl str {

http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse

fn parse<F: FromStr>(&self) -> Result<F, F::Err>;

Hmm. So we at least know that we need to use a Result. Certainly, it's
possible that this could have returned an Option. After all, a string either
parses as a number or it doesn't, right? That's certainly a reasonable way to
go, but the implementation internally distinguishes why the string didn't
parse as an integer. (Whether it's an empty string, an invalid digit, too big or
too small.) Therefore, using a Result makes sense because we want to
provide more information than simply “absence.” We want to say why the
parsing failed. You should try to emulate this line of reasoning when faced
with a choice between Option and Result. If you can provide detailed
error information, then you probably should. (We'll see more on this later.)

OK, but how do we write our return type? The parse method as defined
above is generic over all the different number types defined in the standard
library. We could (and probably should) also make our function generic, but
let's favor explicitness for the moment. We only care about 132, so we need
to find its implementation of FromStr (do a CTRL-F in your browser for
"FromStr”) and look at its associated type Exr. We did this so we can find
the concrete error type. In this case, it's std: :num: :ParseIntError.
Finally, we can rewrite our function:

result-num-no-unwrap

use std::num: :ParselntError;

fn double_number (number_str: &str) -> Result<i32, ParselntEr
match number_str.parse::<i32>() {
Ok(n) => 0k(2 * n),
Exr(err) => Err(err),

fn main() {
match double_number("10") {
Ok(n) => assert_eq!(n, 20),
Exr(err) => println!("Error: {:?}", err),

http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/1.0.0-beta.5/book/associated-types.html
http://doc.rust-lang.org/1.0.0-beta.5/book/associated-types.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

This is a little better, but now we've written a lot more code! The case
analysis has once again bitten us.

Combinators to the rescue! Just like Option, Result has lots of
combinators defined as methods. There is a large intersection of common
combinators between Result and Option. In particular, map is part of that
intersection:

result-num-no-unwrap-map

use std::num::ParselntError;

number_str.parse: :<i32>().map(|n| 2 * n)

fn main() {
match double_number("10") {
Ok(n) => assert_eq!(n, 20),
Exr(err) => println!("Exror: {:?}", err),

fn double_number (number_str: &str) -> Result<i32, ParselntEr

The usual suspects are all there for Result, including unwrap_or and
and_then. Additionally, since Result has a second type parameter, there
are combinators that affect only the error type, such as map_err (instead of
map) and or_else (instead of and_then).

The Result type alias idiom

In the standard library, you may frequently see types like Result<i32>. But
wait, we defined Result to have two type parameters. How can we get
away with only specifying one? The key is to define a Result type alias that
fixes one of the type parameters to a particular type. Usually the fixed type
is the error type. For example, our previous example parsing integers could
be rewritten like this:

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else

result-num-no-unwrap-map-alias

use std::num: :ParseIntExrxror;
use std::result;

type Result<T> = result::Result<T, ParseIntError>;

fn double_number (number_str: &str) -> Result<i32> {
unimplemented! () ;

Why would we do this? Well, if we have a lot of functions that could return
ParseIntError, then it's much more convenient to define an alias that
always uses ParseIntError so that we don't have to write it out all the
time.

The most prominent place this idiom is used in the standard library is with
10: :Result. Typically, one writes 1i0: :Result<T>, which makes it clear
that you're using the 10 module’s type alias instead of the plain definition
from std: :result. (This idiom is also used for fmt: :Result.)

A brief interlude: unwrapping isn't evil

If you've been following along, you might have noticed that I've taken a
pretty hard line against calling methods like unwrap that could panic and
abort your program. Generally speaking, this is good advice.

However, unwrap can still be used judiciously. What exactly justifies use of
unwrap is somewhat of a grey area and reasonable people can disagree. I'll
summarize some of my opinions on the matter.

¢ In examples and quick 'n’ dirty code. Sometimes you're writing
examples or a quick program, and error handling simply isn't important.
Beating the convenience of unwrap can be hard in such scenarios, so it
is very appealing.

* When panicking indicates a bug in the program. When the invariants
of your code should prevent a certain case from happening (like, say,
popping from an empty stack), then panicking can be permissible. This
is because it exposes a bug in your program. This can be explicit, like
from an assert! failing, or it could be because your index into an array

http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

was out of bounds.

This is probably not an exhaustive list. Moreover, when using an Option, it
is often better to use its expect method. expect does exactly the same
thing as unwrap, except it prints a message you give to expect. This makes
the resulting panic a bit nicer to deal with, since it will show your message
instead of “called unwrap on a None value.”

My advice boils down to this: use good judgment. There's a reason why the
words “never do X" or "Y is considered harmful” don't appear in my writing.
There are trade offs to all things, and it is up to you as the programmer to
determine what is acceptable for your use cases. My goal is only to help
you evaluate trade offs as accurately as possible.

Now that we've covered the basics of error handling in Rust, and I've said
my piece about unwrapping, let's start exploring more of the standard
library.

Working with multiple error types

Thus far, we've looked at error handling where everything was either an
Option<T> or a Result<T, SomeError>. But what happens when you
have both an Option and a Result? Or what if you have a Result<T,
Errorl> and a Result<T, Error2>? Handling composition of distinct
error types is the next challenge in front of us, and it will be the major theme
throughout the rest of this article.

Composing Option and Result

So far, I've talked about combinators defined for Option and combinators
defined for Result. We can use these combinators to compose results of
different computations without doing explicit case analysis.

Of course, in real code, things aren't always as clean. Sometimes you have
a mix of Option and Result types. Must we resort to explicit case analysis,
or can we continue using combinators?

For now, let's revisit one of the first examples in this article:

http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(1).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
println!("{}", 2 * n);

// $ cargo run --bin unwrap-double 5
/1 10

Given our new found knowledge of Option, Result and their various
combinators, we should try to rewrite this so that errors are handled
properly and the program doesn't panic if there's an error.

The tricky aspect here is that argv.nth(1) produces an Option while
arg.parse() produces a Result. These aren't directly composable. When
faced with both an Option and a Result, the solution is usually to convert
the Option to a Result. In our case, the absence of a command line
parameter (from env: :args()) means the user didn't invoke the program
correctly. We could just use a String to describe the error. Let's try:

error-double-string

use std::env;

fn double_arg(mut argv: env::Args) -> Result<i32, String> ({
argv.nth(1)
.0k_or("Please give at least one argument".to_owned(
.and_then(|arg| arg.parse::<i32>().map_err(|err| erx
.map(|1i] 1 * 2)

fn main() {
match double_arg(env::args()) {
Ok(n) => println!("{}", n),
Exr(err) => println!("Exrror: {}", err),

There are a couple new things in this example. The first is the use of the
Option: :ok_or combinator. This is one way to convert an Optioninto a
Result. The conversion requires you to specify what error to use if Option
is None. Like the other combinators we've seen, its definition is very simple:

option-ok-or-def

fn ok_or<T, E>(option: Option<T>, err: E) -> Result<T, E> {
match option {
Some(val) => Ok(val),
None => Err(err),

The other new combinator used here is Result: :map_erxr. This is just like
Result: :map, except it maps a function on to the error portion of a Result
value. If the Resultis an Ok(...) value, thenitis returned unmodified.

We use map_erxr here because it is necessary for the error types to remain
the same (because of our use of and_then). Since we chose to convert the
Option<String> (from argv.nth(1)) to a Result<String, String>, we
must also convert the ParseIntError from arg.parse() to a String.

The limits of combinators

Doing IO and parsing input is a very common task, and it's one that |
personally have done a lot of in Rust. Therefore, we will use (and continue
to use) 10 and various parsing routines to exemplify error handling.

Let's start simple. We are tasked with opening a file, reading all of its
contents and converting its contents to a number. Then we multiply it by 2
and print the output.

Although I've tried to convince you not to use unwrap, it can be useful to
first write your code using unwrap. It allows you to focus on your problem
instead of the error handling, and it exposes the points where proper error

http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err

handling need to occur. Let's start there so we can get a handle on the
code, and then refactor it to use better error handling.

io-basic-unwrap

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> i32 {
let mut file = File::open(file_path).unwrap(); // error
let mut contents = String::new(),;
file.read_to_string(&mut contents).unwrap(); // error 2
let n: i32 = contents.trim().parse().unwrap(); // error
2 *n

fn main() {
let doubled = file_double("foobar");
println!("{}", doubled);

(N.B. The AsRef<Path> is used because those are the same bounds used
onstd::fs::File: :open. This makes it ergnomic to use any kind of string
as a file path.)

There are three different errors that can occur here:

1. A problem opening the file.
2. A problem reading data from the file.
3. A problem parsing the data as a number.

The first two problems are described viathe std: :io0: :Error type. We
know this because of the return types of std: :fs::File: :open and
std::io::Read::read_to_string. (Note that they both use the Result
type alias idiom described previously. If you click on the Result type, you'll
see the type alias, and consequently, the underlying io: :Error type.) The
third problem is described by the std: :num: :ParseIntError type. The
io: :Erxrror type in particular is pervasive throughout the standard library.
You will see it again and again.

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

Let's start the process of refactoring the file_double function. To make
this function composable with other components of the program, it should
not panic if any of the above error conditions are met. Effectively, this
means that the function should return an error if any of its operations fail.
Our problem is that the return type of file_double is 132, which does not
give us any useful way of reporting an error. Thus, we must start by
changing the return type from 132 to something else.

The first thing we need to decide: should we use Option or Result? We
certainly could use Option very easily. If any of the three errors occur, we
could simply return None. This will work and it is better than panicking, but
we can do a lot better. Instead, we should pass some detail about the error
that occurred. Since we want to express the possibility of error, we should
use Result<i32, E>. But what should E be? Since two different types of
errors can occur, we need to convert them to a common type. One such
type is String. Let's see how that impacts our code:

io-basic-error-string

use std::fs::File;
use std::io::Read;
use std::path::Path;

File::open(file_path)
.map_exrr(|err| err.to_string())
.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)
.map_err(|err| err.to_string())
.map(|_| contents)
})
.and_then(|contents| {
contents.trim().parse: :<i32>()
.map_erxr(|err| err.to_string())

H)
.map(|n| 2 * n)

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,

fn main() {
match file_double("foobar") {
Ok(n) => println!("{}", n),
Exr(err) => println!("Exror: {}", err),

This code looks a bit hairy. It can take quite a bit of practice before code like
this becomes easy to write. The way | write it is by following the types. As
soon as | changed the return type of file_double to Result<i32,
String>, | had to start looking for the right combinators. In this case, we
only used three different combinators: and_then, map and map_exrr.

and_then is used to chain multiple computations where each computation
could return an error. After opening the file, there are two more
computations that could fail: reading from the file and parsing the contents
as a number. Correspondingly, there are two calls to and_then.

map is used to apply a function to the Ok(. . .) value of a Result. For
example, the very last call to map multiplies the Ok(. . .) value (which is an
132) by 2. If an error had occurred before that point, this operation would
have been skipped because of how map is defined.

map_exr is the trick the makes all of this work. map_err is just like map,
except it applies a function to the Exr(...) value of a Result. In this case,
we want to convert all of our errors to one type: String. Since both
io::Error and num: :ParseIntExrror implement ToString, we can call
the to_string() method to convert them.

With all of that said, the code is still hairy. Mastering use of combinators is
important, but they have their limits. Let's try a different approach: early
returns.

Early returns

I'd like to take the code from the previous section and rewrite it using early
returns. Early returns let you exit the function early. We can't return early in
file_double from inside another closure, so we'll need to revert back to
explicit case analysis.

io-basic-error-string-early-return

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,

let mut file = match File::open(file_path) {
Ok(file) => file,
Exr(err) => return Err(err.to_string()),

s

let mut contents = String::new();

if let Err(err) = file.read_to_string(&mut contents) {
return Err(err.to_string()),;

}
let n: i32 = match contents.trim().parse() {
Ok(n) => n,
Exr(err) => return Err(err.to_string()),
b
Ok(2 * n)

fn main() {
match file_double("foobar") {
Ok(n) => println!("{}", n),
Exr(err) => println!("Exrror: {}", err),

Reasonable people can disagree over whether this code is better than the
code that uses combinators, but if you aren't familiar with the combinator
approach, this code looks simpler to read to me. It uses explicit case
analysis with match and if 1let. If an error occurs, it simply stops
executing the function and returns the error (by converting it to a string).

Isn't this a step backwards though? Previously, | said that the key to
ergonomic error handling is reducing explicit case analysis, yet we've
reverted back to explicit case analysis here. It turns out, there are multiple

ways to reduce explicit case analysis. Combinators aren't the only way.

The txy! macro/? operator

In older versions of Rust (Rust 1.12 or older), a cornerstone of error handling
in Rust is the txry! macro. The try! macro abstracts case analysis just like
combinators, but unlike combinators, it also abstracts control flow. Namely,
it can abstract the early return pattern seen above.

Here is a simplified definition of a try! macro:

try-def-simple

macro_rules! try {
($e:expr) => (match $e {
Ok(val) => val,
Exr(err) => return Err(err),

}).

(The real definition is a bit more sophisticated. We will address that later.)

Using the try! macro makes it very easy to simplify our last example. Since
it does the case analysis and the early return for us, we get tighter code that
is easier to read:

io-basic-error-try

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = try!(File::open(file_path).map_erxr(|e| e.
let mut contents = String::new(),;
try! (file.read_to_string(&mut contents).map_err(|e| e.to
let n = try!(contents.trim().parse::<i32>().map_err(|e|
Ok(2 * n)

http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/macro.try!.html

fn main() {
match file_double("foobar") {
Ok(n) => println!("{}", n),
Exr(err) => println!("Exror: {}", err),

The map_exr calls are still necessary given our definition of try!. This is
because the error types still need to be converted to String. The good
news is that we will soon learn how to remove those map_exrx calls! The bad
news is that we will need to learn a bit more about a couple important traits
in the standard library before we can remove the map_err calls.

In newer versions of Rust (Rust 1.13 or newer), the try! macro was replaced
with the ? operator. While it is intended to grow new powers that we won't
cover here, using ? instead of try! is simple:

io-basic-error-question

use std::fs::File;
use std::io: :Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(|e| e.to_st
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_stri
let n = contents.trim().parse::<i32>().map_exrxr(|e| e.to_
Ok(2 * n)

fn main() {
match file_double("foobar") {
Ok(n) => println!("{}", n),
Exr(err) => println!("Exrror: {}", err),

Defining your own error type

Before we dive into some of the standard library error traits, I'd like to wrap
up this section by removing the use of String as our error type in the
previous examples.

Using String as we did in our previous examples is convenient because it's
easy to convert errors to strings, or even make up your own errors as
strings on the spot. However, using String for your errors has some
downsides.

The first downside is that the error messages tend to clutter your code. It's
possible to define the error messages elsewhere, but unless you're
unusually disciplined, it is very tempting to embed the error message into
your code. Indeed, we did exactly this in a previous example.

The second and more important downside is that Strings are lossy. That is,
if all errors are converted to strings, then the errors we pass to the caller
become completely opaque. The only reasonable thing the caller can do
with a String error is show it to the user. Certainly, inspecting the string to
determine the type of error is not robust. (Admittedly, this downside is far
more important inside of a library as opposed to, say, an application.)

For example, the i0: :Exrror type embeds an io: :ErrorKind, which is
structured data that represents what went wrong during an 10 operation.
This is important because you might want to react differently depending on
the error. (e.g., A BrokenPipe error might mean quitting your program
gracefully while a NotFound error might mean exiting with an error code
and showing an error to the user.) With io: : ExrorKind, the caller can
examine the type of an error with case analysis, which is strictly superior to
trying to tease out the details of an error inside of a String.

Instead of using a String as an error type in our previous example of
reading an integer from a file, we can define our own error type that
represents errors with structured data. We endeavor to not drop information
from underlying errors in case the caller wants to inspect the details.

The ideal way to represent one of many possibilities is to define our own
sum type using enum. In our case, an error is either an io: :Error or a
num: :ParseIntError, so a natural definition arises:

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html

io-basic-error-custom

use std::io;
use std::num;

// We derive "Debug because all types should probably deriy
// This gives us a reasonable human readable description of
#[derive(Debug)]
enum CliError {

Io(io::Erxror),

Parse(num: :ParselIntError),

Tweaking our code is very easy. Instead of converting errors to strings, we
simply convert them to our C1iError type using the corresponding value
constructor:

io-basic-error-custom

use std::fs::File;
use std::io: :Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(CliError::I
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(CliError: :Io)
let n: 132 = contents.trim().parse().map_err(CliError::P
Ok(2 * n)

fn main() {
match file_double("foobar") {
Ok(n) => println!("{}", n),
Exr(err) => println!("Exror: {:?}", err),

The only change here is switching map_exr(|e| e.to_string()) (which
converts errors to strings) to map_err(CliExror: :Io) or
map_err(CliExror: :Parse). The caller gets to decide the level of detail
to report to the user. In effect, using a String as an error type removes
choices from the caller while using a custom enum error type like CliExrrox
gives the caller all of the conveniences as before in addition to structured
data describing the error.

A rule of thumb is to define your own error type, but a String error type
will do in a pinch, particularly if you're writing an application. If you're
writing a library, defining your own error type should be strongly preferred
so that you don't remove choices from the caller unnecessarily.

Standard library traits used for error
handling

The standard library defines two integral traits for error handling:
std::error::Error and std: :convert::From. While Exror is designed
specifically for generically describing errors, the From trait serves a more
general role for converting values between two distinct types.

The Exror trait

The Exror trait is defined in the standard library:

error-def

use std::fmt::{Debug, Display};

trait Exrror: Debug + Display {
/// A short description of the error.
fn description(&self) -> &str;

/// The lower level cause of this error, if any.
fn cause(&self) -> Option<&Error> { None }

This trait is super generic because it is meant to be implemented for all

http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html

types that represent errors. This will prove useful for writing composable
code as we'll see later. Otherwise, the trait allows you to do at least the
following things:

e Obtain a Debug representation of the error.

e Obtain a user-facing Display representation of the error.

¢ Obtain a short description of the error (via the description method).

e Inspect the causal chain of an error, if one exists (via the cause
method).

The first two are a result of Exror requiring impls for both Debug and
Display. The latter two are from the two methods defined on Exrror. The
power of Exrror comes from the fact that all error types impl Exror, which
means errors can be existentially quantified as a trait object. This manifests
as either Box<Error> or &Exrror. Indeed, the cause method returns an
&Error, which is itself a trait object. We'll revisit the Errox trait's utility as a
trait object later.

For now, it suffices to show an example implementing the Exror trait. Let's
use the error type we defined in the previous section:

error-impl

use std::io;
use std: :num;

// We derive "Debug because all types should probably deriy
// This gives us a reasonable human readable description of
#[derive(Debug)]
enum CliError {

Io(io: :Exrorx),

Parse(num: :ParseIntError),

This particular error type represents the possibility of two types of errors
occurring: an error dealing with 1/O or an error converting a string to a
number. The error could represent as many error types as you want by
adding new variants to the enum definition.

Implementing Exrox is pretty straight-forward. It's mostly going to be a lot

http://doc.rust-lang.org/1.0.0-beta.5/book/trait-objects.html
http://doc.rust-lang.org/1.0.0-beta.5/book/trait-objects.html

explicit case analysis.

error-impl

use std::error;
use std::fmt;

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
// Both underlying errors already impl "Display’
// thelir implementations.
CliError::Io(ref err) => write!(f, "IO error: {}
CliExrror::Parse(ref err) => write! (f, "Parse ern

impl error::Error for CliError {
fn description(&self) -> &str {

// Both underlying errors already impl "Error , so w

// implementations.

match *self ({
CliError::Io(ref err) => err.description(),
// Normally we can just write “err.description()
// type has a concrete method called "descriptig
// with the trait method. For now, we must expli
// “description” through the "Error trait.
CliError::Parse(xef err) => error::Error::descri

fn cause(&self) -> Option<&error::Error> {
match *self {
// N.B. Both of these implicitly cast ‘err from
// types (either "&io::Exrror or &num::Parselnt
// to a trait object "&Error . This works becaus
// implement "Error .
CliError::Io(ref err) => Some(err),

CliError::Parse(xref err) => Some(err),

| note that this is a very typical implementation of Exror: match on your
different error types and satisfy the contracts defined for description and
cause.

The From trait

The std: :convert: :Fromtraitis defined in the standard library:

from-def

trait From<T> {
fn from(T) -> Self;

Deliciously simple, yes? From is very useful because it gives us a generic
way to talk about conversion from a particular type T to some other type (in
this case, “some other type” is the subject of the impl, or Self). The crux of
From is the set of implementations provided by the standard library.

Here are a few simple examples demonstrating how From works:

from-examples

let string: String = From::from("foo");
let bytes: Vec<u8> = From::from("foo");
let cow: ::std::borrow::Cow<stx> = From::from("foo");

OK, so From is useful for converting between strings. But what about
errors? It turns out, there is one critical impl:

impl<'a, E: Exrror + 'a> From<E> for Box<Error + 'a>

This impl says that for any type that impls Exror, we can convert it to a trait

http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html

object Box<Exrroxr>. This may not seem terribly surprising, but it is useful in
a generic context.

Remember the two errors we were dealing with previously? Specifically,
i0::Error and num: :ParselntExror. Since both impl Exrror, they work
with From:

from-examples-errors

use std::error::Exror;
use std::fs;
use std::io;
use std::num;

// We have to jump through some hoops to actually get error
let io_err: io::Exrror = i1o::Erxrror::last_os_erxrror();
let parse_exrr: num::ParselntError = "not a number".parse::<i

// OK, here are the conversions.
let errl: Box<Error> = From::from(io_err);
let err2: Box<Error> = From::from(parse_err);

There is a really important pattern to recognize here. Both err1 and exr2
have the same type. This is because they are existentially quantified types,
or trait objects. In particular, their underlying type is erased from the
compiler’'s knowledge, so it truly sees exrrl and err2 as exactly the same.
Additionally, we constructed err1 and exrr2 using precisely the same
function call: From: : from. This is because From: : from is overloaded on
both its argument and its return type.

This pattern is important because it solves a problem we had earlier: it gives
us a way to reliably convert errors to the same type using the same
function.

Time to revisit an old friend; the try! macro/? operator.

Thereal try! macro/? operator

Previously, | presented this definition of try!:

macro_rules! try {
($e:expr) => (match $e {
Ok(val) => val,
Exr(err) => return Err(err),

1)

This is not it's real definition. It's real definition is in the standard library:

try-def

macro_rules! try {
($e:expr) => (match $e {
Ok(val) => val,
Exrr(err) => return Erxr(::std::convert::From::from(ex

}) s

There's one tiny but powerful change: the error value is passed through
From: : from. This makes the txry! macro a lot more powerful because it
gives you automatic type conversion for free. This is also very similar to
how the ? operator works, which is defined slightly differently. Namely, x?
desugars to something like the following:

questionmark-def

match ::std::ops::Try::into_result(x) {
Ok(v) => v,
Exrr(e) => return ::std::ops::Try::from_error(From: :from(

The Try trait is still unstable and beyond the scope of this article, but the
essence of it is that it provides a way to abstract over many different types
of success/failure scenarios, without being tightly coupled to Result<T,
E>. As you can see though, the x? syntax still calls From: : from, which is
how we achieve automatic error conversion.

Since most code written today uses ? instead of try!, we will use ? for the

http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/macro.try!.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html

remainder of this post.

Let's take a look at code we wrote previously to read a file and convert its
contents to an integer:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(|e| e.to_st
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_stri
let n = contents.trim().parse::<i32>().map_erxr(|e| e.to_|
Ok(2 * n)

Earlier, | promised that we could get rid of the map_exrx calls. Indeed, all we
have to do is pick a type that From works with. As we saw in the previous
section, From has an impl that let's it convert any error type into a
Box<Erroxr>:

io-basic-error-try-from

use std::error::Exror;
use std::fs::File;

use std::io0::Read;

use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let n = contents.trim().parse::<i32>()?;
Ok(2 * n)

We are getting very close to ideal error handling. Our code has very little

overhead as a result from error handling because the ? operator
encapsulates three things simultaneously:

1. Case analysis.
2. Control flow.
3. Error type conversion.

When all three things are combined, we get code that is unencumbered by
combinators, calls to unwrap or case analysis.

There's one little nit left: the Box<Error> type is opaque. If we return a
Box<Exrror> to the caller, the caller can't (easily) inspect underlying error
type. The situation is certainly better than String because the caller can
call methods like description and cause, but the limitation remains:
Box<Erroxr> is opaque. (N.B. This isn't entirely true because Rust does have
runtime reflection, which is useful in some scenarios that are beyond the
scope of this article.)

It's time to revisit our custom CliError type and tie everything together.

Composing custom error types

In the last section, we looked at the real ? operator and how it does
automatic type conversion for us by calling From: : from on the error value.
In particular, we converted errors to Box<Exror>, which works, but the type
is opaque to callers.

To fix this, we use the same remedy that we're already familiar with: a
custom error type. Once again, here is the code that reads the contents of a
file and converts it to an integer:

io-basic-error-custom-from

use std::fs::File;

use std::io::{self, Read};
use std: :num;

use std::path::Path;

// We derive "Debug’ because all types should probably deriy
// This gives us a reasonable human readable description of
#[derive(Debug)]

http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
https://crates.io/crates/error
https://crates.io/crates/error
https://crates.io/crates/error
https://crates.io/crates/error

enum CliError {
Io(io::Exror),
Parse(num: :ParseIntError),

fn file_double_verbose<P: AsRef<Path>>(file_path: P) -> Resu
let mut file = File::open(file_path).map_err(CliError::I
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(CliError::Io)
let n: 132 = contents.trim().parse().map_err(CliError::P
Ok(2 * n)

Notice that we still have the calls to map_err. Why? Well, recall the
definitions of the ? operator and From. The problem is that there is no From
impl that allows us to convert from error types like io: :Exrror and

num: :ParseIntError to our own custom CliError. Of course, it is easy to
fix this! Since we defined C1liExroxr, we can impl From with it:

io-basic-error-custom-from

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliExrroxr {
CliError::Io(err)

impl From<num::ParseIntExrror> for CliError ({
fn from(erxr: num::ParseIntError) -> CliError {
CliError: :Parse(err)

All these impls are doing is teaching From how to create a CliExrroxr from
other error types. In our case, construction is as simple as invoking the
corresponding value constructor. Indeed, it is typically this easy.

We can finally rewrite Tile_double:

io-basic-error-custom-from

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let n: 132 = contents.trim().parse()?;
Ok(2 * n)

The only thing we did here was remove the calls to map_err. They are no
longer needed because the ? operator invokes From: : from on the error
value. This works because we've provided From impls for all the error types
that could appear.

If we modified our file_double function to perform some other operation,
say, convert a string to a float, then we'd need to add a new variant to our
error type:

enum CliError {
Io(io::Exror),
ParseInt(num: :ParselntError),
ParseFloat(num: :ParseFloatError),

To reflect this change we need to update the previous impl
From<num: :ParseIntError> for CliError and add the new impl
From<num: :ParseFloatError> for CliError:

impl From<num::ParseIntError> for CliError {
fn from(erxr: num::ParseIntError) -> CliError {
CliError: :ParselInt(exrr)

impl From<num::ParseFloatError> for CliError ({
fn from(erxr: num::ParseFloatExrror) -> CliError {

CliError: :ParseFloat(err)

And that's it!

Advice for library writers

Idioms for Rust libraries are still forming, but if your library needs to report
custom errors, then you should probably define your own error type. It's up
to you whether or not to expose its representation (like ErrorKind) or keep
it hidden (like ParseIntError). Regardless of how you do it, it's usually
good practice to at least provide some information about the error beyond
just its String representation. But certainly, this will vary depending on use
cases.

At a minimum, you should probably implement the Exror trait. This will give
users of your library some minimum flexibility for composing errors.
Implementing the Exror trait also means that users are guaranteed the
ability to obtain a string representation of an error (because it requires impls
for both fmt: :Debug and fmt: :Display).

Beyond that, it can also be useful to provide implementations of From on
your error types. This allows you (the library author) and your users to
compose more detailed errors. For example, csv: :Erroxr provides From
impls for both io: :Error and byteorder: :Error.

Finally, depending on your tastes, you may also want to define a Result
type alias, particularly if your library defines a single error type. This is used
in the standard library for io: :Result and fmt: :Result.

Case study: A program to read population
data

This article was long, and depending on your background, it might be rather
dense. While there is plenty of example code to go along with the prose,
most of it was specifically designed to be pedagogical. While I'm not quite
smart enough to craft pedagogical examples that are also not toy examples,

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
https://burntsushi.net/rust-error-handling/#the-real-try-macro
https://burntsushi.net/rust-error-handling/#the-real-try-macro
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

| certainly can write about a case study.

For this, I'd like to build up a command line program that lets you query
world population data. The objective is simple: you give it a location and it
will tell you the population. Despite the simplicity, there is a lot that can go
wrong!

The data we'll be using comes from the Data Science Toolkit. I've prepared
some data from it for this exercise. You can either grab the world population
data (41MB gzip compressed, 145MB uncompressed) or just the US
population data (2.2MB gzip compressed, 7.2MB uncompressed).

Up until now, I've kept the code limited to Rust's standard library. For a real
task like this though, we'll want to at least use something to parse CSV data,
parse the program arguments and decode that stuff into Rust types
automatically. For that, we'll use the csv, docopt and rustc-serialize
crates.

It's on Github

The final code for this case study is on Github. If you have Rust and Cargo
installed, then all you need to do is:

git clone git://github.com/BurntSushi/rust-error-handling-ca
cd rust-error-handling-case-study

cargo build --release

./target/release/city-pop --help

We'll build up this project in pieces. Read on and follow along!

Initial setup

I'm not going to spend a lot of time on setting up a project with Cargo
because it is already covered well in the Rust book and Cargo's
documentation.

To get started from scratch, run cargo new --bin city-pop and make
sure your Cargo.toml looks something like this:

https://github.com/petewarden/dstkdata
https://github.com/petewarden/dstkdata
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://crates.io/crates/csv
https://crates.io/crates/csv
https://crates.io/crates/csv
https://crates.io/crates/docopt
https://crates.io/crates/docopt
https://crates.io/crates/docopt
https://crates.io/crates/rustc-serialize
https://crates.io/crates/rustc-serialize
https://crates.io/crates/rustc-serialize
https://github.com/BurntSushi/rust-error-handling-case-study
https://github.com/BurntSushi/rust-error-handling-case-study
http://doc.rust-lang.org/1.0.0-beta.5/book/hello-cargo.html
http://doc.rust-lang.org/1.0.0-beta.5/book/hello-cargo.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html

[package]

name = "city-pop"

version = "0.1.0"

authors = ["Andrew Gallant <jamslam@gmail.com>"]
[[bin]]

name = "city-pop"

[dependencies]

csv = "Q.*"

docopt = "0Q.*"

rustc-serialize = "0@.*"

You should already be able to run:

cargo build --release
./target/release/city-pop
#Outputs: Hello, world!

Argument parsing

Let's get argument parsing out of the way. | won't go into too much detail on
Docopt, but there is a nice web page describing it and documentation for
the Rust crate. The short story is that Docopt generates an argument parser
from the usage string. Once the parsing is done, we can decode the
program arguments into a Rust struct. Here's our program with the
appropriate extern crate statements, the usage string, our Args struct
and an empty main:

extern crate docopt;
extern crate rustc_serialize;

static USAGE: &'static str = "
Usage: city-pop [options] <data-path> <city>
city-pop --help

http://docopt.org/
http://docopt.org/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/

Options:
-h, --help Show this usage message.

struct Args {
arg_data_path: String,
arg_city: String,

fn main() {

Okay, time to get coding. The docs for Docopt say we can create a new
parser with Docopt: : new and then decode the current program arguments
into a struct with Docopt: :decode. The catch is that both of these
functions can return a docopt: :Error. We can start with explicit case
analysis:

// These use statements were added below the “extern’ statenm
// I'1ll elide them in the future. Don't worry! It's all on G
// https://github.com/BurntSushi/rust-error-handling-case-st
//use std::io::{self, Write};
//use std::process;

//use docopt: :Docopt;

fn main() {
let args: Args = match Docopt::new(USAGE) {
Exrr(err) => {
writeln! (&mut io::stderxr(), "{}", exrr).unwrap();
process::exit(1);
}
Ok (dopt) => match dopt.decode() {
Err(err) => {
writeln! (&mut io::stdexrxr(), "{}", erxr).unwra
process::exit(1);

https://burntsushi.net/rustdoc/docopt/struct.Docopt.html#method.new
https://burntsushi.net/rustdoc/docopt/struct.Docopt.html#method.new
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html

Ok(args) => args,

This is not so nice. One thing we can do to make the code a bit clearer is to
write a macro to print messages to stderxr and then exit:

fatal-def

macro_rules! fatal {
($($tt:tt)*) => {{
use std::io::Write;
writeln! (&mut ::std::io::stderxr(), $($tt)*).unwrap()
::std: :process: :exit(1)

3}

The unwrap is probably OK here, because if it fails, it means your program
could not write to stderx. A good rule of thumb here is that it's OK to abort,
but certainly, you could do something else if you needed to.

The code looks nicer, but the explicit case analysis is still a drag:

let args: Args = match Docopt::new(USAGE) {
Exrr(erxr) => fatall!("{}", err),
Ok (dopt) => match dopt.decode() {
Exrr(exrr) => fatal!("{}", errx),
Ok(args) => arxgs,

Hi

Thankfully, the docopt: :Error type defines a convenient method exit,
which effectively does what we just did. Combine that with our knowledge
of combinators, and we have concise, easy to read code:

let args: Args = Docopt::new(USAGE)

https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit

.and_then(|d| d.decode())
.unwrap_or_else(|err| err.exit());

If this code completes successfully, then args will be filled from the values
provided by the user.

Writing the logic

We're all different in how we write code, but when I'm not sure how to go
about coding a problem, error handling is usually the last thing | want to
think about. This isn't very good practice for good design, but it can be
useful for rapidly prototyping. In our case, because Rust forces us to be
explicit about error handling, it will also make it obvious what parts of our
program can cause errors. Why? Because Rust will make us call unwrap!
This can give us a nice bird's eye view of how we need to approach error
handling.

In this case study, the logic is really simple. All we need to do is parse the
CSV data given to us and print out a field in matching rows. Let's do it.
(Make sure to add extern crate csv; to the top of your file.)

// This struct represents the data in each row of the CSV fi
// Type based decoding absolves us of a lot of the nitty gri
// handling, like parsing strings as integers or floats.
struct Row {

country: String,

city: String,

accent_city: String,

region: String,

// Not every row has data for the population, latitude o
// So we express them as "Option types, which admits th
// absence. The CSV parser will fill in the correct valu
population: Option<u64>,
latitude: Option<f64>,

longitude: Option<f64>,

fn main() {
let args: Args = Docopt::new(USAGE)
.and_then(|d| d.decode())
.unwrap_or_else(|err| err.exit()

let file = fs::File::open(args.arg_data_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode: :<Row>() {
let row = row.unwrap();
if row.city == args.arg_city {
println! ("{}, {}: {:?}",
row.city, row.country,
row.population.expect("population count

Let's outline the errors. We can start with the obvious: the three places that
unwrap is called:

1. fs::File::opencanreturnan io: :Error.

2. csv: :Reader: :decode decodes one record at a time, and decoding a
record (look at the Item associated type on the Iterator impl) can
produce a csv: :Exrror.

3. If row.population is None, then calling expect will panic.

Are there any others? What if we can't find a matching city? Tools like grep
will return an error code, so we probably should too. So we have logic
errors specific to our problem, IO errors and CSV parsing errors. We're
going to explore two different ways to approach handling these errors.

I'd like to start with Box<Exrror>. Later, we'll see how defining our own error
type can be useful.

Error handling with Box<Exrroxr>

Box<Error> is nice because it just works. You don't need to define your
own error types and you don't need any From implementations. The
downside is that since Box<Erroxr> is a trait object, it erases the type,

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html

which means the compiler can no longer reason about its underlying type.

Previously we started refactoring our code by changing the type of our
function from T to Result<T, OurErrorType>. In this case,
OurErroxType is just Box<Error>. But what's T? And can we add a return
type to main?

The answer to the second question is no, we can't. That means we'll need to
write a new function. But what is T? The simplest thing we can do is to
return a list of matching Row values as a Vec<Row>. (Better code would
return an iterator, but that is left as an exercise to the reader.)

Let's refactor our code into its own function, but keep the calls to unwrap.
Note that we opt to handle the possibility of a missing population count by
simply ignoring that row.

struct Row {
// unchanged

struct PopulationCount {
city: String,
country: String,
// This is no longer an "Option because values of this
// constructed if they have a population count.
count: u64,

fn search<P: AsRef<Path>>(file_path: P, city: &str) -> Vec<P
let mut found = vec![];
let file = fs::File::open(file_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode: :<Row>() {
let row = row.unwrap();
match row.population {
None => { } // skip it
Some(count) => if row.city == city {
found.push(PopulationCount {
city: row.city,

country: row.country,
count: count,

fn main() {
let args: Args = Docopt::new(USAGE)
.and_then(|d| d.decode())
.unwrap_or_else(|err| err.exit()

for pop in search(&args.arg_data_path, &args.arg_city) {
println! ("{}, {}: {:?}", pop.city, pop.country, pop.

While we got rid of one use of expect (which is a nicer variant of unwrap),
we still should handle the absence of any search results.

To convert this to proper error handling, we need to do the following:

1. Change the return type of search to be
Result<Vec<PopulationCount>, Box<Error>>.

2. Use the ? operator so that errors are returned to the caller instead of
panicking the program.

3. Handle the error in main.

Let's try it:

fn search<P: AsRef<Path>>
(file_path: P, city: &str)
-> Result<Vec<PopulationCount>, Box<Error+Send+Synd
let mut found = vec![];
let file = fs::File::open(file_path)?;
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode: :<Row>() {

let row = row?;
match row.population {
None => { } // skip it
Some(count) => if row.city == city {
found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

})
b

}
if found.is_empty() {
Exr(From::from("No matching cities with a population
} else {
Ok (found)

Instead of x.unwrap (), we now have x?. Since our function returns a
Result<T, E>, the ? operator will return early from the function if an error
occurs.

There is one big gotcha in this code: we used Box<Error + Send + Sync>
instead of Box<Erroxr>. We did this so we could convert a plain string to an
error type. We need these extra bounds so that we can use the
corresponding From impls:

// We are making use of this impl in the code above, since w
// on a &'static str .
impl<'a, 'b> From<&'b str> for Box<Error + Send + Sync + 'a>

// But this is also useful when you need to allocate a new §
// error message, usually with “format! .
impl From<String> for Box<Error + Send + Sync>

Now that we've seen how to do proper error handling with Box<Error>,

http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html

let's try a different approach with our own custom error type. But first, let's
take a quick break from error handling and add support for reading from
stdin.

Reading from stdin

In our program, we accept a single file for input and do one pass over the
data. This means we probably should be able to accept input on stdin. But
maybe we like the current format too—so let's have both!

Adding support for stdin is actually quite easy. There are only two things we
have to do:

1. Tweak the program arguments so that a single parameter—the city—
can be accepted while the population data is read from stdin.

2. Modify the search function to take an optional file path. When None, it
should know to read from stdin.

First, here's the new usage and Args struct:

static USAGE: &'static str = "
Usage: city-pop [options] [<data-path>] <city>
city-pop --help

Options:
-h, --help Show this usage message.

struct Args {
arg_data_path: Option<String>,
arg_city: String,

All we did is make the data-path argument optional in the Docopt usage
string, and make the corresponding struct member arg_data_path
optional. The docopt crate will handle the rest.

Modifying seaxch is slightly trickier. The csv crate can build a parser out of
any type that implements 1io: :Read. But how can we use the same code

https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader

over both types? There's actually a couple ways we could go about this.
One way is to write search such that it is generic on some type parameter R
that satisfies 10: :Read. Another way is to just use trait objects:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, Box<Error+Send+Synd
let mut found = vec![];
let input: Box<io::Read> = match *file_path {
None => Box::new(io::stdin()),
Some(ref file_path) => Box::new(fs::File::open(file_
s
let mut rdr = csv::Reader::from_reader(input);
// The rest remains unchanged!

Error handling with a custom type

Previously, we learned how to compose errors using a custom error type.
We did this by defining our error type as an enum and implementing Exror
and From.

Since we have three distinct errors (10, CSV parsing and not found), let's
define an enum with three variants:

enum CliError {
Io(io::Exror),
Csv(csv::Error),
NotFound,

And now for impls on Display and Exror:

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {

CliError::Io(ref err) => err.fmt(f),

CliError::Csv(ref erxr) => err.fmt(T),

CliError::NotFound => write!(f, "No matching cit
population were

impl Error for CliError {
fn description(&self) -> &str {
match *self {
CliError::Io(ref err) => err.description(),
CliError::Csv(ref err) => err.description(),
CliExror: :NotFound => "not found",

Before we can use our C1iError type in our search function, we need to
provide a couple From impls. How do we know which impls to provide?
Well, we'll need to convert from both io: :Exror and csv: :Error to
CliError. Those are the only external errors, so we'll only need two From
impls for now:

impl From<io::Exrror> for CliError ({
fn from(err: io::Error) -> CliError {
CliExrror::Io(err)

impl From<csv::Exrror> for CliError {
fn from(erxr: csv::Exrror) -> CliError {
CliExror::Csv(err)

The From impls are important because of how the ? operator is defined. In

particular, if an error occurs, From: : fromis called on the error, which in
this case, will convert it to our own error type CliError.

With the From impls done, we only need to make two small tweaks to our
search function: the return type and the “not found” error. Here it is in full:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, CliError> {
let mut found = vec![];
let input: Box<io::Read> = match *file_path {
None => Box::new(io::stdin()),
Some(ref file_path) => Box::new(fs::File::open(file_
s
let mut rdr = csv::Reader::from_reader(input);
for row in rdr.decode: :<Row>() {
let row = row?;
match row.population {
None => { } // skip it
Some(count) => if row.city == city {
found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

}) s
b

}
if found.is_empty() {

Exrr(CliErxror: :NotFound)
} else {
Ok (found)

No other changes are necessary.

Adding functionality

If you're anything like me, writing generic code feels good because
generalizing stuff is cool! But sometimes, the juice isn't worth the squeeze.
Look at what we just did in the previous step:

1. Defined a new error type.
2. Added impls for Exror, Display and two for From.

The big downside here is that our program didn't improve a whole lot. I'm
personally fond of it because | like using enums for representing errors, but
there is quite a bit of overhead to doing so, especially in short programs like
this.

One useful aspect of using a custom error type like we've done here is that
the main function can now choose to handle errors differently. Previously,
with Box<Exrroxr>, it didn't have much of a choice: just print the message.
We're still doing that here, but what if we wanted to, say, add a --quiet
flag? The - -quiet flag should silence any verbose output.

Right now, if the program doesn't find a match, it will output a message
saying so. This can be a little clumsy, especially if you intend for the
program to be used in shell scripts.

So let's start by adding the flags. Like before, we need to tweak the usage
string and add a flag to the Args struct. The docopt crate does the rest:

static USAGE: &'static str ="
Usage: city-pop [options] [<data-path>] <city>
city-pop --help

Options:
-h, --help Show this usage message.
-q, --quiet Don't show noisy messages.

struct Args {
arg_data_path: Option<String>,
arg_city: String,
flag_quiet: bool,

Now we just need to implement our “quiet” functionality. This requires us to
tweak the case analysis in main:

match search(&args.arg_data_path, &args.arg_city) {
Exrr(CliError: :NotFound) if args.flag_quiet => process::e
Exrr(exrr) => fatal!("{}", errxr),
Ok (pops) => for pop in pops {
println! ("{}, {}: {:?}", pop.city, pop.country, pop.

Certainly, we don't want to be quiet if there was an IO error or if the data
failed to parse. Therefore, we use case analysis to check if the error type is
NotFound and if --quiet has been enabled. If the search failed, we still
quit with an exit code (following grep's convention).

If we had stuck with Box<Error>, then it would be pretty tricky to
implement the - -quiet functionality.

This pretty much sums up our case study. From here, you should be ready
to go out into the world and write your own programs and libraries with
proper error handling.

The short story

Since this article is long, it is useful to have a quick summary for error
handling in Rust. These are my “rules of thumb.” They are emphatically not
commandments. There are probably good reasons to break every one of
these heuristics!

e If you're writing short example code that would be overburdened by
error handling, it's probably just fine to use unwrap (whether that's
Result: :unwrap, Option: :unwrap or preferably Option: :expect).
Consumers of your code should know to use proper error handling. (If
they don't, send them here!)

e If you're writing a quick 'n’ dirty program, don't feel ashamed if you use

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

unwrap. Be warned: if it winds up in someone else's hands, don't be
surprised if they are agitated by poor error messages!

If you're writing a quick 'n’ dirty program and feel ashamed about
panicking anyway, then you should probably use Box<Error> (or
Box<Exror + Send + Sync>) as shown in examples above. Another
promising alternative is the anyhow crate and its anyhow: : Error type.
When using anyhow, your errors will automatically have backtraces
attached to them when using nightly Rust.

Otherwise, in a program, define your own error types with appropriate
Fromand Exrror impls to make the ? operator macro more ergnomic.

If you're writing a library and your code can produce errors, define your
own error type and implement the std: :error: :Error trait. Where
appropriate, implement From to make both your library code and the
caller's code easier to write. (Because of Rust's coherence rules,
callers will not be able to impl From on your error type, so your library
should do it.)

Learn the combinators defined on Option and Result. Using them
exclusively can be a bit tiring at times, but I've personally found a
healthy mix of the ? operator and combinators to be quite appealing.
and_then, map and unwrap_ox are my favorites.

All content is dual licensed under the UNLICENSE and MIT licenses.
Powered by Hugo & Pixyll

https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
https://burntsushi.net/index.xml
http://gohugo.io/
http://gohugo.io/
https://github.com/azmelanar/hugo-theme-pixyll
https://github.com/azmelanar/hugo-theme-pixyll

