
About Projects GitHub Sponsor MeAndrew Gaant's Bog

Error Handing in Rust
May 14, 2015

Like most programming anguages, Rust encourages the programmer to
hande errors in a particuar way. Generay speaking, error handing is
divided into two broad categories: exceptions and return vaues. Rust opts
for return vaues.

In this artice, I intend to provide a comprehensive treatment of how to dea
with errors in Rust. More than that, I wi attempt to introduce error handing
one piece at a time so that youʼ come away with a soid working
knowedge of how everything fits together.

When done naivey, error handing in Rust can be verbose and annoying.
This artice wi expore those stumbing bocks and demonstrate how to use
the standard ibrary to make error handing concise and ergonomic.

Target audience: Those new to Rust that donʼt know its error handing
idioms yet. Some famiiarity with Rust is hepfu. This artice makes heavy
use of some standard traits and some very ight use of cosures and
macros.)

Update 2018/04/14: Exampes were converted to ?, and some text was
added to give historica context on the change.

Update 2020/01/03: A recommendation to use failure was removed

and repaced with a recommendation to use either Box<Error + Send +
Sync> or anyhow.

Brief notes

A code sampes in this post compie with Rust 1.0.0-beta.5. They shoud
continue to work as Rust 1.0 stabe is reeased.

A code can be found and compied in my bogʼs repository.

https://burntsushi.net/about/
https://burntsushi.net/about/
https://burntsushi.net/projects/
https://burntsushi.net/projects/
https://github.com/BurntSushi
https://github.com/BurntSushi
https://github.com/sponsors/BurntSushi
https://github.com/sponsors/BurntSushi
https://blog.burntsushi.net/
https://blog.burntsushi.net/
https://crates.io/crates/failure
https://crates.io/crates/failure
https://crates.io/crates/failure
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://github.com/BurntSushi/blog/tree/master/code/rust-error-handling
https://github.com/BurntSushi/blog/tree/master/code/rust-error-handling

The Rust Book has a section on error handing. It gives a very brief
overview, but doesnʼt (yet) go into enough detai, particuary when working
with some of the more recent additions to the standard ibrary.

Run the code!

If youʼd ike to run any of the code sampes beow, then the foowing shoud
work:

$ git clone git://github.com/BurntSushi/blog
$ cd blog/code/rust-error-handling
$ cargo run --bin NAME-OF-CODE-SAMPLE [args ...]

Each code sampe is abeed with its name. Code sampes without a name
arenʼt avaiabe to be run this way. Sorry.)

Tabe of Contents

This artice is very ong, mosty because I start at the very beginning with
sum types and combinators, and try to motivate the way Rust does error
handing incrementay. As such, programmers with experience in other
expressive type systems may want to jump around. Hereʼs my very brief
guide:

• If youʼre new to Rust, systems programming and expressive type
systems, then start at the beginning and work your way through. If
youʼre brand new, you shoud probaby read through the Rust book
first.)

• If youʼve never seen Rust before but have experience with functiona
anguages (“agebraic data typesˮ and “combinatorsˮ make you fee
warm and fuzzy), then you can probaby skip right over the basics and
start by skimming mutipe error types, and work your way into a fu
read of standard ibrary error traits. Skimming the basics might be a
good idea to just get a fee for the syntax if youʼve reay never seen
Rust before.) You may need to consut the Rust book for hep with Rust
cosures and macros.

• If youʼre aready experienced with Rust and just want the skinny on
error handing, then you can probaby skip straight to the end. You may
find it usefu to skim the case study for exampes.

http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/error-handling.html
http://doc.rust-lang.org/1.0.0-beta.5/book/error-handling.html
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/

• The Basics
◦ Unwrapping expained
◦ The Option type

▪ Composing Option<T> vaues
◦ The Result type

▪ Parsing integers
▪ The Result type aias idiom

◦ A brief interude: unwrapping isnʼt evi
• Working with mutipe error types

◦ Composing Option and Result
◦ The imits of combinators
◦ Eary returns
◦ The try! macro/? operator
◦ Defining your own error type

• Standard ibrary traits used for error handing
◦ The Error trait
◦ The From trait
◦ The rea try! macro/? operator
◦ Composing custom error types
◦ Advice for ibrary writers

• Case study: A program to read popuation data
◦ Itʼs on Github
◦ Initia setup
◦ Argument parsing
◦ Writing the ogic
◦ Error handing with Box<Error>
◦ Reading from stdin
◦ Error handing with a custom type
◦ Adding functionaity

• The short story

The Basics

I ike to think of error handing as using case anaysis to determine whether
a computation was successfu or not. As we wi see, the key to ergonomic
error handing is reducing the amount of expicit case anaysis the
programmer has to do whie keeping code composabe.

Keeping code composabe is important, because without that requirement,

we coud panic whenever we come across something unexpected. (panic

https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
http://doc.rust-lang.org/std/macro.panic!.html
http://doc.rust-lang.org/std/macro.panic!.html
http://doc.rust-lang.org/std/macro.panic!.html

causes the current task to unwind, and in most cases, the entire program
aborts.) Hereʼs an exampe:

panic-simple

// Guess a number between 1 and 10.
// If it matches the number I had in mind, return true. Else, return false.
fn guess(n: i32) -> bool {

if n < 1 || n > 10 {
panic!("Invalid number: {}", n);

}
n == 5

}

fn main() {
guess(11);

}

If you ike, itʼs easy to run this code.)

If you try running this code, the program wi crash with a message ike this:

thread '<main>' panicked at 'Invalid number: 11', src/bin/panic-simple.rs:5

Hereʼs another exampe that is sighty ess contrived. A program that
accepts an integer as an argument, doubes it and prints it.

unwrap-double

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(1).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
println!("{}", 2 * n);

}

// $ cargo run --bin unwrap-double 5

// 10

If you give this program zero arguments (error 1) or if the first argument isnʼt
an integer (error 2, the program wi panic just ike in the first exampe.

I ike to think of this stye of error handing as simiar to a bu running
through a china shop. The bu wi get to where it wants to go, but it wi
trampe everything in the process.

Unwrapping expained

In the previous exampe (unwrap-double), I caimed that the program
woud simpy panic if it reached one of the two error conditions, yet, the

program does not incude an expicit ca to panic ike the first exampe

(panic-simple). This is because the panic is embedded in the cas to

unwrap.

To “unwrapˮ something in Rust is to say, “Give me the resut of the
computation, and if there was an error, just panic and stop the program.ˮ It
woud be better if I just showed the code for unwrapping because it is so

simpe, but to do that, we wi first need to expore the Option and Result
types. Both of these types have a method caed unwrap defined on them.

The Option type

The Option type is defined in the standard ibrary:

option-def

enum Option<T> {
None,
Some(T),

}

The Option type is a way to use Rustʼs type system to express the
possibiity of absence. Encoding the possibiity of absence into the type
system is an important concept because it wi cause the compier to force
the programmer to hande that absence. Letʼs take a ook at an exampe that
tries to find a character in a string:

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html

option-ex-string-find

// Searches `haystack` for the Unicode character `needle`. If one is found, t
// byte offset of the character is returned. Otherwise, `None` is returned.
fn find(haystack: &str, needle: char) -> Option<usize> {

for (offset, c) in haystack.char_indices() {
if c == needle {

return Some(offset);
}

}
None

}

Pro-tip: donʼt use this code. Instead, use the find method from the
standard ibrary.)

Notice that when this function finds a matching character, it doesnʼt just

return the offset. Instead, it returns Some(offset). Some is a variant or a

vaue constructor for the Option type. You can think of it as a function with

the type fn<T>(value: T) -> Option<T>. Correspondingy, None is aso

a vaue constructor, except it has no arguments. You can think of None as a

function with the type fn<T>() -> Option<T>.

This might seem ike much ado about nothing, but this is ony haf of the

story. The other haf is using the find function weʼve written. Letʼs try to
use it to find the extension in a fie name.

option-ex-string-find

fn main_find() {
let file_name = "foobar.rs";
match find(file_name, '.') {

None => println!("No file extension found."),
Some(i) => println!("File extension: {}", &file_name

}
}

This code uses pattern matching to do case anaysis on the

Option<usize> returned by the find function. In fact, case anaysis is the

http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/1.0.0-beta.5/book/patterns.html
http://doc.rust-lang.org/1.0.0-beta.5/book/patterns.html

ony way to get at the vaue stored inside an Option<T>. This means that

you, as the programmer, must hande the case when an Option<T> is None
instead of Some(t).

But wait, what about unwrap used in unwrap-double? There was no case

anaysis there! Instead, the case anaysis was put inside the unwrap method
for you. You coud define it yoursef if you want:

option-def-unwrap

enum Option<T> {
None,
Some(T),

}

impl<T> Option<T> {
fn unwrap(self) -> T {

match self {
Option::Some(val) => val,
Option::None =>
panic!("called `Option::unwrap()` on a `None` value"

}
}

}

The unwrap method abstracts away the case anaysis. This is precisey the

thing that makes unwrap ergonomic to use. Unfortunatey, that panic!
means that unwrap is not composabe: it is the bu in the china shop.

Composing Option<T> vaues

In option-ex-string-find we saw how to use find to discover the

extension in a fie name. Of course, not a fie names have a . in them, so
itʼs possibe that the fie name has no extension. This possibiity of absence

is encoded into the types using Option<T>. In other words, the compier
wi force us to address the possibiity that an extension does not exist. In
our case, we just print out a message saying as such.

Getting the extension of a fie name is a pretty common operation, so it

makes sense to put it into a function:

option-ex-string-find

// Returns the extension of the given file name, where the extension is defin
// as all characters succeeding the first `.`.
// If `file_name` has no `.`, then `None` is returned.
fn extension_explicit(file_name: &str) -> Option<&str> {

match find(file_name, '.') {
None => None,
Some(i) => Some(&file_name[i+1..]),

}
}

Pro-tip: donʼt use this code. Use the extension method in the standard
ibrary instead.)

The code stays simpe, but the important thing to notice is that the type of

find forces us to consider the possibiity of absence. This is a good thing
because it means the compier wonʼt et us accidentay forget about the
case where a fie name doesnʼt have an extension. On the other hand, doing

expicit case anaysis ike weʼve done in extension_explicit every time
can get a bit tiresome.

In fact, the case anaysis in extension_explicit foows a very common

pattern: map a function on to the vaue inside of an Option<T>, uness the

option is None, in which case, just return None.

Rust has parametric poymorphism, so it is very easy to define a combinator
that abstracts this pattern:

option-map

fn map<F, T, A>(option: Option<T>, f: F) -> Option<A> where

match option {
None => None,
Some(value) => Some(f(value)),

}
}

http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/path/struct.Path.html#method.extension

Indeed, map is defined as a method on Option<T> in the standard ibrary.

Armed with our new combinator, we can rewrite our extension_explicit
method to get rid of the case anaysis:

option-ex-string-find

// Returns the extension of the given file name, where the extension is defin
// as all characters succeeding the first `.`.
// If `file_name` has no `.`, then `None` is returned.
fn extension(file_name: &str) -> Option<&str> {

find(file_name, '.').map(|i| &file_name[i+1..])
}

One other pattern that I find is very common is assigning a defaut vaue to

the case when an Option vaue is None. For exampe, maybe your program

assumes that the extension of a fie is rs even if none is present. As you
might imagine, the case anaysis for this is not specific to fie extensions—it

can work with any Option<T>:

option-unwrap-or

fn unwrap_or<T>(option: Option<T>, default: T) -> T {
match option {

None => default,
Some(value) => value,

}
}

The trick here is that the defaut vaue must have the same type as the vaue

that might be inside the Option<T>. Using it is dead simpe in our case:

option-ex-string-find

fn main() {
assert_eq!(extension("foobar.csv").unwrap_or("rs"), "csv"
assert_eq!(extension("foobar").unwrap_or("rs"), "rs");

}

http://doc.rust-lang.org/std/option/enum.Option.html#method.map
http://doc.rust-lang.org/std/option/enum.Option.html#method.map

Note that unwrap_or is defined as a method on Option<T> in the standard
ibrary, so we use that here instead of the free-standing function we defined

above. Donʼt forget to check out the more genera unwrap_or_else
method.)

There is one more combinator that I think is worth paying specia attention

to: and_then. It makes it easy to compose distinct computations that admit
the possibiity of absence. For exampe, much of the code in this section is
about finding an extension given a fie name. In order to do this, you first
need the fie name which is typicay extracted from a fie path. Whie most

fie paths have a fie name, not a of them do. For exampe, ., .. or /.

So, we are tasked with the chaenge of finding an extension given a fie
path. Letʼs start with expicit case anaysis:

option-ex-string-find

fn file_path_ext_explicit(file_path: &str) -> Option<&str> {
match file_name(file_path) {

None => None,
Some(name) => match extension(name) {

None => None,
Some(ext) => Some(ext),

}
}

}

fn file_name(file_path: &str) -> Option<&str> {
// implementation elided
unimplemented!()

}

You might think that we coud just use the map combinator to reduce the

case anaysis, but its type doesnʼt quite fit. Namey, map takes a function
that does something ony with the inner vaue. The resut of that function is

then aways rewrapped with Some. Instead, we need something ike map, but

which aows the caer to return another Option. Its generic impementation

is even simper than map:

http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else

option-and-then

fn and_then<F, T, A>(option: Option<T>, f: F) -> Option<A>
where F: FnOnce(T) -> Option<A> {

match option {
None => None,
Some(value) => f(value),

}
}

Now we can rewrite our file_path_ext function without expicit case
anaysis:

option-ex-string-find

fn file_path_ext(file_path: &str) -> Option<&str> {
file_name(file_path).and_then(extension)

}

The Option type has many other combinators defined in the standard
ibrary. It is a good idea to skim this ist and famiiarize yoursef with whatʼs
avaiabe—they can often reduce case anaysis for you. Famiiarizing
yoursef with these combinators wi pay dividends because many of them

are aso defined (with simiar semantics) for Result, which we wi tak
about next.

Combinators make using types ike Option ergonomic because they reduce
expicit case anaysis. They are aso composabe because they permit the
caer to hande the possibiity of absence in their own way. Methods ike

unwrap remove choices because they wi panic if Option<T> is None.

The Result type

The Result type is aso defined in the standard ibrary:

result-def

enum Result<T, E> {
Ok(T),

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/
http://doc.rust-lang.org/std/result/

Err(E),
}

The Result type is a richer version of Option. Instead of expressing the

possibiity of absence ike Option does, Result expresses the possibiity
of error. Usuay, the error is used to expain why the resut of some

computation faied. This is a stricty more genera form of Option. Consider
the foowing type aias, which is semanticay equivaent to the rea

Option<T> in every way:

option-as-result

type Option<T> = Result<T, ()>;

This fixes the second type parameter of Result to aways be ()
(pronounced “unitˮ or “empty tupeˮ). Exacty one vaue inhabits the ()
type: (). Yup, the type and vaue eve terms have the same notation!

The Result type is a way of representing one of two possibe outcomes in

a computation. By convention, one outcome is meant to be expected or “Okˮ
whie the other outcome is meant to be unexpected or “Err .ˮ

Just ike Option, the Result type aso has an unwrap method defined in
the standard ibrary. Letʼs define it:

result-def

impl<T, E: ::std::fmt::Debug> Result<T, E> {
fn unwrap(self) -> T {

match self {
Result::Ok(val) => val,
Result::Err(err) =>
panic!("called `Result::unwrap()` on an `Err` value:

}
}

}

This is effectivey the same as our definition for Option::unwrap, except it

incudes the error vaue in the panic! message. This makes debugging

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap

easier, but it aso requires us to add a Debug constraint on the E type
parameter (which represents our error type). Since the vast majority of

types shoud satisfy the Debug constraint, this tends to work out in practice.

(Debug on a type simpy means that thereʼs a reasonabe way to print a
human readabe description of vaues with that type.)

OK, etʼs move on to an exampe.

Parsing integers

The Rust standard ibrary makes converting strings to integers dead simpe.
Itʼs so easy in fact, that it is very tempting to write something ike the
foowing:

result-num-unwrap

fn double_number(number_str: &str) -> i32 {
2 * number_str.parse::<i32>().unwrap()

}

fn main() {
let n: i32 = double_number("10");
assert_eq!(n, 20);

}

At this point, you shoud be skeptica of caing unwrap. For exampe, if the
string doesnʼt parse as a number, youʼ get a panic:

thread '<main>' panicked at 'called `Result::unwrap()` on an `Err` value: Par

This is rather unsighty, and if this happened inside a ibrary youʼre using,
you might be understandaby annoyed. Instead, we shoud try to hande the
error in our function and et the caer decide what to do. This means

changing the return type of double_number. But to what? We, that

requires ooking at the signature of the parse method in the standard
ibrary:

impl str {

http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse

fn parse<F: FromStr>(&self) -> Result<F, F::Err>;
}

Hmm. So we at east know that we need to use a Result. Certainy, itʼs

possibe that this coud have returned an Option. After a, a string either
parses as a number or it doesnʼt, right? Thatʼs certainy a reasonabe way to
go, but the impementation internay distinguishes why the string didnʼt
parse as an integer. Whether itʼs an empty string, an invaid digit, too big or

too sma.) Therefore, using a Result makes sense because we want to
provide more information than simpy “absence.ˮ We want to say why the
parsing faied. You shoud try to emuate this ine of reasoning when faced

with a choice between Option and Result. If you can provide detaied
error information, then you probaby shoud. Weʼ see more on this ater.)

OK, but how do we write our return type? The parse method as defined
above is generic over a the different number types defined in the standard
ibrary. We coud (and probaby shoud) aso make our function generic, but

etʼs favor expicitness for the moment. We ony care about i32, so we need

to find its impementation of FromStr (do a CTRL-F in your browser for

“FromStrˮ) and ook at its associated type Err. We did this so we can find

the concrete error type. In this case, itʼs std::num::ParseIntError.
Finay, we can rewrite our function:

result-num-no-unwrap

use std::num::ParseIntError;

fn double_number(number_str: &str) -> Result<i32, ParseIntError
match number_str.parse::<i32>() {

Ok(n) => Ok(2 * n),
Err(err) => Err(err),

}
}

fn main() {
match double_number("10") {

Ok(n) => assert_eq!(n, 20),
Err(err) => println!("Error: {:?}", err),

http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/1.0.0-beta.5/book/associated-types.html
http://doc.rust-lang.org/1.0.0-beta.5/book/associated-types.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

}
}

This is a itte better, but now weʼve written a ot more code! The case
anaysis has once again bitten us.

Combinators to the rescue! Just ike Option, Result has ots of
combinators defined as methods. There is a arge intersection of common

combinators between Result and Option. In particuar, map is part of that
intersection:

result-num-no-unwrap-map

use std::num::ParseIntError;

fn double_number(number_str: &str) -> Result<i32, ParseIntError
number_str.parse::<i32>().map(|n| 2 * n)

}

fn main() {
match double_number("10") {

Ok(n) => assert_eq!(n, 20),
Err(err) => println!("Error: {:?}", err),

}
}

The usua suspects are a there for Result, incuding unwrap_or and

and_then. Additionay, since Result has a second type parameter, there

are combinators that affect ony the error type, such as map_err (instead of

map) and or_else (instead of and_then).

The Result type aias idiom

In the standard ibrary, you may frequenty see types ike Result<i32>. But

wait, we defined Result to have two type parameters. How can we get

away with ony specifying one? The key is to define a Result type aias that
fixes one of the type parameters to a particuar type. Usuay the fixed type
is the error type. For exampe, our previous exampe parsing integers coud
be rewritten ike this:

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else

result-num-no-unwrap-map-alias

use std::num::ParseIntError;
use std::result;

type Result<T> = result::Result<T, ParseIntError>;

fn double_number(number_str: &str) -> Result<i32> {
unimplemented!();

}

Why woud we do this? We, if we have a ot of functions that coud return

ParseIntError, then itʼs much more convenient to define an aias that

aways uses ParseIntError so that we donʼt have to write it out a the
time.

The most prominent pace this idiom is used in the standard ibrary is with

io::Result. Typicay, one writes io::Result<T>, which makes it cear

that youʼre using the io modueʼs type aias instead of the pain definition

from std::result. This idiom is aso used for fmt::Result.)

A brief interude: unwrapping isnʼt evi

If youʼve been foowing aong, you might have noticed that Iʼve taken a

pretty hard ine against caing methods ike unwrap that coud panic and
abort your program. Generay speaking, this is good advice.

However, unwrap can sti be used judiciousy. What exacty justifies use of

unwrap is somewhat of a grey area and reasonabe peope can disagree. Iʼ
summarize some of my opinions on the matter.

• In exampes and quick ʼnʼ dirty code. Sometimes youʼre writing
exampes or a quick program, and error handing simpy isnʼt important.
Beating the convenience of unwrap can be hard in such scenarios, so it
is very appeaing.

• When panicking indicates a bug in the program. When the invariants
of your code shoud prevent a certain case from happening (ike, say,
popping from an empty stack), then panicking can be permissibe. This
is because it exposes a bug in your program. This can be expicit, ike
from an assert! faiing, or it coud be because your index into an array

http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

was out of bounds.

This is probaby not an exhaustive ist. Moreover, when using an Option, it

is often better to use its expect method. expect does exacty the same

thing as unwrap, except it prints a message you give to expect. This makes
the resuting panic a bit nicer to dea with, since it wi show your message

instead of “caed unwrap on a None vaue.ˮ

My advice bois down to this: use good judgment. Thereʼs a reason why the
words “never do Xˮ or “Y is considered harmfuˮ donʼt appear in my writing.
There are trade offs to a things, and it is up to you as the programmer to
determine what is acceptabe for your use cases. My goa is ony to hep
you evauate trade offs as accuratey as possibe.

Now that weʼve covered the basics of error handing in Rust, and Iʼve said
my piece about unwrapping, etʼs start exporing more of the standard
ibrary.

Working with mutipe error types

Thus far, weʼve ooked at error handing where everything was either an

Option<T> or a Result<T, SomeError>. But what happens when you

have both an Option and a Result? Or what if you have a Result<T,
Error1> and a Result<T, Error2>? Handing composition of distinct
error types is the next chaenge in front of us, and it wi be the major theme
throughout the rest of this artice.

Composing Option and Result

So far, Iʼve taked about combinators defined for Option and combinators

defined for Result. We can use these combinators to compose resuts of
different computations without doing expicit case anaysis.

Of course, in rea code, things arenʼt aways as cean. Sometimes you have

a mix of Option and Result types. Must we resort to expicit case anaysis,
or can we continue using combinators?

For now, etʼs revisit one of the first exampes in this artice:

http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(1).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
println!("{}", 2 * n);

}

// $ cargo run --bin unwrap-double 5
// 10

Given our new found knowedge of Option, Result and their various
combinators, we shoud try to rewrite this so that errors are handed
propery and the program doesnʼt panic if thereʼs an error.

The tricky aspect here is that argv.nth(1) produces an Option whie

arg.parse() produces a Result. These arenʼt directy composabe. When

faced with both an Option and a Result, the soution is usuay to convert

the Option to a Result. In our case, the absence of a command ine

parameter (from env::args()) means the user didnʼt invoke the program

correcty. We coud just use a String to describe the error. Letʼs try:

error-double-string

use std::env;

fn double_arg(mut argv: env::Args) -> Result<i32, String> {
argv.nth(1)

.ok_or("Please give at least one argument".to_owned())

.and_then(|arg| arg.parse::<i32>().map_err(|err| err

.map(|i| i * 2)
}

fn main() {
match double_arg(env::args()) {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

There are a coupe new things in this exampe. The first is the use of the

Option::ok_or combinator. This is one way to convert an Option into a

Result. The conversion requires you to specify what error to use if Option
is None. Like the other combinators weʼve seen, its definition is very simpe:

option-ok-or-def

fn ok_or<T, E>(option: Option<T>, err: E) -> Result<T, E> {
match option {

Some(val) => Ok(val),
None => Err(err),

}
}

The other new combinator used here is Result::map_err. This is just ike

Result::map, except it maps a function on to the error portion of a Result
vaue. If the Result is an Ok(...) vaue, then it is returned unmodified.

We use map_err here because it is necessary for the error types to remain

the same (because of our use of and_then). Since we chose to convert the

Option<String> (from argv.nth(1)) to a Result<String, String>, we

must aso convert the ParseIntError from arg.parse() to a String.

The imits of combinators

Doing IO and parsing input is a very common task, and itʼs one that I
personay have done a ot of in Rust. Therefore, we wi use (and continue
to use) IO and various parsing routines to exempify error handing.

Letʼs start simpe. We are tasked with opening a fie, reading a of its

contents and converting its contents to a number. Then we mutipy it by 2
and print the output.

Athough Iʼve tried to convince you not to use unwrap, it can be usefu to

first write your code using unwrap. It aows you to focus on your probem
instead of the error handing, and it exposes the points where proper error

http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err

handing need to occur. Letʼs start there so we can get a hande on the
code, and then refactor it to use better error handing.

io-basic-unwrap

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> i32 {
let mut file = File::open(file_path).unwrap(); // error 1
let mut contents = String::new();
file.read_to_string(&mut contents).unwrap(); // error 2
let n: i32 = contents.trim().parse().unwrap(); // error 3
2 * n

}

fn main() {
let doubled = file_double("foobar");
println!("{}", doubled);

}

N.B. The AsRef<Path> is used because those are the same bounds used

on std::fs::File::open. This makes it ergnomic to use any kind of string
as a fie path.)

There are three different errors that can occur here:

�A probem opening the fie.
�A probem reading data from the fie.
�A probem parsing the data as a number.

The first two probems are described via the std::io::Error type. We

know this because of the return types of std::fs::File::open and

std::io::Read::read_to_string. Note that they both use the Result
type aias idiom described previousy. If you cick on the Result type, youʼ

see the type aias, and consequenty, the underying io::Error type.) The

third probem is described by the std::num::ParseIntError type. The

io::Error type in particuar is pervasive throughout the standard ibrary.
You wi see it again and again.

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

Letʼs start the process of refactoring the file_double function. To make
this function composabe with other components of the program, it shoud
not panic if any of the above error conditions are met. Effectivey, this
means that the function shoud return an error if any of its operations fai.

Our probem is that the return type of file_double is i32, which does not
give us any usefu way of reporting an error. Thus, we must start by

changing the return type from i32 to something ese.

The first thing we need to decide: shoud we use Option or Result? We

certainy coud use Option very easiy. If any of the three errors occur, we

coud simpy return None. This wi work and it is better than panicking, but
we can do a ot better. Instead, we shoud pass some detai about the error
that occurred. Since we want to express the possibiity of error, we shoud

use Result<i32, E>. But what shoud E be? Since two different types of
errors can occur, we need to convert them to a common type. One such

type is String. Letʼs see how that impacts our code:

io-basic-error-string

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
File::open(file_path)

.map_err(|err| err.to_string())

.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)

.map_err(|err| err.to_string())

.map(|_| contents)
})
.and_then(|contents| {

contents.trim().parse::<i32>()
.map_err(|err| err.to_string())

})
.map(|n| 2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

This code ooks a bit hairy. It can take quite a bit of practice before code ike
this becomes easy to write. The way I write it is by foowing the types. As

soon as I changed the return type of file_double to Result<i32,
String>, I had to start ooking for the right combinators. In this case, we

ony used three different combinators: and_then, map and map_err.

and_then is used to chain mutipe computations where each computation
coud return an error. After opening the fie, there are two more
computations that coud fai: reading from the fie and parsing the contents

as a number. Correspondingy, there are two cas to and_then.

map is used to appy a function to the Ok(...) vaue of a Result. For

exampe, the very ast ca to map mutipies the Ok(...) vaue (which is an

i32) by 2. If an error had occurred before that point, this operation woud

have been skipped because of how map is defined.

map_err is the trick the makes a of this work. map_err is just ike map,

except it appies a function to the Err(...) vaue of a Result. In this case,

we want to convert a of our errors to one type: String. Since both

io::Error and num::ParseIntError impement ToString, we can ca

the to_string() method to convert them.

With a of that said, the code is sti hairy. Mastering use of combinators is
important, but they have their imits. Letʼs try a different approach: eary
returns.

Eary returns

Iʼd ike to take the code from the previous section and rewrite it using eary
returns. Eary returns et you exit the function eary. We canʼt return eary in

file_double from inside another cosure, so weʼ need to revert back to
expicit case anaysis.

io-basic-error-string-early-return

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = match File::open(file_path) {

Ok(file) => file,
Err(err) => return Err(err.to_string()),

};
let mut contents = String::new();
if let Err(err) = file.read_to_string(&mut contents) {

return Err(err.to_string());
}
let n: i32 = match contents.trim().parse() {

Ok(n) => n,
Err(err) => return Err(err.to_string()),

};
Ok(2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

Reasonabe peope can disagree over whether this code is better than the
code that uses combinators, but if you arenʼt famiiar with the combinator
approach, this code ooks simper to read to me. It uses expicit case

anaysis with match and if let. If an error occurs, it simpy stops
executing the function and returns the error (by converting it to a string).

Isnʼt this a step backwards though? Previousy, I said that the key to
ergonomic error handing is reducing expicit case anaysis, yet weʼve
reverted back to expicit case anaysis here. It turns out, there are mutipe

ways to reduce expicit case anaysis. Combinators arenʼt the ony way.

The try! macro/? operator

In oder versions of Rust Rust 1.12 or oder), a cornerstone of error handing

in Rust is the try! macro. The try! macro abstracts case anaysis just ike
combinators, but unike combinators, it aso abstracts contro fow. Namey,
it can abstract the eary return pattern seen above.

Here is a simpified definition of a try! macro:

try-def-simple

macro_rules! try {
($e:expr) => (match $e {

Ok(val) => val,
Err(err) => return Err(err),

});
}

The rea definition is a bit more sophisticated. We wi address that ater.)

Using the try! macro makes it very easy to simpify our ast exampe. Since
it does the case anaysis and the eary return for us, we get tighter code that
is easier to read:

io-basic-error-try

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = try!(File::open(file_path).map_err(|e| e.
let mut contents = String::new();
try!(file.read_to_string(&mut contents).map_err(|e| e.to_string
let n = try!(contents.trim().parse::<i32>().map_err(|e|
Ok(2 * n)

}

http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/macro.try!.html

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

The map_err cas are sti necessary given our definition of try!. This is

because the error types sti need to be converted to String. The good

news is that we wi soon earn how to remove those map_err cas! The bad
news is that we wi need to earn a bit more about a coupe important traits

in the standard ibrary before we can remove the map_err cas.

In newer versions of Rust Rust 1.13 or newer), the try! macro was repaced

with the ? operator. Whie it is intended to grow new powers that we wonʼt

cover here, using ? instead of try! is simpe:

io-basic-error-question

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(|e| e.to_string
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_string
let n = contents.trim().parse::<i32>().map_err(|e| e.to_string
Ok(2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

Defining your own error type

Before we dive into some of the standard ibrary error traits, Iʼd ike to wrap

up this section by removing the use of String as our error type in the
previous exampes.

Using String as we did in our previous exampes is convenient because itʼs
easy to convert errors to strings, or even make up your own errors as

strings on the spot. However, using String for your errors has some
downsides.

The first downside is that the error messages tend to cutter your code. Itʼs
possibe to define the error messages esewhere, but uness youʼre
unusuay discipined, it is very tempting to embed the error message into
your code. Indeed, we did exacty this in a previous exampe.

The second and more important downside is that Strings are ossy. That is,
if a errors are converted to strings, then the errors we pass to the caer
become competey opaque. The ony reasonabe thing the caer can do

with a String error is show it to the user. Certainy, inspecting the string to
determine the type of error is not robust. Admittedy, this downside is far
more important inside of a ibrary as opposed to, say, an appication.)

For exampe, the io::Error type embeds an io::ErrorKind, which is
structured data that represents what went wrong during an IO operation.
This is important because you might want to react differenty depending on

the error. (e.g., A BrokenPipe error might mean quitting your program

gracefuy whie a NotFound error might mean exiting with an error code

and showing an error to the user.) With io::ErrorKind, the caer can
examine the type of an error with case anaysis, which is stricty superior to

trying to tease out the detais of an error inside of a String.

Instead of using a String as an error type in our previous exampe of
reading an integer from a fie, we can define our own error type that
represents errors with structured data. We endeavor to not drop information
from underying errors in case the caer wants to inspect the detais.

The idea way to represent one of many possibiities is to define our own

sum type using enum. In our case, an error is either an io::Error or a

num::ParseIntError, so a natura definition arises:

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html

io-basic-error-custom

use std::io;
use std::num;

// We derive `Debug` because all types should probably derive `Debug`.
// This gives us a reasonable human readable description of `CliError` values
#[derive(Debug)]
enum CliError {

Io(io::Error),
Parse(num::ParseIntError),

}

Tweaking our code is very easy. Instead of converting errors to strings, we

simpy convert them to our CliError type using the corresponding vaue
constructor:

io-basic-error-custom

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(CliError::Io
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(CliError::Io)
let n: i32 = contents.trim().parse().map_err(CliError::Parse
Ok(2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {:?}", err),

}
}

The ony change here is switching map_err(|e| e.to_string()) (which

converts errors to strings) to map_err(CliError::Io) or

map_err(CliError::Parse). The caer gets to decide the eve of detai

to report to the user. In effect, using a String as an error type removes

choices from the caer whie using a custom enum error type ike CliError
gives the caer a of the conveniences as before in addition to structured
data describing the error.

A rue of thumb is to define your own error type, but a String error type
wi do in a pinch, particuary if youʼre writing an appication. If youʼre
writing a ibrary, defining your own error type shoud be strongy preferred
so that you donʼt remove choices from the caer unnecessariy.

Standard ibrary traits used for error
handing

The standard ibrary defines two integra traits for error handing:

std::error::Error and std::convert::From. Whie Error is designed

specificay for genericay describing errors, the From trait serves a more
genera roe for converting vaues between two distinct types.

The Error trait

The Error trait is defined in the standard ibrary:

error-def

use std::fmt::{Debug, Display};

trait Error: Debug + Display {
/// A short description of the error.
fn description(&self) -> &str;

/// The lower level cause of this error, if any.
fn cause(&self) -> Option<&Error> { None }

}

This trait is super generic because it is meant to be impemented for a

http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html

types that represent errors. This wi prove usefu for writing composabe
code as weʼ see ater. Otherwise, the trait aows you to do at east the
foowing things:

• Obtain a Debug representation of the error.
• Obtain a user-facing Display representation of the error.
• Obtain a short description of the error (via the description method).
• Inspect the causa chain of an error, if one exists (via the cause

method).

The first two are a resut of Error requiring imps for both Debug and

Display. The atter two are from the two methods defined on Error. The

power of Error comes from the fact that a error types imp Error, which
means errors can be existentiay quantified as a trait object. This manifests

as either Box<Error> or &Error. Indeed, the cause method returns an

&Error, which is itsef a trait object. Weʼ revisit the Error traitʼs utiity as a
trait object ater.

For now, it suffices to show an exampe impementing the Error trait. Letʼs
use the error type we defined in the previous section:

error-impl

use std::io;
use std::num;

// We derive `Debug` because all types should probably derive `Debug`.
// This gives us a reasonable human readable description of `CliError` values
#[derive(Debug)]
enum CliError {

Io(io::Error),
Parse(num::ParseIntError),

}

This particuar error type represents the possibiity of two types of errors
occurring: an error deaing with I/O or an error converting a string to a
number. The error coud represent as many error types as you want by

adding new variants to the enum definition.

Impementing Error is pretty straight-forward. Itʼs mosty going to be a ot

http://doc.rust-lang.org/1.0.0-beta.5/book/trait-objects.html
http://doc.rust-lang.org/1.0.0-beta.5/book/trait-objects.html

expicit case anaysis.

error-impl

use std::error;
use std::fmt;

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match *self {
// Both underlying errors already impl `Display`, so we defer to
// their implementations.
CliError::Io(ref err) => write!(f, "IO error: {}"
CliError::Parse(ref err) => write!(f, "Parse error: {}"

}
}

}

impl error::Error for CliError {
fn description(&self) -> &str {

// Both underlying errors already impl `Error`, so we defer to their
// implementations.
match *self {

CliError::Io(ref err) => err.description(),
// Normally we can just write `err.description()`, but the error
// type has a concrete method called `description`, which conflic
// with the trait method. For now, we must explicitly call
// `description` through the `Error` trait.
CliError::Parse(ref err) => error::Error::description

}
}

fn cause(&self) -> Option<&error::Error> {
match *self {

// N.B. Both of these implicitly cast `err` from their concrete
// types (either `&io::Error` or `&num::ParseIntError`)
// to a trait object `&Error`. This works because both error type
// implement `Error`.
CliError::Io(ref err) => Some(err),

CliError::Parse(ref err) => Some(err),
}

}
}

I note that this is a very typica impementation of Error: match on your

different error types and satisfy the contracts defined for description and

cause.

The From trait

The std::convert::From trait is defined in the standard ibrary:

from-def

trait From<T> {
fn from(T) -> Self;

}

Deiciousy simpe, yes? From is very usefu because it gives us a generic

way to tak about conversion from a particuar type T to some other type (in

this case, “some other typeˮ is the subject of the imp, or Self). The crux of

From is the set of impementations provided by the standard ibrary.

Here are a few simpe exampes demonstrating how From works:

from-examples

let string: String = From::from("foo");
let bytes: Vec<u8> = From::from("foo");
let cow: ::std::borrow::Cow<str> = From::from("foo");

OK, so From is usefu for converting between strings. But what about
errors? It turns out, there is one critica imp:

impl<'a, E: Error + 'a> From<E> for Box<Error + 'a>

This imp says that for any type that imps Error, we can convert it to a trait

http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html

object Box<Error>. This may not seem terriby surprising, but it is usefu in
a generic context.

Remember the two errors we were deaing with previousy? Specificay,

io::Error and num::ParseIntError. Since both imp Error, they work

with From:

from-examples-errors

use std::error::Error;
use std::fs;
use std::io;
use std::num;

// We have to jump through some hoops to actually get error values.
let io_err: io::Error = io::Error::last_os_error();
let parse_err: num::ParseIntError = "not a number".parse::<i32

// OK, here are the conversions.
let err1: Box<Error> = From::from(io_err);
let err2: Box<Error> = From::from(parse_err);

There is a reay important pattern to recognize here. Both err1 and err2
have the same type. This is because they are existentiay quantified types,
or trait objects. In particuar, their underying type is erased from the

compierʼs knowedge, so it truy sees err1 and err2 as exacty the same.

Additionay, we constructed err1 and err2 using precisey the same

function ca: From::from. This is because From::from is overoaded on
both its argument and its return type.

This pattern is important because it soves a probem we had earier: it gives
us a way to reiaby convert errors to the same type using the same
function.

Time to revisit an od friend; the try! macro/? operator.

The rea try! macro/? operator

Previousy, I presented this definition of try!:

macro_rules! try {
($e:expr) => (match $e {

Ok(val) => val,
Err(err) => return Err(err),

});
}

This is not itʼs rea definition. Itʼs rea definition is in the standard ibrary:

try-def

macro_rules! try {
($e:expr) => (match $e {

Ok(val) => val,
Err(err) => return Err(::std::convert::From::from(err

});
}

Thereʼs one tiny but powerfu change: the error vaue is passed through

From::from. This makes the try! macro a ot more powerfu because it
gives you automatic type conversion for free. This is aso very simiar to

how the ? operator works, which is defined sighty differenty. Namey, x?
desugars to something ike the foowing:

questionmark-def

match ::std::ops::Try::into_result(x) {
Ok(v) => v,
Err(e) => return ::std::ops::Try::from_error(From::from(

}

The Try trait is sti unstabe and beyond the scope of this artice, but the
essence of it is that it provides a way to abstract over many different types

of success/faiure scenarios, without being tighty couped to Result<T,
E>. As you can see though, the x? syntax sti cas From::from, which is
how we achieve automatic error conversion.

Since most code written today uses ? instead of try!, we wi use ? for the

http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/macro.try!.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html

remainder of this post.

Letʼs take a ook at code we wrote previousy to read a fie and convert its
contents to an integer:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(|e| e.to_string
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_string
let n = contents.trim().parse::<i32>().map_err(|e| e.to_string
Ok(2 * n)

}

Earier, I promised that we coud get rid of the map_err cas. Indeed, a we

have to do is pick a type that From works with. As we saw in the previous

section, From has an imp that etʼs it convert any error type into a

Box<Error>:

io-basic-error-try-from

use std::error::Error;
use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let n = contents.trim().parse::<i32>()?;
Ok(2 * n)

}

We are getting very cose to idea error handing. Our code has very itte

overhead as a resut from error handing because the ? operator
encapsuates three things simutaneousy:

�Case anaysis.
�Contro fow.
�Error type conversion.

When a three things are combined, we get code that is unencumbered by

combinators, cas to unwrap or case anaysis.

Thereʼs one itte nit eft: the Box<Error> type is opaque. If we return a

Box<Error> to the caer, the caer canʼt (easiy) inspect underying error

type. The situation is certainy better than String because the caer can

ca methods ike description and cause, but the imitation remains:

Box<Error> is opaque. N.B. This isnʼt entirey true because Rust does have
runtime refection, which is usefu in some scenarios that are beyond the
scope of this artice.)

Itʼs time to revisit our custom CliError type and tie everything together.

Composing custom error types

In the ast section, we ooked at the rea ? operator and how it does

automatic type conversion for us by caing From::from on the error vaue.

In particuar, we converted errors to Box<Error>, which works, but the type
is opaque to caers.

To fix this, we use the same remedy that weʼre aready famiiar with: a
custom error type. Once again, here is the code that reads the contents of a
fie and converts it to an integer:

io-basic-error-custom-from

use std::fs::File;
use std::io::{self, Read};
use std::num;
use std::path::Path;

// We derive `Debug` because all types should probably derive `Debug`.
// This gives us a reasonable human readable description of `CliError` values
#[derive(Debug)]

http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
https://crates.io/crates/error
https://crates.io/crates/error
https://crates.io/crates/error
https://crates.io/crates/error

enum CliError {
Io(io::Error),
Parse(num::ParseIntError),

}

fn file_double_verbose<P: AsRef<Path>>(file_path: P) -> Result
let mut file = File::open(file_path).map_err(CliError::Io
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(CliError::Io)
let n: i32 = contents.trim().parse().map_err(CliError::Parse
Ok(2 * n)

}

Notice that we sti have the cas to map_err. Why? We, reca the

definitions of the ? operator and From. The probem is that there is no From
imp that aows us to convert from error types ike io::Error and

num::ParseIntError to our own custom CliError. Of course, it is easy to

fix this! Since we defined CliError, we can imp From with it:

io-basic-error-custom-from

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliError {

CliError::Io(err)
}

}

impl From<num::ParseIntError> for CliError {
fn from(err: num::ParseIntError) -> CliError {

CliError::Parse(err)
}

}

A these imps are doing is teaching From how to create a CliError from
other error types. In our case, construction is as simpe as invoking the
corresponding vaue constructor. Indeed, it is typicay this easy.

We can finay rewrite file_double:

io-basic-error-custom-from

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let n: i32 = contents.trim().parse()?;
Ok(2 * n)

}

The ony thing we did here was remove the cas to map_err. They are no

onger needed because the ? operator invokes From::from on the error

vaue. This works because weʼve provided From imps for a the error types
that coud appear.

If we modified our file_double function to perform some other operation,
say, convert a string to a foat, then weʼd need to add a new variant to our
error type:

enum CliError {
Io(io::Error),
ParseInt(num::ParseIntError),
ParseFloat(num::ParseFloatError),

}

To refect this change we need to update the previous impl
From<num::ParseIntError> for CliError and add the new impl
From<num::ParseFloatError> for CliError:

impl From<num::ParseIntError> for CliError {
fn from(err: num::ParseIntError) -> CliError {

CliError::ParseInt(err)
}

}

impl From<num::ParseFloatError> for CliError {
fn from(err: num::ParseFloatError) -> CliError {

CliError::ParseFloat(err)
}

}

And thatʼs it!

Advice for ibrary writers

Idioms for Rust ibraries are sti forming, but if your ibrary needs to report
custom errors, then you shoud probaby define your own error type. Itʼs up

to you whether or not to expose its representation (ike ErrorKind) or keep

it hidden (ike ParseIntError). Regardess of how you do it, itʼs usuay
good practice to at east provide some information about the error beyond

just its String representation. But certainy, this wi vary depending on use
cases.

At a minimum, you shoud probaby impement the Error trait. This wi give
users of your ibrary some minimum fexibiity for composing errors.

Impementing the Error trait aso means that users are guaranteed the
abiity to obtain a string representation of an error (because it requires imps

for both fmt::Debug and fmt::Display).

Beyond that, it can aso be usefu to provide impementations of From on
your error types. This aows you (the ibrary author) and your users to

compose more detaied errors. For exampe, csv::Error provides From
imps for both io::Error and byteorder::Error.

Finay, depending on your tastes, you may aso want to define a Result
type aias, particuary if your ibrary defines a singe error type. This is used

in the standard ibrary for io::Result and fmt::Result.

Case study: A program to read popuation
data

This artice was ong, and depending on your background, it might be rather
dense. Whie there is penty of exampe code to go aong with the prose,
most of it was specificay designed to be pedagogica. Whie Iʼm not quite
smart enough to craft pedagogica exampes that are aso not toy exampes,

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
https://burntsushi.net/rust-error-handling/#the-real-try-macro
https://burntsushi.net/rust-error-handling/#the-real-try-macro
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

I certainy can write about a case study.

For this, Iʼd ike to buid up a command ine program that ets you query
word popuation data. The objective is simpe: you give it a ocation and it
wi te you the popuation. Despite the simpicity, there is a ot that can go
wrong!

The data weʼ be using comes from the Data Science Tookit. Iʼve prepared
some data from it for this exercise. You can either grab the word popuation
data 41MB gzip compressed, 145MB uncompressed) or just the US
popuation data 2.2MB gzip compressed, 7.2MB uncompressed).

Up unti now, Iʼve kept the code imited to Rustʼs standard ibrary. For a rea
task ike this though, weʼ want to at east use something to parse CSV data,
parse the program arguments and decode that stuff into Rust types

automaticay. For that, weʼ use the csv, docopt and rustc-serialize
crates.

Itʼs on Github

The fina code for this case study is on Github. If you have Rust and Cargo
instaed, then a you need to do is:

git clone git://github.com/BurntSushi/rust-error-handling-case-study
cd rust-error-handling-case-study
cargo build --release
./target/release/city-pop --help

Weʼ buid up this project in pieces. Read on and foow aong!

Initia setup

Iʼm not going to spend a ot of time on setting up a project with Cargo
because it is aready covered we in the Rust book and Cargoʼs
documentation.

To get started from scratch, run cargo new --bin city-pop and make

sure your Cargo.toml ooks something ike this:

https://github.com/petewarden/dstkdata
https://github.com/petewarden/dstkdata
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://crates.io/crates/csv
https://crates.io/crates/csv
https://crates.io/crates/csv
https://crates.io/crates/docopt
https://crates.io/crates/docopt
https://crates.io/crates/docopt
https://crates.io/crates/rustc-serialize
https://crates.io/crates/rustc-serialize
https://crates.io/crates/rustc-serialize
https://github.com/BurntSushi/rust-error-handling-case-study
https://github.com/BurntSushi/rust-error-handling-case-study
http://doc.rust-lang.org/1.0.0-beta.5/book/hello-cargo.html
http://doc.rust-lang.org/1.0.0-beta.5/book/hello-cargo.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html

[package]
name = "city-pop"
version = "0.1.0"
authors = ["Andrew Gallant <jamslam@gmail.com>"]

[[bin]]
name = "city-pop"

[dependencies]
csv = "0.*"
docopt = "0.*"
rustc-serialize = "0.*"

You shoud aready be abe to run:

cargo build --release
./target/release/city-pop
#Outputs: Hello, world!

Argument parsing

Letʼs get argument parsing out of the way. I wonʼt go into too much detai on
Docopt, but there is a nice web page describing it and documentation for
the Rust crate. The short story is that Docopt generates an argument parser
from the usage string. Once the parsing is done, we can decode the
program arguments into a Rust struct. Hereʼs our program with the

appropriate extern crate statements, the usage string, our Args struct

and an empty main:

extern crate docopt;
extern crate rustc_serialize;

static USAGE: &'static str = "
Usage: city-pop [options] <data-path> <city>
 city-pop --help

http://docopt.org/
http://docopt.org/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/

Options:
 -h, --help Show this usage message.
";

struct Args {
arg_data_path: String,
arg_city: String,

}

fn main() {

}

Okay, time to get coding. The docs for Docopt say we can create a new

parser with Docopt::new and then decode the current program arguments

into a struct with Docopt::decode. The catch is that both of these

functions can return a docopt::Error. We can start with expicit case
anaysis:

// These use statements were added below the `extern` statements.
// I'll elide them in the future. Don't worry! It's all on Github:
// https://github.com/BurntSushi/rust-error-handling-case-study
//use std::io::{self, Write};
//use std::process;
//use docopt::Docopt;

fn main() {
let args: Args = match Docopt::new(USAGE) {

Err(err) => {
writeln!(&mut io::stderr(), "{}", err).unwrap();
process::exit(1);

}
Ok(dopt) => match dopt.decode() {

Err(err) => {
writeln!(&mut io::stderr(), "{}", err).unwrap
process::exit(1);

}

https://burntsushi.net/rustdoc/docopt/struct.Docopt.html#method.new
https://burntsushi.net/rustdoc/docopt/struct.Docopt.html#method.new
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html

Ok(args) => args,
}

};
}

This is not so nice. One thing we can do to make the code a bit cearer is to

write a macro to print messages to stderr and then exit:

fatal-def

macro_rules! fatal {
($($tt:tt)*) => {{

use std::io::Write;
writeln!(&mut ::std::io::stderr(), $($tt)*).unwrap();
::std::process::exit(1)

}}
}

The unwrap is probaby OK here, because if it fais, it means your program

coud not write to stderr. A good rue of thumb here is that itʼs OK to abort,
but certainy, you coud do something ese if you needed to.

The code ooks nicer, but the expicit case anaysis is sti a drag:

let args: Args = match Docopt::new(USAGE) {
Err(err) => fatal!("{}", err),
Ok(dopt) => match dopt.decode() {

Err(err) => fatal!("{}", err),
Ok(args) => args,

}
};

Thankfuy, the docopt::Error type defines a convenient method exit,
which effectivey does what we just did. Combine that with our knowedge
of combinators, and we have concise, easy to read code:

let args: Args = Docopt::new(USAGE)

https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit

.and_then(|d| d.decode())

.unwrap_or_else(|err| err.exit());

If this code competes successfuy, then args wi be fied from the vaues
provided by the user.

Writing the ogic

Weʼre a different in how we write code, but when Iʼm not sure how to go
about coding a probem, error handing is usuay the ast thing I want to
think about. This isnʼt very good practice for good design, but it can be
usefu for rapidy prototyping. In our case, because Rust forces us to be
expicit about error handing, it wi aso make it obvious what parts of our

program can cause errors. Why? Because Rust wi make us ca unwrap!
This can give us a nice birdʼs eye view of how we need to approach error
handing.

In this case study, the ogic is reay simpe. A we need to do is parse the
CSV data given to us and print out a fied in matching rows. Letʼs do it.

Make sure to add extern crate csv; to the top of your fie.)

// This struct represents the data in each row of the CSV file.
// Type based decoding absolves us of a lot of the nitty gritty error
// handling, like parsing strings as integers or floats.
struct Row {

country: String,
city: String,
accent_city: String,
region: String,

// Not every row has data for the population, latitude or longitude!
// So we express them as `Option` types, which admits the possibility of
// absence. The CSV parser will fill in the correct value for us.
population: Option<u64>,
latitude: Option<f64>,
longitude: Option<f64>,

}

fn main() {
let args: Args = Docopt::new(USAGE)

.and_then(|d| d.decode())

.unwrap_or_else(|err| err.exit());

let file = fs::File::open(args.arg_data_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode::<Row>() {

let row = row.unwrap();
if row.city == args.arg_city {

println!("{}, {}: {:?}",
row.city, row.country,
row.population.expect("population count"

}
}

}

Letʼs outine the errors. We can start with the obvious: the three paces that

unwrap is caed:

�fs::File::open can return an io::Error.
�csv::Reader::decode decodes one record at a time, and decoding a

record (ook at the Item associated type on the Iterator imp) can
produce a csv::Error.

�If row.population is None, then caing expect wi panic.

Are there any others? What if we canʼt find a matching city? Toos ike grep
wi return an error code, so we probaby shoud too. So we have ogic
errors specific to our probem, IO errors and CSV parsing errors. Weʼre
going to expore two different ways to approach handing these errors.

Iʼd ike to start with Box<Error>. Later, weʼ see how defining our own error
type can be usefu.

Error handing with Box<Error>

Box<Error> is nice because it just works. You donʼt need to define your

own error types and you donʼt need any From impementations. The

downside is that since Box<Error> is a trait object, it erases the type,

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html

which means the compier can no onger reason about its underying type.

Previousy we started refactoring our code by changing the type of our

function from T to Result<T, OurErrorType>. In this case,

OurErrorType is just Box<Error>. But whatʼs T? And can we add a return

type to main?

The answer to the second question is no, we canʼt. That means weʼ need to

write a new function. But what is T? The simpest thing we can do is to

return a ist of matching Row vaues as a Vec<Row>. Better code woud
return an iterator, but that is eft as an exercise to the reader.)

Letʼs refactor our code into its own function, but keep the cas to unwrap.
Note that we opt to hande the possibiity of a missing popuation count by
simpy ignoring that row.

struct Row {
// unchanged

}

struct PopulationCount {
city: String,
country: String,
// This is no longer an `Option` because values of this type are only
// constructed if they have a population count.
count: u64,

}

fn search<P: AsRef<Path>>(file_path: P, city: &str) -> Vec<PopulationCount
let mut found = vec![];
let file = fs::File::open(file_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode::<Row>() {

let row = row.unwrap();
match row.population {

None => { } // skip it
Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,

country: row.country,
count: count,

});
},

}
}
found

}

fn main() {
let args: Args = Docopt::new(USAGE)

.and_then(|d| d.decode())

.unwrap_or_else(|err| err.exit());

for pop in search(&args.arg_data_path, &args.arg_city) {
println!("{}, {}: {:?}", pop.city, pop.country, pop.

}
}

Whie we got rid of one use of expect (which is a nicer variant of unwrap),
we sti shoud hande the absence of any search resuts.

To convert this to proper error handing, we need to do the foowing:

�Change the return type of search to be
Result<Vec<PopulationCount>, Box<Error>>.

�Use the ? operator so that errors are returned to the caer instead of
panicking the program.

�Hande the error in main.

Letʼs try it:

fn search<P: AsRef<Path>>
(file_path: P, city: &str)
-> Result<Vec<PopulationCount>, Box<Error+Send+Sync

let mut found = vec![];
let file = fs::File::open(file_path)?;
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode::<Row>() {

let row = row?;
match row.population {

None => { } // skip it
Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

});
},

}
}
if found.is_empty() {

Err(From::from("No matching cities with a population were found."
} else {

Ok(found)
}

}

Instead of x.unwrap(), we now have x?. Since our function returns a

Result<T, E>, the ? operator wi return eary from the function if an error
occurs.

There is one big gotcha in this code: we used Box<Error + Send + Sync>
instead of Box<Error>. We did this so we coud convert a pain string to an
error type. We need these extra bounds so that we can use the

corresponding From imps:

// We are making use of this impl in the code above, since we call `From::fro
// on a `&'static str`.
impl<'a, 'b> From<&'b str> for Box<Error + Send + Sync + 'a>

// But this is also useful when you need to allocate a new string for an
// error message, usually with `format!`.
impl From<String> for Box<Error + Send + Sync>

Now that weʼve seen how to do proper error handing with Box<Error>,

http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html

etʼs try a different approach with our own custom error type. But first, etʼs
take a quick break from error handing and add support for reading from

stdin.

Reading from stdin

In our program, we accept a singe fie for input and do one pass over the
data. This means we probaby shoud be abe to accept input on stdin. But
maybe we ike the current format too—so etʼs have both!

Adding support for stdin is actuay quite easy. There are ony two things we
have to do:

�Tweak the program arguments so that a singe parameter—the city—
can be accepted whie the popuation data is read from stdin.

�Modify the search function to take an optiona fie path. When None, it
shoud know to read from stdin.

First, hereʼs the new usage and Args struct:

static USAGE: &'static str = "
Usage: city-pop [options] [<data-path>] <city>
 city-pop --help

Options:
 -h, --help Show this usage message.
";

struct Args {
arg_data_path: Option<String>,
arg_city: String,

}

A we did is make the data-path argument optiona in the Docopt usage

string, and make the corresponding struct member arg_data_path
optiona. The docopt crate wi hande the rest.

Modifying search is sighty trickier. The csv crate can buid a parser out of

any type that impements io::Read. But how can we use the same code

https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader

over both types? Thereʼs actuay a coupe ways we coud go about this.

One way is to write search such that it is generic on some type parameter R
that satisfies io::Read. Another way is to just use trait objects:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, Box<Error+Send+Sync

let mut found = vec![];
let input: Box<io::Read> = match *file_path {

None => Box::new(io::stdin()),
Some(ref file_path) => Box::new(fs::File::open(file_path

};
let mut rdr = csv::Reader::from_reader(input);
// The rest remains unchanged!

}

Error handing with a custom type

Previousy, we earned how to compose errors using a custom error type.

We did this by defining our error type as an enum and impementing Error
and From.

Since we have three distinct errors IO, CSV parsing and not found), etʼs

define an enum with three variants:

enum CliError {
Io(io::Error),
Csv(csv::Error),
NotFound,

}

And now for imps on Display and Error:

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match *self {

CliError::Io(ref err) => err.fmt(f),
CliError::Csv(ref err) => err.fmt(f),
CliError::NotFound => write!(f, "No matching cities with a

 population were found."
}

}
}

impl Error for CliError {
fn description(&self) -> &str {

match *self {
CliError::Io(ref err) => err.description(),
CliError::Csv(ref err) => err.description(),
CliError::NotFound => "not found",

}
}

}

Before we can use our CliError type in our search function, we need to

provide a coupe From imps. How do we know which imps to provide?

We, weʼ need to convert from both io::Error and csv::Error to

CliError. Those are the ony externa errors, so weʼ ony need two From
imps for now:

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliError {

CliError::Io(err)
}

}

impl From<csv::Error> for CliError {
fn from(err: csv::Error) -> CliError {

CliError::Csv(err)
}

}

The From imps are important because of how the ? operator is defined. In

particuar, if an error occurs, From::from is caed on the error, which in

this case, wi convert it to our own error type CliError.

With the From imps done, we ony need to make two sma tweaks to our

search function: the return type and the “not foundˮ error. Here it is in fu:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, CliError> {

let mut found = vec![];
let input: Box<io::Read> = match *file_path {

None => Box::new(io::stdin()),
Some(ref file_path) => Box::new(fs::File::open(file_path

};
let mut rdr = csv::Reader::from_reader(input);
for row in rdr.decode::<Row>() {

let row = row?;
match row.population {

None => { } // skip it
Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

});
},

}
}
if found.is_empty() {

Err(CliError::NotFound)
} else {

Ok(found)
}

}

No other changes are necessary.

Adding functionaity

If youʼre anything ike me, writing generic code fees good because
generaizing stuff is coo! But sometimes, the juice isnʼt worth the squeeze.
Look at what we just did in the previous step:

�Defined a new error type.
�Added imps for Error, Display and two for From.

The big downside here is that our program didnʼt improve a whoe ot. Iʼm

personay fond of it because I ike using enums for representing errors, but
there is quite a bit of overhead to doing so, especiay in short programs ike
this.

One usefu aspect of using a custom error type ike weʼve done here is that

the main function can now choose to hande errors differenty. Previousy,

with Box<Error>, it didnʼt have much of a choice: just print the message.

Weʼre sti doing that here, but what if we wanted to, say, add a --quiet
fag? The --quiet fag shoud sience any verbose output.

Right now, if the program doesnʼt find a match, it wi output a message
saying so. This can be a itte cumsy, especiay if you intend for the
program to be used in she scripts.

So etʼs start by adding the fags. Like before, we need to tweak the usage

string and add a fag to the Args struct. The docopt crate does the rest:

static USAGE: &'static str = "
Usage: city-pop [options] [<data-path>] <city>
 city-pop --help

Options:
 -h, --help Show this usage message.
 -q, --quiet Don't show noisy messages.
";

struct Args {
arg_data_path: Option<String>,
arg_city: String,
flag_quiet: bool,

}

Now we just need to impement our “quietˮ functionaity. This requires us to

tweak the case anaysis in main:

match search(&args.arg_data_path, &args.arg_city) {
Err(CliError::NotFound) if args.flag_quiet => process::exit
Err(err) => fatal!("{}", err),
Ok(pops) => for pop in pops {

println!("{}, {}: {:?}", pop.city, pop.country, pop.
}

}

Certainy, we donʼt want to be quiet if there was an IO error or if the data
faied to parse. Therefore, we use case anaysis to check if the error type is

NotFound and if --quiet has been enabed. If the search faied, we sti

quit with an exit code (foowing grepʼs convention).

If we had stuck with Box<Error>, then it woud be pretty tricky to

impement the --quiet functionaity.

This pretty much sums up our case study. From here, you shoud be ready
to go out into the word and write your own programs and ibraries with
proper error handing.

The short story

Since this artice is ong, it is usefu to have a quick summary for error
handing in Rust. These are my “rues of thumb.ˮ They are emphaticay not
commandments. There are probaby good reasons to break every one of
these heuristics!

• If youʼre writing short exampe code that woud be overburdened by
error handing, itʼs probaby just fine to use unwrap (whether thatʼs
Result::unwrap, Option::unwrap or preferaby Option::expect).
Consumers of your code shoud know to use proper error handing. If
they donʼt, send them here!

• If youʼre writing a quick ʼnʼ dirty program, donʼt fee ashamed if you use

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

unwrap. Be warned: if it winds up in someone eseʼs hands, donʼt be
surprised if they are agitated by poor error messages!

• If youʼre writing a quick ʼnʼ dirty program and fee ashamed about
panicking anyway, then you shoud probaby use Box<Error> (or
Box<Error + Send + Sync>) as shown in exampes above. Another
promising aternative is the anyhow crate and its anyhow::Error type.
When using anyhow, your errors wi automaticay have backtraces
attached to them when using nighty Rust.

• Otherwise, in a program, define your own error types with appropriate
From and Error imps to make the ? operator macro more ergnomic.

• If youʼre writing a ibrary and your code can produce errors, define your
own error type and impement the std::error::Error trait. Where
appropriate, impement From to make both your ibrary code and the
caerʼs code easier to write. Because of Rustʼs coherence rues,
caers wi not be abe to imp From on your error type, so your ibrary
shoud do it.)

• Learn the combinators defined on Option and Result. Using them
excusivey can be a bit tiring at times, but Iʼve personay found a
heathy mix of the ? operator and combinators to be quite appeaing.
and_then, map and unwrap_or are my favorites.

A content is dua icensed under the UNLICENSE and MIT icenses.

Powered by Hugo & Pixy

https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
https://burntsushi.net/index.xml
http://gohugo.io/
http://gohugo.io/
https://github.com/azmelanar/hugo-theme-pixyll
https://github.com/azmelanar/hugo-theme-pixyll

