
About Projects GitHub Sponsor MeAndrew Gaant's Bog

Error Handing in Rust
May 14, 2015

Like most programming anguages, Rust encourages the programmer to
hande errors in a particuar way. Generay speaking, error handing is
divided into two broad categories: exceptions and return vaues. Rust opts
for return vaues.

In this artice, I intend to provide a comprehensive treatment of how to dea
with errors in Rust. More than that, I wi attempt to introduce error handing
one piece at a time so that youʼ come away with a soid working
knowedge of how everything fits together.

When done naivey, error handing in Rust can be verbose and annoying.
This artice wi expore those stumbing bocks and demonstrate how to use
the standard ibrary to make error handing concise and ergonomic.

Target audience: Those new to Rust that donʼt know its error handing
idioms yet. Some famiiarity with Rust is hepfu. This artice makes heavy
use of some standard traits and some very ight use of cosures and
macros.)

Update 2018/04/14: Exampes were converted to ?, and some text was
added to give historica context on the change.

Update 2020/01/03: A recommendation to use failure was removed

and repaced with a recommendation to use either Box<Error + Send +
Sync> or anyhow.

Brief notes

A code sampes in this post compie with Rust 1.0.0-beta.5. They shoud
continue to work as Rust 1.0 stabe is reeased.

A code can be found and compied in my bogʼs repository.

https://burntsushi.net/about/
https://burntsushi.net/about/
https://burntsushi.net/projects/
https://burntsushi.net/projects/
https://github.com/BurntSushi
https://github.com/BurntSushi
https://github.com/sponsors/BurntSushi
https://github.com/sponsors/BurntSushi
https://blog.burntsushi.net/
https://blog.burntsushi.net/
https://crates.io/crates/failure
https://crates.io/crates/failure
https://crates.io/crates/failure
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://github.com/BurntSushi/blog/tree/master/code/rust-error-handling
https://github.com/BurntSushi/blog/tree/master/code/rust-error-handling

The Rust Book has a section on error handing. It gives a very brief
overview, but doesnʼt (yet) go into enough detai, particuary when working
with some of the more recent additions to the standard ibrary.

Run the code!

If youʼd ike to run any of the code sampes beow, then the foowing shoud
work:

$ git clone git://github.com/BurntSushi/blog
$ cd blog/code/rust-error-handling
$ cargo run --bin NAME-OF-CODE-SAMPLE [args ...]

Each code sampe is abeed with its name. Code sampes without a name
arenʼt avaiabe to be run this way. Sorry.)

Tabe of Contents

This artice is very ong, mosty because I start at the very beginning with
sum types and combinators, and try to motivate the way Rust does error
handing incrementay. As such, programmers with experience in other
expressive type systems may want to jump around. Hereʼs my very brief
guide:

• If youʼre new to Rust, systems programming and expressive type
systems, then start at the beginning and work your way through. If
youʼre brand new, you shoud probaby read through the Rust book
first.)

• If youʼve never seen Rust before but have experience with functiona
anguages (“agebraic data typesˮ and “combinatorsˮ make you fee
warm and fuzzy), then you can probaby skip right over the basics and
start by skimming mutipe error types, and work your way into a fu
read of standard ibrary error traits. Skimming the basics might be a
good idea to just get a fee for the syntax if youʼve reay never seen
Rust before.) You may need to consut the Rust book for hep with Rust
cosures and macros.

• If youʼre aready experienced with Rust and just want the skinny on
error handing, then you can probaby skip straight to the end. You may
find it usefu to skim the case study for exampes.

http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/error-handling.html
http://doc.rust-lang.org/1.0.0-beta.5/book/error-handling.html
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/
http://doc.rust-lang.org/1.0.0-beta.5/book/

• The Basics
◦ Unwrapping expained
◦ The Option type

▪ Composing Option<T> vaues
◦ The Result type

▪ Parsing integers
▪ The Result type aias idiom

◦ A brief interude: unwrapping isnʼt evi
• Working with mutipe error types

◦ Composing Option and Result
◦ The imits of combinators
◦ Eary returns
◦ The try! macro/? operator
◦ Defining your own error type

• Standard ibrary traits used for error handing
◦ The Error trait
◦ The From trait
◦ The rea try! macro/? operator
◦ Composing custom error types
◦ Advice for ibrary writers

• Case study: A program to read popuation data
◦ Itʼs on Github
◦ Initia setup
◦ Argument parsing
◦ Writing the ogic
◦ Error handing with Box<Error>
◦ Reading from stdin
◦ Error handing with a custom type
◦ Adding functionaity

• The short story

The Basics

I ike to think of error handing as using case anaysis to determine whether
a computation was successfu or not. As we wi see, the key to ergonomic
error handing is reducing the amount of expicit case anaysis the
programmer has to do whie keeping code composabe.

Keeping code composabe is important, because without that requirement,

we coud panic whenever we come across something unexpected. (panic

https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
https://burntsushi.net/rust-error-handling/#composing-option-t-values
http://doc.rust-lang.org/std/macro.panic!.html
http://doc.rust-lang.org/std/macro.panic!.html
http://doc.rust-lang.org/std/macro.panic!.html

causes the current task to unwind, and in most cases, the entire program
aborts.) Hereʼs an exampe:

panic-simple

// Guess a number between 1 and 10.
// If it matches the number I had in mind, return true. Else, return false.
fn guess(n: i32) -> bool {

if n < 1 || n > 10 {
panic!("Invalid number: {}", n);

}
n == 5

}

fn main() {
guess(11);

}

If you ike, itʼs easy to run this code.)

If you try running this code, the program wi crash with a message ike this:

thread '<main>' panicked at 'Invalid number: 11', src/bin/panic-simple.rs:5

Hereʼs another exampe that is sighty ess contrived. A program that
accepts an integer as an argument, doubes it and prints it.

unwrap-double

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(1).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
println!("{}", 2 * n);

}

// $ cargo run --bin unwrap-double 5

// 10

If you give this program zero arguments (error 1) or if the first argument isnʼt
an integer (error 2, the program wi panic just ike in the first exampe.

I ike to think of this stye of error handing as simiar to a bu running
through a china shop. The bu wi get to where it wants to go, but it wi
trampe everything in the process.

Unwrapping expained

In the previous exampe (unwrap-double), I caimed that the program
woud simpy panic if it reached one of the two error conditions, yet, the

program does not incude an expicit ca to panic ike the first exampe

(panic-simple). This is because the panic is embedded in the cas to

unwrap.

To “unwrapˮ something in Rust is to say, “Give me the resut of the
computation, and if there was an error, just panic and stop the program.ˮ It
woud be better if I just showed the code for unwrapping because it is so

simpe, but to do that, we wi first need to expore the Option and Result
types. Both of these types have a method caed unwrap defined on them.

The Option type

The Option type is defined in the standard ibrary:

option-def

enum Option<T> {
None,
Some(T),

}

The Option type is a way to use Rustʼs type system to express the
possibiity of absence. Encoding the possibiity of absence into the type
system is an important concept because it wi cause the compier to force
the programmer to hande that absence. Letʼs take a ook at an exampe that
tries to find a character in a string:

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html

option-ex-string-find

// Searches `haystack` for the Unicode character `needle`. If one is found, t
// byte offset of the character is returned. Otherwise, `None` is returned.
fn find(haystack: &str, needle: char) -> Option<usize> {

for (offset, c) in haystack.char_indices() {
if c == needle {

return Some(offset);
}

}
None

}

Pro-tip: donʼt use this code. Instead, use the find method from the
standard ibrary.)

Notice that when this function finds a matching character, it doesnʼt just

return the offset. Instead, it returns Some(offset). Some is a variant or a

vaue constructor for the Option type. You can think of it as a function with

the type fn<T>(value: T) -> Option<T>. Correspondingy, None is aso

a vaue constructor, except it has no arguments. You can think of None as a

function with the type fn<T>() -> Option<T>.

This might seem ike much ado about nothing, but this is ony haf of the

story. The other haf is using the find function weʼve written. Letʼs try to
use it to find the extension in a fie name.

option-ex-string-find

fn main_find() {
let file_name = "foobar.rs";
match find(file_name, '.') {

None => println!("No file extension found."),
Some(i) => println!("File extension: {}", &file_name

}
}

This code uses pattern matching to do case anaysis on the

Option<usize> returned by the find function. In fact, case anaysis is the

http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/std/primitive.str.html#method.find
http://doc.rust-lang.org/1.0.0-beta.5/book/patterns.html
http://doc.rust-lang.org/1.0.0-beta.5/book/patterns.html

ony way to get at the vaue stored inside an Option<T>. This means that

you, as the programmer, must hande the case when an Option<T> is None
instead of Some(t).

But wait, what about unwrap used in unwrap-double? There was no case

anaysis there! Instead, the case anaysis was put inside the unwrap method
for you. You coud define it yoursef if you want:

option-def-unwrap

enum Option<T> {
None,
Some(T),

}

impl<T> Option<T> {
fn unwrap(self) -> T {

match self {
Option::Some(val) => val,
Option::None =>
panic!("called `Option::unwrap()` on a `None` value"

}
}

}

The unwrap method abstracts away the case anaysis. This is precisey the

thing that makes unwrap ergonomic to use. Unfortunatey, that panic!
means that unwrap is not composabe: it is the bu in the china shop.

Composing Option<T> vaues

In option-ex-string-find we saw how to use find to discover the

extension in a fie name. Of course, not a fie names have a . in them, so
itʼs possibe that the fie name has no extension. This possibiity of absence

is encoded into the types using Option<T>. In other words, the compier
wi force us to address the possibiity that an extension does not exist. In
our case, we just print out a message saying as such.

Getting the extension of a fie name is a pretty common operation, so it

makes sense to put it into a function:

option-ex-string-find

// Returns the extension of the given file name, where the extension is defin
// as all characters succeeding the first `.`.
// If `file_name` has no `.`, then `None` is returned.
fn extension_explicit(file_name: &str) -> Option<&str> {

match find(file_name, '.') {
None => None,
Some(i) => Some(&file_name[i+1..]),

}
}

Pro-tip: donʼt use this code. Use the extension method in the standard
ibrary instead.)

The code stays simpe, but the important thing to notice is that the type of

find forces us to consider the possibiity of absence. This is a good thing
because it means the compier wonʼt et us accidentay forget about the
case where a fie name doesnʼt have an extension. On the other hand, doing

expicit case anaysis ike weʼve done in extension_explicit every time
can get a bit tiresome.

In fact, the case anaysis in extension_explicit foows a very common

pattern: map a function on to the vaue inside of an Option<T>, uness the

option is None, in which case, just return None.

Rust has parametric poymorphism, so it is very easy to define a combinator
that abstracts this pattern:

option-map

fn map<F, T, A>(option: Option<T>, f: F) -> Option<A> where

match option {
None => None,
Some(value) => Some(f(value)),

}
}

http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/path/struct.Path.html#method.extension
http://doc.rust-lang.org/std/path/struct.Path.html#method.extension

Indeed, map is defined as a method on Option<T> in the standard ibrary.

Armed with our new combinator, we can rewrite our extension_explicit
method to get rid of the case anaysis:

option-ex-string-find

// Returns the extension of the given file name, where the extension is defin
// as all characters succeeding the first `.`.
// If `file_name` has no `.`, then `None` is returned.
fn extension(file_name: &str) -> Option<&str> {

find(file_name, '.').map(|i| &file_name[i+1..])
}

One other pattern that I find is very common is assigning a defaut vaue to

the case when an Option vaue is None. For exampe, maybe your program

assumes that the extension of a fie is rs even if none is present. As you
might imagine, the case anaysis for this is not specific to fie extensions—it

can work with any Option<T>:

option-unwrap-or

fn unwrap_or<T>(option: Option<T>, default: T) -> T {
match option {

None => default,
Some(value) => value,

}
}

The trick here is that the defaut vaue must have the same type as the vaue

that might be inside the Option<T>. Using it is dead simpe in our case:

option-ex-string-find

fn main() {
assert_eq!(extension("foobar.csv").unwrap_or("rs"), "csv"
assert_eq!(extension("foobar").unwrap_or("rs"), "rs");

}

http://doc.rust-lang.org/std/option/enum.Option.html#method.map
http://doc.rust-lang.org/std/option/enum.Option.html#method.map

Note that unwrap_or is defined as a method on Option<T> in the standard
ibrary, so we use that here instead of the free-standing function we defined

above. Donʼt forget to check out the more genera unwrap_or_else
method.)

There is one more combinator that I think is worth paying specia attention

to: and_then. It makes it easy to compose distinct computations that admit
the possibiity of absence. For exampe, much of the code in this section is
about finding an extension given a fie name. In order to do this, you first
need the fie name which is typicay extracted from a fie path. Whie most

fie paths have a fie name, not a of them do. For exampe, ., .. or /.

So, we are tasked with the chaenge of finding an extension given a fie
path. Letʼs start with expicit case anaysis:

option-ex-string-find

fn file_path_ext_explicit(file_path: &str) -> Option<&str> {
match file_name(file_path) {

None => None,
Some(name) => match extension(name) {

None => None,
Some(ext) => Some(ext),

}
}

}

fn file_name(file_path: &str) -> Option<&str> {
// implementation elided
unimplemented!()

}

You might think that we coud just use the map combinator to reduce the

case anaysis, but its type doesnʼt quite fit. Namey, map takes a function
that does something ony with the inner vaue. The resut of that function is

then aways rewrapped with Some. Instead, we need something ike map, but

which aows the caer to return another Option. Its generic impementation

is even simper than map:

http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap_or_else

option-and-then

fn and_then<F, T, A>(option: Option<T>, f: F) -> Option<A>
where F: FnOnce(T) -> Option<A> {

match option {
None => None,
Some(value) => f(value),

}
}

Now we can rewrite our file_path_ext function without expicit case
anaysis:

option-ex-string-find

fn file_path_ext(file_path: &str) -> Option<&str> {
file_name(file_path).and_then(extension)

}

The Option type has many other combinators defined in the standard
ibrary. It is a good idea to skim this ist and famiiarize yoursef with whatʼs
avaiabe—they can often reduce case anaysis for you. Famiiarizing
yoursef with these combinators wi pay dividends because many of them

are aso defined (with simiar semantics) for Result, which we wi tak
about next.

Combinators make using types ike Option ergonomic because they reduce
expicit case anaysis. They are aso composabe because they permit the
caer to hande the possibiity of absence in their own way. Methods ike

unwrap remove choices because they wi panic if Option<T> is None.

The Result type

The Result type is aso defined in the standard ibrary:

result-def

enum Result<T, E> {
Ok(T),

http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/
http://doc.rust-lang.org/std/result/

Err(E),
}

The Result type is a richer version of Option. Instead of expressing the

possibiity of absence ike Option does, Result expresses the possibiity
of error. Usuay, the error is used to expain why the resut of some

computation faied. This is a stricty more genera form of Option. Consider
the foowing type aias, which is semanticay equivaent to the rea

Option<T> in every way:

option-as-result

type Option<T> = Result<T, ()>;

This fixes the second type parameter of Result to aways be ()
(pronounced “unitˮ or “empty tupeˮ). Exacty one vaue inhabits the ()
type: (). Yup, the type and vaue eve terms have the same notation!

The Result type is a way of representing one of two possibe outcomes in

a computation. By convention, one outcome is meant to be expected or “Okˮ
whie the other outcome is meant to be unexpected or “Err .ˮ

Just ike Option, the Result type aso has an unwrap method defined in
the standard ibrary. Letʼs define it:

result-def

impl<T, E: ::std::fmt::Debug> Result<T, E> {
fn unwrap(self) -> T {

match self {
Result::Ok(val) => val,
Result::Err(err) =>
panic!("called `Result::unwrap()` on an `Err` value:

}
}

}

This is effectivey the same as our definition for Option::unwrap, except it

incudes the error vaue in the panic! message. This makes debugging

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap

easier, but it aso requires us to add a Debug constraint on the E type
parameter (which represents our error type). Since the vast majority of

types shoud satisfy the Debug constraint, this tends to work out in practice.

(Debug on a type simpy means that thereʼs a reasonabe way to print a
human readabe description of vaues with that type.)

OK, etʼs move on to an exampe.

Parsing integers

The Rust standard ibrary makes converting strings to integers dead simpe.
Itʼs so easy in fact, that it is very tempting to write something ike the
foowing:

result-num-unwrap

fn double_number(number_str: &str) -> i32 {
2 * number_str.parse::<i32>().unwrap()

}

fn main() {
let n: i32 = double_number("10");
assert_eq!(n, 20);

}

At this point, you shoud be skeptica of caing unwrap. For exampe, if the
string doesnʼt parse as a number, youʼ get a panic:

thread '<main>' panicked at 'called `Result::unwrap()` on an `Err` value: Par

This is rather unsighty, and if this happened inside a ibrary youʼre using,
you might be understandaby annoyed. Instead, we shoud try to hande the
error in our function and et the caer decide what to do. This means

changing the return type of double_number. But to what? We, that

requires ooking at the signature of the parse method in the standard
ibrary:

impl str {

http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/fmt/trait.Debug.html
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse
http://doc.rust-lang.org/std/primitive.str.html#method.parse

fn parse<F: FromStr>(&self) -> Result<F, F::Err>;
}

Hmm. So we at east know that we need to use a Result. Certainy, itʼs

possibe that this coud have returned an Option. After a, a string either
parses as a number or it doesnʼt, right? Thatʼs certainy a reasonabe way to
go, but the impementation internay distinguishes why the string didnʼt
parse as an integer. Whether itʼs an empty string, an invaid digit, too big or

too sma.) Therefore, using a Result makes sense because we want to
provide more information than simpy “absence.ˮ We want to say why the
parsing faied. You shoud try to emuate this ine of reasoning when faced

with a choice between Option and Result. If you can provide detaied
error information, then you probaby shoud. Weʼ see more on this ater.)

OK, but how do we write our return type? The parse method as defined
above is generic over a the different number types defined in the standard
ibrary. We coud (and probaby shoud) aso make our function generic, but

etʼs favor expicitness for the moment. We ony care about i32, so we need

to find its impementation of FromStr (do a CTRL-F in your browser for

“FromStrˮ) and ook at its associated type Err. We did this so we can find

the concrete error type. In this case, itʼs std::num::ParseIntError.
Finay, we can rewrite our function:

result-num-no-unwrap

use std::num::ParseIntError;

fn double_number(number_str: &str) -> Result<i32, ParseIntError
match number_str.parse::<i32>() {

Ok(n) => Ok(2 * n),
Err(err) => Err(err),

}
}

fn main() {
match double_number("10") {

Ok(n) => assert_eq!(n, 20),
Err(err) => println!("Error: {:?}", err),

http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/std/primitive.i32.html
http://doc.rust-lang.org/1.0.0-beta.5/book/associated-types.html
http://doc.rust-lang.org/1.0.0-beta.5/book/associated-types.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

}
}

This is a itte better, but now weʼve written a ot more code! The case
anaysis has once again bitten us.

Combinators to the rescue! Just ike Option, Result has ots of
combinators defined as methods. There is a arge intersection of common

combinators between Result and Option. In particuar, map is part of that
intersection:

result-num-no-unwrap-map

use std::num::ParseIntError;

fn double_number(number_str: &str) -> Result<i32, ParseIntError
number_str.parse::<i32>().map(|n| 2 * n)

}

fn main() {
match double_number("10") {

Ok(n) => assert_eq!(n, 20),
Err(err) => println!("Error: {:?}", err),

}
}

The usua suspects are a there for Result, incuding unwrap_or and

and_then. Additionay, since Result has a second type parameter, there

are combinators that affect ony the error type, such as map_err (instead of

map) and or_else (instead of and_then).

The Result type aias idiom

In the standard ibrary, you may frequenty see types ike Result<i32>. But

wait, we defined Result to have two type parameters. How can we get

away with ony specifying one? The key is to define a Result type aias that
fixes one of the type parameters to a particuar type. Usuay the fixed type
is the error type. For exampe, our previous exampe parsing integers coud
be rewritten ike this:

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.and_then
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else
http://doc.rust-lang.org/std/result/enum.Result.html#method.or_else

result-num-no-unwrap-map-alias

use std::num::ParseIntError;
use std::result;

type Result<T> = result::Result<T, ParseIntError>;

fn double_number(number_str: &str) -> Result<i32> {
unimplemented!();

}

Why woud we do this? We, if we have a ot of functions that coud return

ParseIntError, then itʼs much more convenient to define an aias that

aways uses ParseIntError so that we donʼt have to write it out a the
time.

The most prominent pace this idiom is used in the standard ibrary is with

io::Result. Typicay, one writes io::Result<T>, which makes it cear

that youʼre using the io modueʼs type aias instead of the pain definition

from std::result. This idiom is aso used for fmt::Result.)

A brief interude: unwrapping isnʼt evi

If youʼve been foowing aong, you might have noticed that Iʼve taken a

pretty hard ine against caing methods ike unwrap that coud panic and
abort your program. Generay speaking, this is good advice.

However, unwrap can sti be used judiciousy. What exacty justifies use of

unwrap is somewhat of a grey area and reasonabe peope can disagree. Iʼ
summarize some of my opinions on the matter.

• In exampes and quick ʼnʼ dirty code. Sometimes youʼre writing
exampes or a quick program, and error handing simpy isnʼt important.
Beating the convenience of unwrap can be hard in such scenarios, so it
is very appeaing.

• When panicking indicates a bug in the program. When the invariants
of your code shoud prevent a certain case from happening (ike, say,
popping from an empty stack), then panicking can be permissibe. This
is because it exposes a bug in your program. This can be expicit, ike
from an assert! faiing, or it coud be because your index into an array

http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

was out of bounds.

This is probaby not an exhaustive ist. Moreover, when using an Option, it

is often better to use its expect method. expect does exacty the same

thing as unwrap, except it prints a message you give to expect. This makes
the resuting panic a bit nicer to dea with, since it wi show your message

instead of “caed unwrap on a None vaue.ˮ

My advice bois down to this: use good judgment. Thereʼs a reason why the
words “never do Xˮ or “Y is considered harmfuˮ donʼt appear in my writing.
There are trade offs to a things, and it is up to you as the programmer to
determine what is acceptabe for your use cases. My goa is ony to hep
you evauate trade offs as accuratey as possibe.

Now that weʼve covered the basics of error handing in Rust, and Iʼve said
my piece about unwrapping, etʼs start exporing more of the standard
ibrary.

Working with mutipe error types

Thus far, weʼve ooked at error handing where everything was either an

Option<T> or a Result<T, SomeError>. But what happens when you

have both an Option and a Result? Or what if you have a Result<T,
Error1> and a Result<T, Error2>? Handing composition of distinct
error types is the next chaenge in front of us, and it wi be the major theme
throughout the rest of this artice.

Composing Option and Result

So far, Iʼve taked about combinators defined for Option and combinators

defined for Result. We can use these combinators to compose resuts of
different computations without doing expicit case anaysis.

Of course, in rea code, things arenʼt aways as cean. Sometimes you have

a mix of Option and Result types. Must we resort to expicit case anaysis,
or can we continue using combinators?

For now, etʼs revisit one of the first exampes in this artice:

http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

use std::env;

fn main() {
let mut argv = env::args();
let arg: String = argv.nth(1).unwrap(); // error 1
let n: i32 = arg.parse().unwrap(); // error 2
println!("{}", 2 * n);

}

// $ cargo run --bin unwrap-double 5
// 10

Given our new found knowedge of Option, Result and their various
combinators, we shoud try to rewrite this so that errors are handed
propery and the program doesnʼt panic if thereʼs an error.

The tricky aspect here is that argv.nth(1) produces an Option whie

arg.parse() produces a Result. These arenʼt directy composabe. When

faced with both an Option and a Result, the soution is usuay to convert

the Option to a Result. In our case, the absence of a command ine

parameter (from env::args()) means the user didnʼt invoke the program

correcty. We coud just use a String to describe the error. Letʼs try:

error-double-string

use std::env;

fn double_arg(mut argv: env::Args) -> Result<i32, String> {
argv.nth(1)

.ok_or("Please give at least one argument".to_owned())

.and_then(|arg| arg.parse::<i32>().map_err(|err| err

.map(|i| i * 2)
}

fn main() {
match double_arg(env::args()) {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

There are a coupe new things in this exampe. The first is the use of the

Option::ok_or combinator. This is one way to convert an Option into a

Result. The conversion requires you to specify what error to use if Option
is None. Like the other combinators weʼve seen, its definition is very simpe:

option-ok-or-def

fn ok_or<T, E>(option: Option<T>, err: E) -> Result<T, E> {
match option {

Some(val) => Ok(val),
None => Err(err),

}
}

The other new combinator used here is Result::map_err. This is just ike

Result::map, except it maps a function on to the error portion of a Result
vaue. If the Result is an Ok(...) vaue, then it is returned unmodified.

We use map_err here because it is necessary for the error types to remain

the same (because of our use of and_then). Since we chose to convert the

Option<String> (from argv.nth(1)) to a Result<String, String>, we

must aso convert the ParseIntError from arg.parse() to a String.

The imits of combinators

Doing IO and parsing input is a very common task, and itʼs one that I
personay have done a ot of in Rust. Therefore, we wi use (and continue
to use) IO and various parsing routines to exempify error handing.

Letʼs start simpe. We are tasked with opening a fie, reading a of its

contents and converting its contents to a number. Then we mutipy it by 2
and print the output.

Athough Iʼve tried to convince you not to use unwrap, it can be usefu to

first write your code using unwrap. It aows you to focus on your probem
instead of the error handing, and it exposes the points where proper error

http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err
http://doc.rust-lang.org/std/result/enum.Result.html#method.map_err

handing need to occur. Letʼs start there so we can get a hande on the
code, and then refactor it to use better error handing.

io-basic-unwrap

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> i32 {
let mut file = File::open(file_path).unwrap(); // error 1
let mut contents = String::new();
file.read_to_string(&mut contents).unwrap(); // error 2
let n: i32 = contents.trim().parse().unwrap(); // error 3
2 * n

}

fn main() {
let doubled = file_double("foobar");
println!("{}", doubled);

}

N.B. The AsRef<Path> is used because those are the same bounds used

on std::fs::File::open. This makes it ergnomic to use any kind of string
as a fie path.)

There are three different errors that can occur here:

�A probem opening the fie.
�A probem reading data from the fie.
�A probem parsing the data as a number.

The first two probems are described via the std::io::Error type. We

know this because of the return types of std::fs::File::open and

std::io::Read::read_to_string. Note that they both use the Result
type aias idiom described previousy. If you cick on the Result type, youʼ

see the type aias, and consequenty, the underying io::Error type.) The

third probem is described by the std::num::ParseIntError type. The

io::Error type in particuar is pervasive throughout the standard ibrary.
You wi see it again and again.

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/trait.Read.html#method.read_to_string
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html

Letʼs start the process of refactoring the file_double function. To make
this function composabe with other components of the program, it shoud
not panic if any of the above error conditions are met. Effectivey, this
means that the function shoud return an error if any of its operations fai.

Our probem is that the return type of file_double is i32, which does not
give us any usefu way of reporting an error. Thus, we must start by

changing the return type from i32 to something ese.

The first thing we need to decide: shoud we use Option or Result? We

certainy coud use Option very easiy. If any of the three errors occur, we

coud simpy return None. This wi work and it is better than panicking, but
we can do a ot better. Instead, we shoud pass some detai about the error
that occurred. Since we want to express the possibiity of error, we shoud

use Result<i32, E>. But what shoud E be? Since two different types of
errors can occur, we need to convert them to a common type. One such

type is String. Letʼs see how that impacts our code:

io-basic-error-string

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
File::open(file_path)

.map_err(|err| err.to_string())

.and_then(|mut file| {
let mut contents = String::new();
file.read_to_string(&mut contents)

.map_err(|err| err.to_string())

.map(|_| contents)
})
.and_then(|contents| {

contents.trim().parse::<i32>()
.map_err(|err| err.to_string())

})
.map(|n| 2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

This code ooks a bit hairy. It can take quite a bit of practice before code ike
this becomes easy to write. The way I write it is by foowing the types. As

soon as I changed the return type of file_double to Result<i32,
String>, I had to start ooking for the right combinators. In this case, we

ony used three different combinators: and_then, map and map_err.

and_then is used to chain mutipe computations where each computation
coud return an error. After opening the fie, there are two more
computations that coud fai: reading from the fie and parsing the contents

as a number. Correspondingy, there are two cas to and_then.

map is used to appy a function to the Ok(...) vaue of a Result. For

exampe, the very ast ca to map mutipies the Ok(...) vaue (which is an

i32) by 2. If an error had occurred before that point, this operation woud

have been skipped because of how map is defined.

map_err is the trick the makes a of this work. map_err is just ike map,

except it appies a function to the Err(...) vaue of a Result. In this case,

we want to convert a of our errors to one type: String. Since both

io::Error and num::ParseIntError impement ToString, we can ca

the to_string() method to convert them.

With a of that said, the code is sti hairy. Mastering use of combinators is
important, but they have their imits. Letʼs try a different approach: eary
returns.

Eary returns

Iʼd ike to take the code from the previous section and rewrite it using eary
returns. Eary returns et you exit the function eary. We canʼt return eary in

file_double from inside another cosure, so weʼ need to revert back to
expicit case anaysis.

io-basic-error-string-early-return

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = match File::open(file_path) {

Ok(file) => file,
Err(err) => return Err(err.to_string()),

};
let mut contents = String::new();
if let Err(err) = file.read_to_string(&mut contents) {

return Err(err.to_string());
}
let n: i32 = match contents.trim().parse() {

Ok(n) => n,
Err(err) => return Err(err.to_string()),

};
Ok(2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

Reasonabe peope can disagree over whether this code is better than the
code that uses combinators, but if you arenʼt famiiar with the combinator
approach, this code ooks simper to read to me. It uses expicit case

anaysis with match and if let. If an error occurs, it simpy stops
executing the function and returns the error (by converting it to a string).

Isnʼt this a step backwards though? Previousy, I said that the key to
ergonomic error handing is reducing expicit case anaysis, yet weʼve
reverted back to expicit case anaysis here. It turns out, there are mutipe

ways to reduce expicit case anaysis. Combinators arenʼt the ony way.

The try! macro/? operator

In oder versions of Rust Rust 1.12 or oder), a cornerstone of error handing

in Rust is the try! macro. The try! macro abstracts case anaysis just ike
combinators, but unike combinators, it aso abstracts contro fow. Namey,
it can abstract the eary return pattern seen above.

Here is a simpified definition of a try! macro:

try-def-simple

macro_rules! try {
($e:expr) => (match $e {

Ok(val) => val,
Err(err) => return Err(err),

});
}

The rea definition is a bit more sophisticated. We wi address that ater.)

Using the try! macro makes it very easy to simpify our ast exampe. Since
it does the case anaysis and the eary return for us, we get tighter code that
is easier to read:

io-basic-error-try

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = try!(File::open(file_path).map_err(|e| e.
let mut contents = String::new();
try!(file.read_to_string(&mut contents).map_err(|e| e.to_string
let n = try!(contents.trim().parse::<i32>().map_err(|e|
Ok(2 * n)

}

http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/macro.try!.html

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

The map_err cas are sti necessary given our definition of try!. This is

because the error types sti need to be converted to String. The good

news is that we wi soon earn how to remove those map_err cas! The bad
news is that we wi need to earn a bit more about a coupe important traits

in the standard ibrary before we can remove the map_err cas.

In newer versions of Rust Rust 1.13 or newer), the try! macro was repaced

with the ? operator. Whie it is intended to grow new powers that we wonʼt

cover here, using ? instead of try! is simpe:

io-basic-error-question

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(|e| e.to_string
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_string
let n = contents.trim().parse::<i32>().map_err(|e| e.to_string
Ok(2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {}", err),

}
}

Defining your own error type

Before we dive into some of the standard ibrary error traits, Iʼd ike to wrap

up this section by removing the use of String as our error type in the
previous exampes.

Using String as we did in our previous exampes is convenient because itʼs
easy to convert errors to strings, or even make up your own errors as

strings on the spot. However, using String for your errors has some
downsides.

The first downside is that the error messages tend to cutter your code. Itʼs
possibe to define the error messages esewhere, but uness youʼre
unusuay discipined, it is very tempting to embed the error message into
your code. Indeed, we did exacty this in a previous exampe.

The second and more important downside is that Strings are ossy. That is,
if a errors are converted to strings, then the errors we pass to the caer
become competey opaque. The ony reasonabe thing the caer can do

with a String error is show it to the user. Certainy, inspecting the string to
determine the type of error is not robust. Admittedy, this downside is far
more important inside of a ibrary as opposed to, say, an appication.)

For exampe, the io::Error type embeds an io::ErrorKind, which is
structured data that represents what went wrong during an IO operation.
This is important because you might want to react differenty depending on

the error. (e.g., A BrokenPipe error might mean quitting your program

gracefuy whie a NotFound error might mean exiting with an error code

and showing an error to the user.) With io::ErrorKind, the caer can
examine the type of an error with case anaysis, which is stricty superior to

trying to tease out the detais of an error inside of a String.

Instead of using a String as an error type in our previous exampe of
reading an integer from a fie, we can define our own error type that
represents errors with structured data. We endeavor to not drop information
from underying errors in case the caer wants to inspect the detais.

The idea way to represent one of many possibiities is to define our own

sum type using enum. In our case, an error is either an io::Error or a

num::ParseIntError, so a natura definition arises:

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html

io-basic-error-custom

use std::io;
use std::num;

// We derive `Debug` because all types should probably derive `Debug`.
// This gives us a reasonable human readable description of `CliError` values
#[derive(Debug)]
enum CliError {

Io(io::Error),
Parse(num::ParseIntError),

}

Tweaking our code is very easy. Instead of converting errors to strings, we

simpy convert them to our CliError type using the corresponding vaue
constructor:

io-basic-error-custom

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(CliError::Io
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(CliError::Io)
let n: i32 = contents.trim().parse().map_err(CliError::Parse
Ok(2 * n)

}

fn main() {
match file_double("foobar") {

Ok(n) => println!("{}", n),
Err(err) => println!("Error: {:?}", err),

}
}

The ony change here is switching map_err(|e| e.to_string()) (which

converts errors to strings) to map_err(CliError::Io) or

map_err(CliError::Parse). The caer gets to decide the eve of detai

to report to the user. In effect, using a String as an error type removes

choices from the caer whie using a custom enum error type ike CliError
gives the caer a of the conveniences as before in addition to structured
data describing the error.

A rue of thumb is to define your own error type, but a String error type
wi do in a pinch, particuary if youʼre writing an appication. If youʼre
writing a ibrary, defining your own error type shoud be strongy preferred
so that you donʼt remove choices from the caer unnecessariy.

Standard ibrary traits used for error
handing

The standard ibrary defines two integra traits for error handing:

std::error::Error and std::convert::From. Whie Error is designed

specificay for genericay describing errors, the From trait serves a more
genera roe for converting vaues between two distinct types.

The Error trait

The Error trait is defined in the standard ibrary:

error-def

use std::fmt::{Debug, Display};

trait Error: Debug + Display {
/// A short description of the error.
fn description(&self) -> &str;

/// The lower level cause of this error, if any.
fn cause(&self) -> Option<&Error> { None }

}

This trait is super generic because it is meant to be impemented for a

http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html

types that represent errors. This wi prove usefu for writing composabe
code as weʼ see ater. Otherwise, the trait aows you to do at east the
foowing things:

• Obtain a Debug representation of the error.
• Obtain a user-facing Display representation of the error.
• Obtain a short description of the error (via the description method).
• Inspect the causa chain of an error, if one exists (via the cause

method).

The first two are a resut of Error requiring imps for both Debug and

Display. The atter two are from the two methods defined on Error. The

power of Error comes from the fact that a error types imp Error, which
means errors can be existentiay quantified as a trait object. This manifests

as either Box<Error> or &Error. Indeed, the cause method returns an

&Error, which is itsef a trait object. Weʼ revisit the Error traitʼs utiity as a
trait object ater.

For now, it suffices to show an exampe impementing the Error trait. Letʼs
use the error type we defined in the previous section:

error-impl

use std::io;
use std::num;

// We derive `Debug` because all types should probably derive `Debug`.
// This gives us a reasonable human readable description of `CliError` values
#[derive(Debug)]
enum CliError {

Io(io::Error),
Parse(num::ParseIntError),

}

This particuar error type represents the possibiity of two types of errors
occurring: an error deaing with I/O or an error converting a string to a
number. The error coud represent as many error types as you want by

adding new variants to the enum definition.

Impementing Error is pretty straight-forward. Itʼs mosty going to be a ot

http://doc.rust-lang.org/1.0.0-beta.5/book/trait-objects.html
http://doc.rust-lang.org/1.0.0-beta.5/book/trait-objects.html

expicit case anaysis.

error-impl

use std::error;
use std::fmt;

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match *self {
// Both underlying errors already impl `Display`, so we defer to
// their implementations.
CliError::Io(ref err) => write!(f, "IO error: {}"
CliError::Parse(ref err) => write!(f, "Parse error: {}"

}
}

}

impl error::Error for CliError {
fn description(&self) -> &str {

// Both underlying errors already impl `Error`, so we defer to their
// implementations.
match *self {

CliError::Io(ref err) => err.description(),
// Normally we can just write `err.description()`, but the error
// type has a concrete method called `description`, which conflic
// with the trait method. For now, we must explicitly call
// `description` through the `Error` trait.
CliError::Parse(ref err) => error::Error::description

}
}

fn cause(&self) -> Option<&error::Error> {
match *self {

// N.B. Both of these implicitly cast `err` from their concrete
// types (either `&io::Error` or `&num::ParseIntError`)
// to a trait object `&Error`. This works because both error type
// implement `Error`.
CliError::Io(ref err) => Some(err),

CliError::Parse(ref err) => Some(err),
}

}
}

I note that this is a very typica impementation of Error: match on your

different error types and satisfy the contracts defined for description and

cause.

The From trait

The std::convert::From trait is defined in the standard ibrary:

from-def

trait From<T> {
fn from(T) -> Self;

}

Deiciousy simpe, yes? From is very usefu because it gives us a generic

way to tak about conversion from a particuar type T to some other type (in

this case, “some other typeˮ is the subject of the imp, or Self). The crux of

From is the set of impementations provided by the standard ibrary.

Here are a few simpe exampes demonstrating how From works:

from-examples

let string: String = From::from("foo");
let bytes: Vec<u8> = From::from("foo");
let cow: ::std::borrow::Cow<str> = From::from("foo");

OK, so From is usefu for converting between strings. But what about
errors? It turns out, there is one critica imp:

impl<'a, E: Error + 'a> From<E> for Box<Error + 'a>

This imp says that for any type that imps Error, we can convert it to a trait

http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html

object Box<Error>. This may not seem terriby surprising, but it is usefu in
a generic context.

Remember the two errors we were deaing with previousy? Specificay,

io::Error and num::ParseIntError. Since both imp Error, they work

with From:

from-examples-errors

use std::error::Error;
use std::fs;
use std::io;
use std::num;

// We have to jump through some hoops to actually get error values.
let io_err: io::Error = io::Error::last_os_error();
let parse_err: num::ParseIntError = "not a number".parse::<i32

// OK, here are the conversions.
let err1: Box<Error> = From::from(io_err);
let err2: Box<Error> = From::from(parse_err);

There is a reay important pattern to recognize here. Both err1 and err2
have the same type. This is because they are existentiay quantified types,
or trait objects. In particuar, their underying type is erased from the

compierʼs knowedge, so it truy sees err1 and err2 as exacty the same.

Additionay, we constructed err1 and err2 using precisey the same

function ca: From::from. This is because From::from is overoaded on
both its argument and its return type.

This pattern is important because it soves a probem we had earier: it gives
us a way to reiaby convert errors to the same type using the same
function.

Time to revisit an od friend; the try! macro/? operator.

The rea try! macro/? operator

Previousy, I presented this definition of try!:

macro_rules! try {
($e:expr) => (match $e {

Ok(val) => val,
Err(err) => return Err(err),

});
}

This is not itʼs rea definition. Itʼs rea definition is in the standard ibrary:

try-def

macro_rules! try {
($e:expr) => (match $e {

Ok(val) => val,
Err(err) => return Err(::std::convert::From::from(err

});
}

Thereʼs one tiny but powerfu change: the error vaue is passed through

From::from. This makes the try! macro a ot more powerfu because it
gives you automatic type conversion for free. This is aso very simiar to

how the ? operator works, which is defined sighty differenty. Namey, x?
desugars to something ike the foowing:

questionmark-def

match ::std::ops::Try::into_result(x) {
Ok(v) => v,
Err(e) => return ::std::ops::Try::from_error(From::from(

}

The Try trait is sti unstabe and beyond the scope of this artice, but the
essence of it is that it provides a way to abstract over many different types

of success/faiure scenarios, without being tighty couped to Result<T,
E>. As you can see though, the x? syntax sti cas From::from, which is
how we achieve automatic error conversion.

Since most code written today uses ? instead of try!, we wi use ? for the

http://doc.rust-lang.org/std/macro.try!.html
http://doc.rust-lang.org/std/macro.try!.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html
https://doc.rust-lang.org/std/ops/trait.Try.html

remainder of this post.

Letʼs take a ook at code we wrote previousy to read a fie and convert its
contents to an integer:

use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path).map_err(|e| e.to_string
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(|e| e.to_string
let n = contents.trim().parse::<i32>().map_err(|e| e.to_string
Ok(2 * n)

}

Earier, I promised that we coud get rid of the map_err cas. Indeed, a we

have to do is pick a type that From works with. As we saw in the previous

section, From has an imp that etʼs it convert any error type into a

Box<Error>:

io-basic-error-try-from

use std::error::Error;
use std::fs::File;
use std::io::Read;
use std::path::Path;

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let n = contents.trim().parse::<i32>()?;
Ok(2 * n)

}

We are getting very cose to idea error handing. Our code has very itte

overhead as a resut from error handing because the ? operator
encapsuates three things simutaneousy:

�Case anaysis.
�Contro fow.
�Error type conversion.

When a three things are combined, we get code that is unencumbered by

combinators, cas to unwrap or case anaysis.

Thereʼs one itte nit eft: the Box<Error> type is opaque. If we return a

Box<Error> to the caer, the caer canʼt (easiy) inspect underying error

type. The situation is certainy better than String because the caer can

ca methods ike description and cause, but the imitation remains:

Box<Error> is opaque. N.B. This isnʼt entirey true because Rust does have
runtime refection, which is usefu in some scenarios that are beyond the
scope of this artice.)

Itʼs time to revisit our custom CliError type and tie everything together.

Composing custom error types

In the ast section, we ooked at the rea ? operator and how it does

automatic type conversion for us by caing From::from on the error vaue.

In particuar, we converted errors to Box<Error>, which works, but the type
is opaque to caers.

To fix this, we use the same remedy that weʼre aready famiiar with: a
custom error type. Once again, here is the code that reads the contents of a
fie and converts it to an integer:

io-basic-error-custom-from

use std::fs::File;
use std::io::{self, Read};
use std::num;
use std::path::Path;

// We derive `Debug` because all types should probably derive `Debug`.
// This gives us a reasonable human readable description of `CliError` values
#[derive(Debug)]

http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#tymethod.description
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
http://doc.rust-lang.org/std/error/trait.Error.html#method.cause
https://crates.io/crates/error
https://crates.io/crates/error
https://crates.io/crates/error
https://crates.io/crates/error

enum CliError {
Io(io::Error),
Parse(num::ParseIntError),

}

fn file_double_verbose<P: AsRef<Path>>(file_path: P) -> Result
let mut file = File::open(file_path).map_err(CliError::Io
let mut contents = String::new();
file.read_to_string(&mut contents).map_err(CliError::Io)
let n: i32 = contents.trim().parse().map_err(CliError::Parse
Ok(2 * n)

}

Notice that we sti have the cas to map_err. Why? We, reca the

definitions of the ? operator and From. The probem is that there is no From
imp that aows us to convert from error types ike io::Error and

num::ParseIntError to our own custom CliError. Of course, it is easy to

fix this! Since we defined CliError, we can imp From with it:

io-basic-error-custom-from

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliError {

CliError::Io(err)
}

}

impl From<num::ParseIntError> for CliError {
fn from(err: num::ParseIntError) -> CliError {

CliError::Parse(err)
}

}

A these imps are doing is teaching From how to create a CliError from
other error types. In our case, construction is as simpe as invoking the
corresponding vaue constructor. Indeed, it is typicay this easy.

We can finay rewrite file_double:

io-basic-error-custom-from

fn file_double<P: AsRef<Path>>(file_path: P) -> Result<i32,
let mut file = File::open(file_path)?;
let mut contents = String::new();
file.read_to_string(&mut contents)?;
let n: i32 = contents.trim().parse()?;
Ok(2 * n)

}

The ony thing we did here was remove the cas to map_err. They are no

onger needed because the ? operator invokes From::from on the error

vaue. This works because weʼve provided From imps for a the error types
that coud appear.

If we modified our file_double function to perform some other operation,
say, convert a string to a foat, then weʼd need to add a new variant to our
error type:

enum CliError {
Io(io::Error),
ParseInt(num::ParseIntError),
ParseFloat(num::ParseFloatError),

}

To refect this change we need to update the previous impl
From<num::ParseIntError> for CliError and add the new impl
From<num::ParseFloatError> for CliError:

impl From<num::ParseIntError> for CliError {
fn from(err: num::ParseIntError) -> CliError {

CliError::ParseInt(err)
}

}

impl From<num::ParseFloatError> for CliError {
fn from(err: num::ParseFloatError) -> CliError {

CliError::ParseFloat(err)
}

}

And thatʼs it!

Advice for ibrary writers

Idioms for Rust ibraries are sti forming, but if your ibrary needs to report
custom errors, then you shoud probaby define your own error type. Itʼs up

to you whether or not to expose its representation (ike ErrorKind) or keep

it hidden (ike ParseIntError). Regardess of how you do it, itʼs usuay
good practice to at east provide some information about the error beyond

just its String representation. But certainy, this wi vary depending on use
cases.

At a minimum, you shoud probaby impement the Error trait. This wi give
users of your ibrary some minimum fexibiity for composing errors.

Impementing the Error trait aso means that users are guaranteed the
abiity to obtain a string representation of an error (because it requires imps

for both fmt::Debug and fmt::Display).

Beyond that, it can aso be usefu to provide impementations of From on
your error types. This aows you (the ibrary author) and your users to

compose more detaied errors. For exampe, csv::Error provides From
imps for both io::Error and byteorder::Error.

Finay, depending on your tastes, you may aso want to define a Result
type aias, particuary if your ibrary defines a singe error type. This is used

in the standard ibrary for io::Result and fmt::Result.

Case study: A program to read popuation
data

This artice was ong, and depending on your background, it might be rather
dense. Whie there is penty of exampe code to go aong with the prose,
most of it was specificay designed to be pedagogica. Whie Iʼm not quite
smart enough to craft pedagogica exampes that are aso not toy exampes,

http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/io/enum.ErrorKind.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/num/struct.ParseIntError.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
https://burntsushi.net/rust-error-handling/#the-real-try-macro
https://burntsushi.net/rust-error-handling/#the-real-try-macro
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/io/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html
http://doc.rust-lang.org/std/fmt/type.Result.html

I certainy can write about a case study.

For this, Iʼd ike to buid up a command ine program that ets you query
word popuation data. The objective is simpe: you give it a ocation and it
wi te you the popuation. Despite the simpicity, there is a ot that can go
wrong!

The data weʼ be using comes from the Data Science Tookit. Iʼve prepared
some data from it for this exercise. You can either grab the word popuation
data 41MB gzip compressed, 145MB uncompressed) or just the US
popuation data 2.2MB gzip compressed, 7.2MB uncompressed).

Up unti now, Iʼve kept the code imited to Rustʼs standard ibrary. For a rea
task ike this though, weʼ want to at east use something to parse CSV data,
parse the program arguments and decode that stuff into Rust types

automaticay. For that, weʼ use the csv, docopt and rustc-serialize
crates.

Itʼs on Github

The fina code for this case study is on Github. If you have Rust and Cargo
instaed, then a you need to do is:

git clone git://github.com/BurntSushi/rust-error-handling-case-study
cd rust-error-handling-case-study
cargo build --release
./target/release/city-pop --help

Weʼ buid up this project in pieces. Read on and foow aong!

Initia setup

Iʼm not going to spend a ot of time on setting up a project with Cargo
because it is aready covered we in the Rust book and Cargoʼs
documentation.

To get started from scratch, run cargo new --bin city-pop and make

sure your Cargo.toml ooks something ike this:

https://github.com/petewarden/dstkdata
https://github.com/petewarden/dstkdata
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/worldcitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://burntsushi.net/stuff/uscitiespop.csv.gz
https://crates.io/crates/csv
https://crates.io/crates/csv
https://crates.io/crates/csv
https://crates.io/crates/docopt
https://crates.io/crates/docopt
https://crates.io/crates/docopt
https://crates.io/crates/rustc-serialize
https://crates.io/crates/rustc-serialize
https://crates.io/crates/rustc-serialize
https://github.com/BurntSushi/rust-error-handling-case-study
https://github.com/BurntSushi/rust-error-handling-case-study
http://doc.rust-lang.org/1.0.0-beta.5/book/hello-cargo.html
http://doc.rust-lang.org/1.0.0-beta.5/book/hello-cargo.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html
http://doc.crates.io/guide.html

[package]
name = "city-pop"
version = "0.1.0"
authors = ["Andrew Gallant <jamslam@gmail.com>"]

[[bin]]
name = "city-pop"

[dependencies]
csv = "0.*"
docopt = "0.*"
rustc-serialize = "0.*"

You shoud aready be abe to run:

cargo build --release
./target/release/city-pop
#Outputs: Hello, world!

Argument parsing

Letʼs get argument parsing out of the way. I wonʼt go into too much detai on
Docopt, but there is a nice web page describing it and documentation for
the Rust crate. The short story is that Docopt generates an argument parser
from the usage string. Once the parsing is done, we can decode the
program arguments into a Rust struct. Hereʼs our program with the

appropriate extern crate statements, the usage string, our Args struct

and an empty main:

extern crate docopt;
extern crate rustc_serialize;

static USAGE: &'static str = "
Usage: city-pop [options] <data-path> <city>
 city-pop --help

http://docopt.org/
http://docopt.org/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/
https://burntsushi.net/rustdoc/docopt/

Options:
 -h, --help Show this usage message.
";

struct Args {
arg_data_path: String,
arg_city: String,

}

fn main() {

}

Okay, time to get coding. The docs for Docopt say we can create a new

parser with Docopt::new and then decode the current program arguments

into a struct with Docopt::decode. The catch is that both of these

functions can return a docopt::Error. We can start with expicit case
anaysis:

// These use statements were added below the `extern` statements.
// I'll elide them in the future. Don't worry! It's all on Github:
// https://github.com/BurntSushi/rust-error-handling-case-study
//use std::io::{self, Write};
//use std::process;
//use docopt::Docopt;

fn main() {
let args: Args = match Docopt::new(USAGE) {

Err(err) => {
writeln!(&mut io::stderr(), "{}", err).unwrap();
process::exit(1);

}
Ok(dopt) => match dopt.decode() {

Err(err) => {
writeln!(&mut io::stderr(), "{}", err).unwrap
process::exit(1);

}

https://burntsushi.net/rustdoc/docopt/struct.Docopt.html#method.new
https://burntsushi.net/rustdoc/docopt/struct.Docopt.html#method.new
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html

Ok(args) => args,
}

};
}

This is not so nice. One thing we can do to make the code a bit cearer is to

write a macro to print messages to stderr and then exit:

fatal-def

macro_rules! fatal {
($($tt:tt)*) => {{

use std::io::Write;
writeln!(&mut ::std::io::stderr(), $($tt)*).unwrap();
::std::process::exit(1)

}}
}

The unwrap is probaby OK here, because if it fais, it means your program

coud not write to stderr. A good rue of thumb here is that itʼs OK to abort,
but certainy, you coud do something ese if you needed to.

The code ooks nicer, but the expicit case anaysis is sti a drag:

let args: Args = match Docopt::new(USAGE) {
Err(err) => fatal!("{}", err),
Ok(dopt) => match dopt.decode() {

Err(err) => fatal!("{}", err),
Ok(args) => args,

}
};

Thankfuy, the docopt::Error type defines a convenient method exit,
which effectivey does what we just did. Combine that with our knowedge
of combinators, and we have concise, easy to read code:

let args: Args = Docopt::new(USAGE)

https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit
https://burntsushi.net/rustdoc/docopt/enum.Error.html#method.exit

.and_then(|d| d.decode())

.unwrap_or_else(|err| err.exit());

If this code competes successfuy, then args wi be fied from the vaues
provided by the user.

Writing the ogic

Weʼre a different in how we write code, but when Iʼm not sure how to go
about coding a probem, error handing is usuay the ast thing I want to
think about. This isnʼt very good practice for good design, but it can be
usefu for rapidy prototyping. In our case, because Rust forces us to be
expicit about error handing, it wi aso make it obvious what parts of our

program can cause errors. Why? Because Rust wi make us ca unwrap!
This can give us a nice birdʼs eye view of how we need to approach error
handing.

In this case study, the ogic is reay simpe. A we need to do is parse the
CSV data given to us and print out a fied in matching rows. Letʼs do it.

Make sure to add extern crate csv; to the top of your fie.)

// This struct represents the data in each row of the CSV file.
// Type based decoding absolves us of a lot of the nitty gritty error
// handling, like parsing strings as integers or floats.
struct Row {

country: String,
city: String,
accent_city: String,
region: String,

// Not every row has data for the population, latitude or longitude!
// So we express them as `Option` types, which admits the possibility of
// absence. The CSV parser will fill in the correct value for us.
population: Option<u64>,
latitude: Option<f64>,
longitude: Option<f64>,

}

fn main() {
let args: Args = Docopt::new(USAGE)

.and_then(|d| d.decode())

.unwrap_or_else(|err| err.exit());

let file = fs::File::open(args.arg_data_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode::<Row>() {

let row = row.unwrap();
if row.city == args.arg_city {

println!("{}, {}: {:?}",
row.city, row.country,
row.population.expect("population count"

}
}

}

Letʼs outine the errors. We can start with the obvious: the three paces that

unwrap is caed:

�fs::File::open can return an io::Error.
�csv::Reader::decode decodes one record at a time, and decoding a

record (ook at the Item associated type on the Iterator imp) can
produce a csv::Error.

�If row.population is None, then caing expect wi panic.

Are there any others? What if we canʼt find a matching city? Toos ike grep
wi return an error code, so we probaby shoud too. So we have ogic
errors specific to our probem, IO errors and CSV parsing errors. Weʼre
going to expore two different ways to approach handing these errors.

Iʼd ike to start with Box<Error>. Later, weʼ see how defining our own error
type can be usefu.

Error handing with Box<Error>

Box<Error> is nice because it just works. You donʼt need to define your

own error types and you donʼt need any From impementations. The

downside is that since Box<Error> is a trait object, it erases the type,

http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/fs/struct.File.html#method.open
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
http://doc.rust-lang.org/std/io/struct.Error.html
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.decode
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/struct.DecodedRecords.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html
https://burntsushi.net/rustdoc/csv/1.0.0-beta.5/enum.Error.html

which means the compier can no onger reason about its underying type.

Previousy we started refactoring our code by changing the type of our

function from T to Result<T, OurErrorType>. In this case,

OurErrorType is just Box<Error>. But whatʼs T? And can we add a return

type to main?

The answer to the second question is no, we canʼt. That means weʼ need to

write a new function. But what is T? The simpest thing we can do is to

return a ist of matching Row vaues as a Vec<Row>. Better code woud
return an iterator, but that is eft as an exercise to the reader.)

Letʼs refactor our code into its own function, but keep the cas to unwrap.
Note that we opt to hande the possibiity of a missing popuation count by
simpy ignoring that row.

struct Row {
// unchanged

}

struct PopulationCount {
city: String,
country: String,
// This is no longer an `Option` because values of this type are only
// constructed if they have a population count.
count: u64,

}

fn search<P: AsRef<Path>>(file_path: P, city: &str) -> Vec<PopulationCount
let mut found = vec![];
let file = fs::File::open(file_path).unwrap();
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode::<Row>() {

let row = row.unwrap();
match row.population {

None => { } // skip it
Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,

country: row.country,
count: count,

});
},

}
}
found

}

fn main() {
let args: Args = Docopt::new(USAGE)

.and_then(|d| d.decode())

.unwrap_or_else(|err| err.exit());

for pop in search(&args.arg_data_path, &args.arg_city) {
println!("{}, {}: {:?}", pop.city, pop.country, pop.

}
}

Whie we got rid of one use of expect (which is a nicer variant of unwrap),
we sti shoud hande the absence of any search resuts.

To convert this to proper error handing, we need to do the foowing:

�Change the return type of search to be
Result<Vec<PopulationCount>, Box<Error>>.

�Use the ? operator so that errors are returned to the caer instead of
panicking the program.

�Hande the error in main.

Letʼs try it:

fn search<P: AsRef<Path>>
(file_path: P, city: &str)
-> Result<Vec<PopulationCount>, Box<Error+Send+Sync

let mut found = vec![];
let file = fs::File::open(file_path)?;
let mut rdr = csv::Reader::from_reader(file);
for row in rdr.decode::<Row>() {

let row = row?;
match row.population {

None => { } // skip it
Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

});
},

}
}
if found.is_empty() {

Err(From::from("No matching cities with a population were found."
} else {

Ok(found)
}

}

Instead of x.unwrap(), we now have x?. Since our function returns a

Result<T, E>, the ? operator wi return eary from the function if an error
occurs.

There is one big gotcha in this code: we used Box<Error + Send + Sync>
instead of Box<Error>. We did this so we coud convert a pain string to an
error type. We need these extra bounds so that we can use the

corresponding From imps:

// We are making use of this impl in the code above, since we call `From::fro
// on a `&'static str`.
impl<'a, 'b> From<&'b str> for Box<Error + Send + Sync + 'a>

// But this is also useful when you need to allocate a new string for an
// error message, usually with `format!`.
impl From<String> for Box<Error + Send + Sync>

Now that weʼve seen how to do proper error handing with Box<Error>,

http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html

etʼs try a different approach with our own custom error type. But first, etʼs
take a quick break from error handing and add support for reading from

stdin.

Reading from stdin

In our program, we accept a singe fie for input and do one pass over the
data. This means we probaby shoud be abe to accept input on stdin. But
maybe we ike the current format too—so etʼs have both!

Adding support for stdin is actuay quite easy. There are ony two things we
have to do:

�Tweak the program arguments so that a singe parameter—the city—
can be accepted whie the popuation data is read from stdin.

�Modify the search function to take an optiona fie path. When None, it
shoud know to read from stdin.

First, hereʼs the new usage and Args struct:

static USAGE: &'static str = "
Usage: city-pop [options] [<data-path>] <city>
 city-pop --help

Options:
 -h, --help Show this usage message.
";

struct Args {
arg_data_path: Option<String>,
arg_city: String,

}

A we did is make the data-path argument optiona in the Docopt usage

string, and make the corresponding struct member arg_data_path
optiona. The docopt crate wi hande the rest.

Modifying search is sighty trickier. The csv crate can buid a parser out of

any type that impements io::Read. But how can we use the same code

https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader
https://burntsushi.net/rustdoc/csv/struct.Reader.html#method.from_reader

over both types? Thereʼs actuay a coupe ways we coud go about this.

One way is to write search such that it is generic on some type parameter R
that satisfies io::Read. Another way is to just use trait objects:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, Box<Error+Send+Sync

let mut found = vec![];
let input: Box<io::Read> = match *file_path {

None => Box::new(io::stdin()),
Some(ref file_path) => Box::new(fs::File::open(file_path

};
let mut rdr = csv::Reader::from_reader(input);
// The rest remains unchanged!

}

Error handing with a custom type

Previousy, we earned how to compose errors using a custom error type.

We did this by defining our error type as an enum and impementing Error
and From.

Since we have three distinct errors IO, CSV parsing and not found), etʼs

define an enum with three variants:

enum CliError {
Io(io::Error),
Csv(csv::Error),
NotFound,

}

And now for imps on Display and Error:

impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

match *self {

CliError::Io(ref err) => err.fmt(f),
CliError::Csv(ref err) => err.fmt(f),
CliError::NotFound => write!(f, "No matching cities with a

 population were found."
}

}
}

impl Error for CliError {
fn description(&self) -> &str {

match *self {
CliError::Io(ref err) => err.description(),
CliError::Csv(ref err) => err.description(),
CliError::NotFound => "not found",

}
}

}

Before we can use our CliError type in our search function, we need to

provide a coupe From imps. How do we know which imps to provide?

We, weʼ need to convert from both io::Error and csv::Error to

CliError. Those are the ony externa errors, so weʼ ony need two From
imps for now:

impl From<io::Error> for CliError {
fn from(err: io::Error) -> CliError {

CliError::Io(err)
}

}

impl From<csv::Error> for CliError {
fn from(err: csv::Error) -> CliError {

CliError::Csv(err)
}

}

The From imps are important because of how the ? operator is defined. In

particuar, if an error occurs, From::from is caed on the error, which in

this case, wi convert it to our own error type CliError.

With the From imps done, we ony need to make two sma tweaks to our

search function: the return type and the “not foundˮ error. Here it is in fu:

fn search<P: AsRef<Path>>
(file_path: &Option<P>, city: &str)
-> Result<Vec<PopulationCount>, CliError> {

let mut found = vec![];
let input: Box<io::Read> = match *file_path {

None => Box::new(io::stdin()),
Some(ref file_path) => Box::new(fs::File::open(file_path

};
let mut rdr = csv::Reader::from_reader(input);
for row in rdr.decode::<Row>() {

let row = row?;
match row.population {

None => { } // skip it
Some(count) => if row.city == city {

found.push(PopulationCount {
city: row.city,
country: row.country,
count: count,

});
},

}
}
if found.is_empty() {

Err(CliError::NotFound)
} else {

Ok(found)
}

}

No other changes are necessary.

Adding functionaity

If youʼre anything ike me, writing generic code fees good because
generaizing stuff is coo! But sometimes, the juice isnʼt worth the squeeze.
Look at what we just did in the previous step:

�Defined a new error type.
�Added imps for Error, Display and two for From.

The big downside here is that our program didnʼt improve a whoe ot. Iʼm

personay fond of it because I ike using enums for representing errors, but
there is quite a bit of overhead to doing so, especiay in short programs ike
this.

One usefu aspect of using a custom error type ike weʼve done here is that

the main function can now choose to hande errors differenty. Previousy,

with Box<Error>, it didnʼt have much of a choice: just print the message.

Weʼre sti doing that here, but what if we wanted to, say, add a --quiet
fag? The --quiet fag shoud sience any verbose output.

Right now, if the program doesnʼt find a match, it wi output a message
saying so. This can be a itte cumsy, especiay if you intend for the
program to be used in she scripts.

So etʼs start by adding the fags. Like before, we need to tweak the usage

string and add a fag to the Args struct. The docopt crate does the rest:

static USAGE: &'static str = "
Usage: city-pop [options] [<data-path>] <city>
 city-pop --help

Options:
 -h, --help Show this usage message.
 -q, --quiet Don't show noisy messages.
";

struct Args {
arg_data_path: Option<String>,
arg_city: String,
flag_quiet: bool,

}

Now we just need to impement our “quietˮ functionaity. This requires us to

tweak the case anaysis in main:

match search(&args.arg_data_path, &args.arg_city) {
Err(CliError::NotFound) if args.flag_quiet => process::exit
Err(err) => fatal!("{}", err),
Ok(pops) => for pop in pops {

println!("{}, {}: {:?}", pop.city, pop.country, pop.
}

}

Certainy, we donʼt want to be quiet if there was an IO error or if the data
faied to parse. Therefore, we use case anaysis to check if the error type is

NotFound and if --quiet has been enabed. If the search faied, we sti

quit with an exit code (foowing grepʼs convention).

If we had stuck with Box<Error>, then it woud be pretty tricky to

impement the --quiet functionaity.

This pretty much sums up our case study. From here, you shoud be ready
to go out into the word and write your own programs and ibraries with
proper error handing.

The short story

Since this artice is ong, it is usefu to have a quick summary for error
handing in Rust. These are my “rues of thumb.ˮ They are emphaticay not
commandments. There are probaby good reasons to break every one of
these heuristics!

• If youʼre writing short exampe code that woud be overburdened by
error handing, itʼs probaby just fine to use unwrap (whether thatʼs
Result::unwrap, Option::unwrap or preferaby Option::expect).
Consumers of your code shoud know to use proper error handing. If
they donʼt, send them here!

• If youʼre writing a quick ʼnʼ dirty program, donʼt fee ashamed if you use

http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.unwrap
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect
http://doc.rust-lang.org/std/option/enum.Option.html#method.expect

unwrap. Be warned: if it winds up in someone eseʼs hands, donʼt be
surprised if they are agitated by poor error messages!

• If youʼre writing a quick ʼnʼ dirty program and fee ashamed about
panicking anyway, then you shoud probaby use Box<Error> (or
Box<Error + Send + Sync>) as shown in exampes above. Another
promising aternative is the anyhow crate and its anyhow::Error type.
When using anyhow, your errors wi automaticay have backtraces
attached to them when using nighty Rust.

• Otherwise, in a program, define your own error types with appropriate
From and Error imps to make the ? operator macro more ergnomic.

• If youʼre writing a ibrary and your code can produce errors, define your
own error type and impement the std::error::Error trait. Where
appropriate, impement From to make both your ibrary code and the
caerʼs code easier to write. Because of Rustʼs coherence rues,
caers wi not be abe to imp From on your error type, so your ibrary
shoud do it.)

• Learn the combinators defined on Option and Result. Using them
excusivey can be a bit tiring at times, but Iʼve personay found a
heathy mix of the ? operator and combinators to be quite appeaing.
and_then, map and unwrap_or are my favorites.

A content is dua icensed under the UNLICENSE and MIT icenses.

Powered by Hugo & Pixy

https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
https://crates.io/crates/anyhow
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/error/trait.Error.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/convert/trait.From.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/option/enum.Option.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
http://doc.rust-lang.org/std/result/enum.Result.html
https://burntsushi.net/index.xml
http://gohugo.io/
http://gohugo.io/
https://github.com/azmelanar/hugo-theme-pixyll
https://github.com/azmelanar/hugo-theme-pixyll

