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ripgrep is faster than {grep, ag, git grep,
ucg, pt, sift}
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In this article | will introduce a new command line search tool, ripgrep, that
combines the usability of The Silver Searcher (an ack clone) with the raw
performance of GNU grep. ripgrep is fast, cross platform (with binaries
available for Linux, Mac and Windows) and written in Rust.

ripgrep is available on Github.

We will attempt to do the impossible: a fair benchmark comparison between
several popular code search tools. Specifically, we will dive into a series of
25 benchmarks that substantiate the following claims:

e For both searching single files and huge directories of files, no other
tool obviously stands above ripgrep in either performance or
correctness.

e ripgrep is the only tool with proper Unicode support that doesn't
make you pay dearly for it.

¢ Tools that search many files at once are generally slower if they use
memory maps, not faster.

As someone who has worked on text search in Rust in their free time for the
last 2.5 years, and as the author of both ripgrep and the underlying regular
expression engine, | will use this opportunity to provide detailed insights into
the performance of each code search tool. No benchmark will go
unscrutinized!

Target audience: Some familiarity with Unicode, programming and some
experience with working on the command line.

NOTE: I'm hearing reports from some people that rg isn't as fast as I've
claimed on their data. I'd love to help explain what's going on, but to do that,
I'll need to be able to reproduce your results. If you file an issue with
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something | can reproduce, I'd be happy to try and explain it.

Screenshot of search results

[andrew@Cheetah rust] rg -i rustacean
src/doc/book/nightly-rust.md
92:[Mibbit][mibbit]. Click that link, and you'll be chatting with other Rustaceans

src/doc/book/glossary.md
3:Not every Rustacean has a background in systems programming, nor in computer

src/doc/book/getting-started.md
176:Rustaceans (a silly nickname we call ourselves) who can help us out. Other great
376:Cargo is Rust’s build system and package manager, and Rustaceans use Cargo to

src/doc/book/guessing-game.md
444:1it really easy to re-use libraries, and so Rustaceans tend to write smaller

CONTRIBUTING.md

322:* [rustaceans.org][ro] is helpful, but mostly dedicated to IRC
333:[ro]: http://www.rustaceans.org/

[andrew@Cheetah rust] []
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Introducing ripgrep

Pitch

Why should you use ripgrep over any other search tool? Well...

e |t can replace many use cases served by other search tools because it
contains most of their features and is generally faster. (See the FAQ for
more details on whether ripgrep can truly replace grep.)

 Like other tools specialized to code search, ripgrep defaults to
recursive directory search and won't search files ignored by your
.gitignore files. It also ignores hidden and binary files by default.
ripgrep also implements full support for .gitignore, whereas there
are many bugs related to that functionality in other code search tools
claiming to provide the same functionality.

e ripgrep can search specific types of files. For example, rg -tpy foo
limits your search to Python files and rg -Tjs foo excludes
Javascript files from your search. ripgrep can be taught about new file
types with custom matching rules.

e ripgrep supports many features found in grep, such as showing the
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context of search results, searching multiple patterns, highlighting
matches with color and full Unicode support. Unlike GNU grep, ripgrep
stays fast while supporting Unicode (which is always on).

e ripgrep has optional support for switching its regex engine to use
PCRE2. Among other things, this makes it possible to use look-around
and backreferences in your patterns, which are not supported in
ripgrep's default regex engine. PCRE2 support is enabled with -P.

e ripgrep supports searching files in text encodings other than UTF-8,
such as UTF-16, latin-1, GBK, EUC-JP, Shift_JIS and more. (Some
support for automatically detecting UTF-16 is provided. Other text
encodings must be specifically specified with the -E/--encoding
flag.)

e ripgrep supports searching files compressed in a common format (gzip,
Xz, lzma, bzip2 or [z4) with the -z/--search-zip flag.

e ripgrep supports arbitrary input preprocessing filters which could be
PDF text extraction, less supported decompression, decrypting,
automatic encoding detection and so on.

In other words, use ripgrep if you like speed, filtering by default, fewer bugs
and Unicode support.

Anti-pitch

I'd like to try to convince you why you shouldn’t use ripgrep. Often, this is
far more revealing than reasons why | think you should use ripgrep.

Despite initially not wanting to add every feature under the sun to ripgrep,
over time, ripgrep has grown support for most features found in other file
searching tools. This includes searching for results spanning across
multiple lines, and opt-in support for PCRE2, which provides look-around
and backreference support.

At this point, the primary reasons not to use ripgrep probably consist of one
or more of the following:

¢ You need a portable and ubiquitous tool. While ripgrep works on
Windows, macOS and Linux, it is not ubiquitous and it does not
conform to any standard such as POSIX. The best tool for this job is
good old grep.

e There still exists some other feature (or bug) not listed in this README
that you rely on that's in another tool that isn't in ripgrep.

e There is a performance edge case where ripgrep doesn't do well where



another tool does do well. (Please file a bug report!)
e ripgrep isn't possible to install on your machine or isn't available for
your platform. (Please file a bug report!)

Installation

The binary name for ripgrep is rg.

Binaries for ripgrep are available for Windows, Mac and Linux. Linux
binaries are static executables. Windows binaries are available either as
built with MinGW (GNU) or with Microsoft Visual C++ (MSVC). When
possible, prefer MSVC over GNU, but you'll need to have the Microsoft VC+
+ 2015 redistributable installed.

If you're a Homebrew user, then you can install it like so:

$ brew install ripgrep

If you're an Archlinux user, then you can install ripgrep from the official
repos:

$ pacman -Syu ripgrep

If you're a Rust programmer, ripgrep can be installed with cargo:

$ cargo install ripgrep

If you'd like to build ripgrep from source, that is also easy to do. ripgrep
is written in Rust, so you'll need to grab a Rust installation in order to
compile it. ripgrep compiles with Rust 1.9 (stable) or newer. To build:

$ git clone git://github.com/BurntSushi/ripgrep
$ cd ripgrep

$ cargo build --release

$ ./target/release/rg --version

0.1.2



https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.rust-lang.org/
https://www.rust-lang.org/

If you have a Rust nightly compiler, then you can enable optional SIMD
acceleration like so, which is used in all benchmarks reported in this article.

RUSTFLAGS="-C target-cpu=native" cargo build --release --fea

Whirlwind tour

The command line usage of ripgrep doesn't differ much from other tools
that perform a similar function, so you probably already know how to use
ripgrep. The full details can be found in rg --help, but let's goon a
whirlwind tour.

ripgrep detects when its printing to a terminal, and will automatically
colorize your output and show line numbers, just like The Silver Searcher.
Coloring works on Windows too! Colors can be controlled more granularly
with the --color flag.

One last thing before we get started: generally speaking, ripgrep assumes
the input is reading is UTF-8. However, if ripgrep notices a file is encoded
as UTF-16, then it will know how to search it. For other encodings, you'll
need to explicitly specify them with the -E/--encoding flag.

To recursively search the current directory, while respecting all .gitignore
files, ignore hidden files and directories and skip binary files:

$ rg foobar

The above command also respects all . rgignore files, including in parent
directories. . rgignore files can be used when .gitignore files are
insufficient. In all cases, .rgignore patterns take precedence over
.gitignore.

To ignore all ignore files, use -u. To additionally search hidden files and
directories, use -uu. To additionally search binary files, use -uuu. (In other
words, “search everything, dammit!”) In particular, rg -uuu is similar to
grep -a -r.



$ rg -uu foobar # similar to "grep -1
$ rg -uuu foobar # similar to "grep -a -r°

(Tip: If your ignore files aren't being adhered to like you expect, run your
search with the - -debug flag.)

Make the search case insensitive with -1, invert the search with -v or show
the 2 lines before and after every search result with -C2.

Force all matches to be surrounded by word boundaries with -w.

Search and replace (find first and last names and swap them):

$ rg '([A-Z][a-z]+)\s+([A-Z][a-z]+)' --replace '$2, $1'

Named groups are supported:

$ rg '(?P<first>[A-Z][a-z]+)\s+(?P<last>[A-Z][a-z]+)"' --repl

Up the ante with full Unicode support, by matching any uppercase Unicode
letter followed by any sequence of lowercase Unicode letters (good luck
doing this with other search tools!):

$ rg ' (\p{Lul\p{L1}+)\s+(\p{Lu}\p{L1}+)' --replace '$2, $1°

Search only files matching a particular glob:

$ rg foo -g 'README.*'

Or exclude files matching a particular glob:

$ rg foo -g '!*.min.js’

Search only HTML and CSS files:




$ rg -thtml -tcss foobar

Search everything except for Javascript files:

$ rg -Tjs foobar

To see a list of types supported, run rg --type-1list. To add a new type,
use --type-add, which must be accompanied by a pattern for searching
(rg won't persist your type settings):

$ rg --type-add 'foo:*.{foo,foobar}' -tfoo bar

The type foo will now match any file ending with the . foo or . foobar
extensions.

RegeXx syntax

The syntax supported is documented as part of Rust's regex library.

Anatomy of a grep

Before we dive into benchmarks, | thought it might be useful to provide a
high level overview of how a grep-Llike search tool works, with a special
focus on ripgrep in particular. The goal of this section is to provide you
with a bit of context that will help make understanding the analysis for each
benchmark easier.

Background

Modulo parsing command line arguments, the first “real” step in any search
tool is figuring out what to search. Tools like grep don't try to do anything
smart: they simply search the files given to it on the command line. An
exception to this is the -1 flag, which will cause grep to recursively search
all files in the current directory. Various command line flags can be passed
to control which files are or aren't searched.
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ack came along and turned this type of default behavior on its head. Instead
of trying to search everything by default, ack tries to be smarter about what
to search. For example, it will recursively search your current directory by
default, and it will automatically skip over any source control specific files
and directories (like .git). This method of searching undoubtedly has its
own pros and cons, because it tends to make the tool “smarter,” which is
another way of saying “opaque.” That is, when you really do need the tool to
search everything, it can sometimes be tricky to know how to speak the
right incantation for it to do so. With that said, being smart by default is
incredibly convenient, especially when “smart” means “figure out what to
search based on your source control configuration.” There's no shell alias
that can do that with grep.

All of the other search tools in this benchmark share a common ancestor
with either grep or ack. sift is descended from grep, while ag, ucg, and
pt are descended from ack. ripgrep is a bit of a hybrid because it was
specifically built to be good at searching huge files just like grep, but at the
same time, provide the “smart” kind of default searching like ack. Finally,
git grep deserves a bit of a special mention. git grep is very similar to
plain grep in the kinds of options it supports, but its default mode of
searching is clearly descended from ack: it will only search files checked
into source control.

Of course, both types of search tools have a lot in common, but there are a
few broad distinctions worth making if you allow yourself to squint your
eyes a bit:

e grep-like tools need to be really good at searching large files, so the
performance of the underlying regex library is paramount.

e ack-like tools need to be really good at recursive directory traversal
while also applying ignore rules from files like .gitignoxre quickly.
ack-like tools are built to run many searches in parallel, so the raw
performance of the underlying regex library can be papered over
somewhat while still being faster than single-threaded “search
everything” tools like grep. If the “smarts” of ack also mean skipping
over that 2GB artifact in your directory tree, then the performance
difference becomes even bigger.

e ripgrep tries hard to combine the best of both worlds. Not only is its
underlying regex engine very fast, but it parallelizes searches and tries
to be smart about what it searches too.
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Gathering files to search

For an ack-like tool, it is important to figure out which files to search in the
current directory. This means using a very fast recursive directory iterator,
filtering file paths quickly and distributing those file paths to a pool of
workers that actually execute the search.

Directory traversal can be tricky because some recursive directory iterators
make more stat calls than are strictly necessary, which can have a large
impact on performance. It can be terribly difficult to track down these types
of performance problems because they tend to be buried in a standard
library somewhere. Python only recently fixed this, for example. Rest
assured that ripgrep uses a recursive directory iterator that makes the
minimum number of system calls possible.

Filtering file paths requires not only respecting rules given at the command
line (e.g., grep’s --include or - -exclude) flags, but also requires reading
files like .gitignore and applying their rules correctly to all file paths.
Even the mere act of looking for a .gitignore file in every directory can
have measurable overhead! Otherwise, the key performance challenge with
this functionality is making sure you don't try to match every ignore rule
individually against every file path. Large repositories like the Linux kernel
source tree have over a hundred .gitignore files with thousands of rules
combined.

Finally, distributing work to other threads for searching requires some kind
of synchronization. One solution is a mutex protected ring buffer that acts
as a sort of queue, but there are lock-free solutions that might be faster.
Rust's ecosystem is so great that | was able to reuse a lock-free Chase-Lev
work-stealing queue for distributing work to a pool of searchers. Every
other tool that parallelizes work in this benchmark uses a variant of a mutex
protected queue. (sift and pt might not fit this criteria, since they use Go
channels, and | haven't followed any implementation improvements to that
code for a few years.)

Searching

Searching is the heart of any of these tools, and we could dig ourselves into
a hole on just this section alone and not come out alive for at least 2.5
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years. (Welcome to "How Long I've Been Working On Text Search In Rust."”)
Instead, we will lightly touch on the big points.

Regex engine

First up is the regex engine. Every search tool supports some kind of syntax
for regular expressions. Some examples:

o foo|bar matches any literal string foo or bar

e [a-z]1{2}_[a-z]+ matches two lowercase latin letters, followed by an
underscore, followed by one or more lowercase latin letters.

e \bfoo\b matches the literal foo only when it is surrounded by word
boundaries. For example, the foo in foobar won't match but it will in I
love foo..

e (\w+) \1 matches any sequence of word characters followed by a
space and followed by exactly the word characters that were matched
previously. The \1 in this example is called a “back-reference." For
example, this pattern will match foo foo but not foo bar.

Regular expression engines themselves tend to be divided into two
categories predominantly based on the features they expose. Regex
engines that provide support for all of the above tend to use an approach
called backtracking, which is typically quite fast, but can be very slow on
some inputs. “Very slow" in this case means that it might take exponential
time to complete a search. For example, try running this Python code:

>>> import re
>>> re.search('(a*)*c',

a' * 30)

Even though both the regex and the search string are tiny, it will take a very
long time to terminate, and this is because the underlying regex engine uses
backtracking, and can therefore take exponential time to answer some
queries.

The other type of regex engine generally supports fewer features and is
based on finite automata. For example, these kinds of regex engines
typically don't support back-references. Instead, these regex engines will
often provide a guarantee that all searches, regardless of the regex or the
input, will complete in linear time with respect to the search text.



It's worth pointing out that neither type of engine has a monopoly on
average case performance. There are examples of regex engines of both
types that are blazing fast. With that said, here's a breakdown of some
search tools and the type of regex engine they use:

e GNU grep and git grep each use their own hand-rolled finite
automata based engine.

e ripgrep uses Rust's regex library, which uses finite automata.

e The Silver Searcher and Universal Code Grep use PCRE, which uses
backtracking.

e Both The Platinum Searcher and sift use Go's regex library, which uses
finite automata.

Both Rust's regex library and Go's regex library share Google's RE2 as a
common ancestor.

Finally, both tools that use PCRE (The Silver Searcher and Universal Code
Grep) are susceptible to worst case backtracking behavior. For example:

$ cat wat

C

daaaaaaaaaaaaaaaaaaaaaaaaaaaaa

C

$ ucg '(a*)*c' wat

terminate called after throwing an instance of 'FileScannerf
what(): PCRE2 match error: match limit exceeded

Aborted (core dumped)

The Silver Searcher fails similarly. It reports the first line as a match and
neglects the match in the third line. The rest of the search tools
benchmarked in this article handle this case without a problem.

Literal optimizations

Picking a fast regex engine is important, because every search tool will
need to rely on it sooner or later. Nevertheless, even the performance of the
fastest regex engine can be dwarfed by the time it takes to search for a
simple literal string. Boyer-Moore is the classical algorithm that is used to
find a substring, and even today, it is hard to beat for general purpose
searching. One of its defining qualities is its ability to skip some characters
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in the search text by pre-computing a small skip table at the beginning of
the search.

On modern CPUs, the key to making a Boyer-Moore implementation fast is
not necessarily the number of characters it can skip, but how fast it can
identify a candidate for a match. For example, most Boyer-Moore
implementations look for the last byte in a literal. Each occurrence of that
byte is considered a candidate for a match by Boyer-Moore. It is only at this
point that Boyer-Moore can use its precomputed table to skip characters,
which means you still need a fast way of identifying the candidate in the
first place. Thankfully, specialized routines found in the C standard library,
like memchr, exist for precisely this purpose. Often, memchr implementations
are compiled down to SIMD instructions that examine sixteen bytes in a
single loop iteration. This makes it very fast. On my system, memchr often
gets throughputs at around several gigabytes a second. (In my own
experiments, Boyer-Moore with memchr can be just as fast as an explicit
SIMD implementation using the PCMPESTRI instruction, but this is
something I'd like to revisit.)

For a search tool to compete in most benchmarks, either it or its regex
engine needs to use some kind of literal optimizations. For example, Rust's
regex library goes to great lengths to extract both prefix and suffix literals
from every pattern. The following patterns all have literals extracted from
them:

e foo|bar detects foo and bar

(a|b)c detects ac and bc

[ab]foo[yz] detects afooy, afooz, bfooy and bfooz
(foo) ?bar detects foobar and bar

(foo) *bar detects foo and bar

e (foo){3,6} detects foofoofoo

If any of these patterns appear at the beginning of a regex, Rust's regex
library will notice them and use them to find candidate matches very quickly
(even when there is more than one literal detected). While Rust's core regex
engine is fast, it is still faster to look for literals first, and only drop down into
the core regex engine when it's time to verify a match.

The best case happens when an entire regex can be broken down into a
single literal or an alternation of literals. In that case, the core regex engine
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won't be used at all!

A search tool in particular has an additional trick up its sleeve. Namely,
since most search tools do line-by-line searching (The Silver Searcher is a
notable exception, which does multiline searching by default), they can
extract non-prefix or “inner"” literals from a regex pattern, and search for
those to identify candidate lines that match. For example, the regex
\w+foo\d+ could have foo extracted. Namely, when a candidate line is
found, ripgrep will find the beginning and end of only that line, and then
run the full regex engine on the entire line. This lets ripgrep very quickly
skip through files by staying out of the regex engine. Most of the search
tools we benchmark here don't perform this optimization, which can leave a
lot of performance on the table, especially if your core regex engine isn't
that fast.

Handling the case of multiple literals (e.g., foo|bar) is just as important.
GNU grep uses a little known algorithm similar to Commentz-Walter for
searching multiple patterns. In short, Commentz-Walter is what you get
when you merge Aho-Corasick with Boyer-Moore: a skip table with a
reverse automaton. Rust's regex library, on the other hand, will either use
plain Aho-Corasick, or, when enabled, a special SIMD algorithm called
Teddy, which was invented by Geoffrey Langdale as part of the Hyperscan
regex library developed by Intel. This SIMD algorithm will prove to be at
least one of the key optimizations that propels ripgrep past GNU grep.

The great thing about this is that ripgrep doesn't have to do much of this
literal optimization work itself. Most of it is done inside Rust's regex library,
so every consumer of that library gets all these performance optimizations
automatically!

Mechanics

Repeat after me: Thou Shalt Not Search Line By Line.

The naive approach to implementing a search tool is to read a file line by
line and apply the search pattern to each line individually. This approach is
problematic primarily because, in the common case, finding a match is rare.
Therefore, you wind up doing a ton of work parsing out each line all for
naught, because most files simply aren’t going to match at all in a large
repository of code.
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Not only is finding every line extra work that you don't need to do, but
you're also paying a huge price in overhead. Whether you're searching for a
literal or a regex, you'll need to start and stop that search for every single
line in a file. The overhead of each search will be your undoing.

Instead, all search tools find a way to search a big buffer of bytes all at
once. Whether that's memory mapping a file, reading an entire file into
memory at once or incrementally searching a file using a constant sized
intermediate buffer, they all find a way to do it to some extent. There are
some exceptions though. For example, tools that use memory maps or read
entire files into memory either can't support stdin (like Universal Code
Grep), or revert to line-by-line searching (like The Silver Searcher). Tools
that support incremental searching (ripgrep, GNU grep and git grep) can
use its incremental approach on any file or stream with no problems.

There's a reason why not every tool implements incremental search: it's
hard. For example, you need to consider all of the following in a fully
featured search tool:

e Line counting, when requested.

e If a read from a file ends in the middle of a line, you need to do the
bookkeeping required to make sure the incomplete line isn't searched
until more data is read from the file.

e If a line is too long to fit into your buffer, you need to decide to either
give up or grow your buffer to fit it.

e Your searcher needs to know how to invert the match.

e Worst of all: your searcher needs to be able to show the context of a
match, e.g., the lines before and after a matching line. For example,
consider the case of a match that appears at the beginning of your
buffer. How do you show the previous lines if they aren't in your buffer?
You guessed it: you need to carry over at least as many lines that are
required to satisfy a context request from buffer to buffer.

It's a steep price to pay in terms of code complexity, but by golly, is it worth
it. You'll need to read on to the benchmarks to discover when it is faster
than memory maps!

Printing

It might seem like printing is such a trivial step, but it must be done with at
least some care. For example, you can't just print matches from each search



thread as you find them, because you really don't want to interleave the
search results of one file with the search results of another file. A naive
approach to this is to serialize the printer so that only one thread can print to
it at a time. This is problematic though, because if a search thread acquires
a lock to the printer before starting the search (and not releasing it until it
has finished searching one file), you'll end up also serializing every search
as well, effectively defeating your entire approach to parallelism.

All code search tools in this benchmark that parallelize search therefore
write results to some kind of intermediate buffer in memory. This enables all
of the search threads to actually perform a search in parallel. The printing
still needs to be serialized, but we've reduced that down to simply dumping
the contents of the intermediate buffer to stdout. Using an in memory
buffer might set off alarm bells: what if you search a 2GB file and every line
matches? Doesn't that lead to excessive memory usage? The answer is:
“Why, yes, indeed it does!"” The key insight is that the common case is
returning far fewer matches than there are total lines searched.
Nevertheless, there are ways to mitigate excessive memory usage. For
example, if ripgrep is used to search stdin or a single file, then it will
write search results directly to stdout and forgo the intermediate buffer
because it just doesn't need it. (ripgrep should also do this when asked to
not do any parallelism, but | haven't gotten to it yet.) In other words, pick
two: space, time or correctness.

Note that the details aren't quite the same in every tool. Namely, while The
Silver Searcher and Universal Code Grep write matches as structured data
to memory (i.e., an array of match structs or something similar), both git
grep and ripgrep write the actual output to a dynamically growable string
buffer in memory. While either approach does seem to be fast enough, git
grep and ripgrep have to do things this way because they support
incremental search where as The Silver Searcher always memory maps the
entire file and Universal Code Grep always reads the entire contents of the
file into memory. The latter approach can refer back to the file's contents in
memory when doing the actual printing, where as neither git grep nor
ripgrep can do that.

Methodology



Overview

Coming up with a good and fair benchmark is hard, and | have assuredly
made some mistakes in doing so. In particular, there are so many variables
to control for that testing every possible permutation isn't feasible. This
means that the benchmarks I'm presenting here are curated, and, given that
| am the author of one of the tools in the benchmark, they are therefore also
biased. Nevertheless, even if | fail in my effort to provide a fair benchmark
suite, | do hope that some of you may find my analysis interesting, which
will try to explain the results in each benchmark. The analysis is in turn
heavily biased toward explaining my own work, since that is the
implementation I'm most familiar with. | have, however, read at least part of
the source code of every tool | benchmark, including their underlying regex
engines.

In other words, I'm pretty confident that I've gotten the details correct, but |
could have missed something in the bigger picture. Because of that, let's go
over some important insights that guided construction of this benchmark.

e Focus on the problem that an end user is trying to solve. For example,
we split the entire benchmark in two: one for searching a large
directory of files and one for searching a single large file. The former
might correspond to an end user searching their code while the latter
might correspond to an end user searching logs. As we will see, these
two use cases have markedly different performance characteristics. A
tool that is good at one isn't necessarily good at the other. (The
premise of ripgrep is that it is possible to be good at both!)

e Apply end user problems more granularly as well. For example, most
searches result in few hits relative to the corpus searched, so prefer
benchmarks that report few matches. Another example: | hypothesize,
based on my own experience, that most searches use patterns that are
simple literals, alternations or very light regexes, so bias the
benchmarks towards those types of patterns.

o Almost every search tool has slightly different default behavior, and
these behavioral changes can have an impact on performance. There is
some value in looking at “out-of-the-box" performance, and we
therefore do look at a benchmark for that, but stopping there is a bit
unsatisfying. If our goal is to do a fair comparison, then we need to at
least try to convince each tool to do roughly the same work, from the
perspective of an end user. A good example of this is reporting line
numbers. Some tools don't provide a way of disabling line counting, so



when doing comparisons between tools that do, we need to explicitly
enable line numbers. This is important, because counting lines can be
quite costly! A good non-example of this is if one tool uses memory
maps and another uses an intermediate buffer. This is an
implementation choice, and not one that alters what the user actually
sees, therefore comparing those two implementation choices in a
benchmark is completely fair (assuming an analysis that points it out).

With that out of the way, let's get into the nitty gritty. First and foremost,
what tools are we benchmarking?

ripgrep (rg) (v0.1.2) - You've heard enough about this one already.
GNU grep (v2.25) - Ol reliable.

git grep (v2.7.4) - Like grep, but built into git. Only works wellin git
repositories.

The Silver Searcher (ag) (commit cda635, using PCRE 8.38) - Like ack,
but written in C and much faster. Reads your .gitignore files just like
ripgrep.

Universal Code Grep (ucg) (commit 487bfb, using PCRE 10.21 with the
JIT enabled) - Also like ack but written in C++, and only searches files
from a whitelist, and doesn't support reading .gitignore.

The Platinum Searcher (pt) (commit 509368) - Written in Go and does
support .gitignore files.

sift (commit 2d175c) - Written in Go and supports .gitignore files
with an optional flag, but generally prefers searching everything (unlike
every other tool in this list except for grep).

Notably absent from this list is ack. | chose not to benchmark it because, at
the time of writing, ack was much slower than the other tools in this list.
However, ack 3 is now in beta and includes some performance
improvements, sometimes decreasing search times by half.

Benchmark runner

The benchmark runner is a Python program (requires at least Python 3.5)
that you can use to not only run the benchmarks themselves, but download
the corpora used in the benchmarks as well. The script is called
benchsuite and is in the ripgrep repository. You can use it like so:

$ git clone git://github.com/BurntSushi/ripgrep
$ cd ripgrep/benchsuite
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This took about 15 minutes on a high speed connection.

be limited to running benchmarks for only that corpus.
./benchsuite --dir /path/to/data/dir --download all
List benchmarks available.

./benchsuite --dir /path/to/data/dir --list

Run a benchmark.

--warmup-iter 3 --bench-iter 10.

A OH HF H H W H e H H K H

WARNING! This downloads several GB of data, and builds the

Tip: try "--download subtitles-ru’ to grab the smallest caq

Omit the benchmark name to run all benchmarks. The full su
30 minutes to complete on default settings and 120 minutes

./benchsuite --dir /path/to/data/dir 'Asubtitles_ru_litera

If you don't have all of the code search tools used in the benchmarks, then
pass --allow-missing to give benchsuite permission to skip running
them. To save the raw data (the timing for every command run), pass - -raw
/path/to/raw.csv.

The benchmark runner tries to do a few basic things for us to help reduce
the chance that we get misleading data:

e Every benchmarked command is run three times before being
measured as a “warm up."” Specifically, this is to ensure that the
corpora being searched is already in the operating system'’s page
cache. If we didn't do this, we might end up benchmarking disk I/0O,
which is not only uninteresting for our purposes, but is probably not a
common end user scenario. It's more likely that you'll be executing lots
of searches against the same corpus (at least, | know | do).

e Every benchmarked command is run ten times, with a timing recorded
for each run. The final "result” of that command is its distribution (mean
+/- standard deviation). If | were a statistician, | could probably prove
that ten samples is insufficient. Nevertheless, getting more samples
takes more time, and for the most part, the variance is very low.

Each individual benchmark definition is responsible for making sure each
command is trying to do similar work as other commands we're comparing it
to. For example, we need to be careful to enable and disable Unicode
support in GNU grep where appropriate, because full Unicode handling can
make GNU grep run very slowly. Within each benchmark, there are often
multiple variables of interest. To account for this, I've added labels like



(ASCII) or (whitelist) where appropriate. We'll dig into those labels in
more detail later.

Please also feel encouraged to add your own benchmarks if you'd like to
play around. The benchmarks are in the top-half of the file, and it should be
fairly straight-forward to copy & paste another benchmark and modify it.
Simply defining a new benchmark will make it available. The second half of
the script is the runner itself and probably shouldn't need to be modified.

Environment

The actual environment used to run the benchmarks presented in this article
was a c3.2xlarge instance on Amazon EC2. It ran Ubuntu 16.04, had a
Xeon E5-2680 2.8 GHz CPU, 16 GB of memory and an 80 GB SSD (on which
the corpora was stored). This was enough memory to fit all of the corpora in
memory. The box was specifically provisioned for the purpose of running
benchmarks, so it was not doing anything else.

The full log of system setup and commands | used to install each of the
search tools and run benchmarks can be found here. | also captured the
output of the bench runner (SPOILER ALERT) and the raw output, which
includes the timings, full set of command line arguments and any
environment variables set for every command run in every benchmark.

Code search benchmarks

This is the first half of our benchmarks, and corresponds to an end user
trying to search a large repository of code for a particular pattern.

The corpus used for this benchmark is a built checkout of the Linux kernel,
specifically commit d@acc?7. We actually build the Linux kernel because the
process of building the kernel leaves a lot of garbage in the repository that
you probably don't want to search. This can influence not only the
relevance of the results returned by a search tool, but the performance as
well.

All benchmarks run in this section were run in the root of the repository.
Remember, you can see the full raw results of each command if you like.
The benchmark names correspond to the headings below.
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Note that since these benchmarks were run on an EC2 instance, which uses
a VM, which in turn can penalize search tools that use memory maps, I've
also recorded benchmarks on my local machine. My local machine is an
Intel i7-6900K 3.2 GHz, 16 CPUs, 64 GB memory and an SSD. You'll notice
that ag does a lot better (but still worse than rg) on my machine. Lest you
think I've chosen results from the EC2 machine because they paint rg more
favorably, rest assured that | haven't. Namely, rg wins every single
benchmark on my local machine except for one, where as rqg is beat out just
slightly by a few tools on some benchmarks on the EC2 machine.

Without further ado, let's start looking at benchmarks.

linux_literal_default

Description: This benchmark compares the time it takes to execute a simple
literal search using each tool's default settings. This is an intentionally unfair
benchmark meant to highlight the differences between tools and their “out-
of-the-box" settings.

Pattern: PM_RESUME

rg 0.349 +/- 0.104 (lines: 16)
ag 1.589 +/- 0.009 (lines: 16)
ucg 0.218 +/- 0.007 (lines: 16)*+
pt 0.462 +/- 0.012 (lines: 16)
sift ©.352 +/- 0.018 (lines: 16)
git grep ©0.342 +/- 0.005 (lines: 16)

e * - Best mean time.

e + - Best sample time.

e rg == ripgrep, ag == The Silver Searcher,ucg == Universal
Code Grep, pt == The Platinum Searcher

Analysis: We'll first start by actually describing what each tool is doing:

e rg respects the Linux repo's .gitignore files (of which there are
178(!) of them), and skips hidden and binary files. rg does not count
lines.

e ag has the same default behavior as rg, except it counts lines.
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e ucg also counts lines, but does not attempt to read .gitignore files.
Instead, it only searches files from an (extensible) whitelist according
to a set of glob rules. For example, both rg and ag will search fs/
jffs2/README. Locking while ucg won't, because it doesn't recognize
the Locking extension. (A search tool probably should search that file,
although it does not impact the results of this specific benchmark.)

e pt has the same default behavior as ag.

e sift searches everything, including binary files and hidden files. It
should be equivalent to grep -r, for example. It also does not count
lines.

e git grep should have the same behavior at rg, and similarly does not
count lines. Note though that git grep has a special advantage: it
does not need to traverse the directory hierarchy. It can discover the
set of files to search straight from its git index.

The high-order bit to extract from this benchmark is that a naive comparison
between search tools is completely unfair from the perspective of
performance, but is really important if you care about the relevance of
results returned to you. sift, like grep -z, will throw everything it can
back at you, which is totally at odds with the philosophy behind every other
tool in this benchmark: only return results that are probably relevant. Things
inside your .git probably aren't, for example. (This isn't to say that sift's
philosophy is wrong. The tool is clearly intended to be configured by an end
user to their own tastes, which has its own pros and cons.)

With respect to performance, there are two key variables to pay attention to.
They will appear again and again throughout our benchmark:

e Counting lines can be quite expensive. A naive solution—a loop over
every byte and comparing it to a \n—will be quite slow for example.
Universal Code Grep counts lines using SIMD and ripgrep counts
lines using packed comparisons (16 bytes at a time). However, in the
Linux code search benchmarks, because the size of each individual file
is very small and the number of matches is tiny compared to the corpus
size, the time spent counting lines tends to not be so significant.
Especially since every tool in this benchmark parallelizes search to
some degree. When we get to the single-file benchmarks, this variable
will become much more pertinent.

e Respecting .gitignore files incurs some amount of overhead. Even
though respecting .gitignore reduces the number of files searched,
it can be slower overall to actually read the patterns, compile them and
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match them against every path than to just search every file. This is
precisely how ucg soundly beats ripgrep in this benchmark. (We will
control for this variable in future benchmarks.) In other words,
respecting .gitignore is a feature that improves relevance first and
foremost. It is strictly a bonus if it also happens to improve
performance.

The specific reasons why supporting .gitignore leads to a slower overall
search are:

e Every directory descended requires looking for a corresponding
.gitignore. Multiply the number of calls if you support additional
ignore files, like both The Silver Searcher and ripgrep do. The Linux
kernel repository has 4,640 directories. 178 of them have .gitignore
files.

e Each .gitignore file needs to be compiled into something that can
match file paths. Both The Silver Searcher and ripgrep use tricks to
make this faster. For example, simple patterns like /vmlinux or *.0
can be matched using simple literal comparisons or by looking at the
file extension of a candidate path and comparing it directly. For more
complex patterns like *.c.[012]*.*, a full glob matcher needs to be
used. The Silver Searcher uses fnmatch while ripgrep translates all
such globs into a single regular expression which can be matched
against a single path all at once. Doing all this work takes time.

e Unlike ag, rg will try to support the full semantics of a .gitignore file.
This means finding every ignore pattern that matches a file path and
giving precedent to the most recently defined pattern. ag will bail on
the first match it sees.

¢ Actually matching a path has non-trivial overhead that must be paid for
every path searched. The compilation phase described above is
complex precisely for making this part faster. We try to stay out of the
regex machinery as best we can, but we can't avoid it completely.

In contrast, a whitelist like the one used by ucg is comparatively easy to
make fast. The set of globs is known upfront, so no additional checks need
to be made while traversing the file tree. Moreover, the globs tend to be of
the *.ext variety, which fall into the bucket of globs that can be matched
efficiently just by looking at the extension of a file path.

The downside of a whitelist is obvious: you might end up missing search
results simply because ucg didn't know about a particular file extension.
You could always teach ucg about the file extension, but you're still blind to



“unknown unknowns" (i.e., files that you probably want to search but didn't
know upfront that you needed to).

linux_literal

Description: This benchmark runs the same query as in the
linux_literal_default benchmark, but we try to do a fair comparison.
In particular, we run ripgrep in two modes: one where it respects
.gitignore files (corresponding to the (ignore) label) and one where it
uses a whitelist and doesn't respect .gitignore (corresponding to the
(whitelist) label). The former mode is comparable to ag, pt, sift and
git grep, while the latter mode is comparable to ucg. We also run rg a
third time by explicitly telling it to use memory maps for search, which
matches the implementation strategy used by ag. sift is run such that it
respects .gitignore files and excludes binary, hidden and PDF files. All
commands executed here count lines, because some commands (ag and
ucg) don't support disabling line counting.

Pattern: PM_RESUME

rg (ignore) ©.334 +/- 0.053 (lines: 16)
rg (ignore) (mmap) 1.611 +/- ©0.009 (lines: 16)
ag (ignore) (mmap) 1.588 +/- 0.011 (lines: 16)
pt (ignore) 0.456 +/- ©0.025 (lines: 16)
sift (ignore) 0.630 +/- 0.004 (lines: 16)
git grep (ignore) 0.345 +/- 0.007 (lines: 16)
rg (whitelist) 0.228 +/- 0.042 (lines: 16)+
ucg (whitelist) 0.218 +/- 0.007 (lines: 16)*

e * - Best mean time.
e + - Best sample time.

Analysis: We have a ton of ground to cover on this one.

First and foremost, the (ignore) vs. (whitelist) variables have a clear
impact on the performance of rg. We won't rehash all the details from the
analysis in 1inux_literal_default, but switching rg into its whitelist
mode brings it into a dead heat with ucg.
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Secondly, ucg is just as fast as ripgrep and git grep (ignore) isjustas
fastas rg (ignore), even though I've said that ripgrep is the fastest. It
turns out that ucg, git grep and rg are pretty evenly matched when
searching for plain literals in large repositories. We will see a stronger
separation in later benchmarks. Still, what makes ucg fast?

e ucg reads the entire file into memory before searching it, which means
it avoids the memory map problem described below. On a code
repository, this approach works well, but it comes with a steep price in
the single-file benchmarks.

« It has a fast explicitly SIMD based line counting algorithm. ripgrep has
something similar, but relies on the compiler for autovectorization.

e ucg uses PCRE2's JIT, which is insanely fast. In my own very rough
benchmarks, PCRE2's JIT is one of the few general purpose regex
engines that is competitive with Rust's regex engine (on regexes that
don't expose PCRE's exponential behavior due to backtracking, since
Rust's regex engine doesn't suffer from that weakness).

e ucg parallelizes directory traversal, which is something that ripgrep
doesn’t do. ucg has it a bit easier here because it doesn't support
.gitignore files. Parallelizing directory traversal while maintaining
state for .gitignore files in a way that scales isn't a problem I've
figured out how to cleanly solve yet.

What about git grep? A key performance advantage of git grep is that it
doesn't need to walk the directory tree, which can save it quite a bit of time.
Its regex engine is also quite fast, and works similarly to GNU grep's, RE2
and Rust's regex engine (i.e., it uses a DFA).

Both sift and pt perform almost as well as ripgrep. In fact, both sift
and pt do implement a parallel recursive directory traversal while still
respecting .gitignore files, which is likely one reason for their speed. As
we will see in future benchmarks, their speed here is misleading. Namely,
they are fast because they stay outside of Go's regexp engine since the
pattern is a literal. (There will be more discussion on this point later.)

Finally, what's going on with The Silver Searcher? Is it really that much
slower than everything else? The key here is that its use of memory maps is
making it slower, not faster (in direct contradiction to the claims in its
README).

OK, let's pause and pop up a level to talk about what this actually means.



First, we need to consider how these search tools fundamentally work.
Generally speaking, a search tool like this has two ways of actually
searching files on disk:

1. It can memory map the file and search the entire file all at once as if it
were a single contiguous region of bytes in memory. The operating
system does the work behind the scenes to make a file look like a
contiguous region of memory. This particular approach is really
convenient when comparing it to the alternative described next.

2. ... or it can allocate an intermediate buffer, read a fixed size block of
bytes from the file into it, search the buffer and then repeat the
process. This particular approach is absolutely ghoulish to implement,
because you need to account for the fact that a buffer may end in the
middle of the line. You also need to account for the fact that a single
line may exceed the size of your buffer. Finally, if you're going to
support showing the lines around a match (its “context”) as both grep
and ripgrep do, then you need to do additional bookkeeping to make
sure any lines from a previous buffer are printed even if a match occurs
at the beginning of the next block read from the file.

Naively, it seems like (1) would be obviously faster. Surely, all of the
bookkeeping and copying in (2) would make it much slower! In fact, this is
not at all true. (1) may not require much bookkeeping from the perspective
of the programmer, but there is a lot of bookkeeping going on inside the
Linux kernel to maintain the memory map. (That link goes to a mailing list
post that is quite old, but it still appears relevant today.)

When | first started writing ripgrep, | used the memory map approach. It
took me a long time to be convinced enough to start down the second path
with an intermediate buffer (because neither a CPU profile nor the output of
strace ever showed any convincing evidence that memory maps were to
blame), but as soon as | had a prototype of (2) working, it was clear that it
was much faster than the memory map approach.

With all that said, memory maps aren't all bad. They just happen to be bad
for the particular use case of “rapidly open, scan and close memory maps
for thousands of small files.” For a different use case, like, say, “open this
large file and search it once,” memory maps turn out to be a boon. We'll see
that in action in our single-file benchmarks later.

The key datapoint that supports this conclusion is the comparison between
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rg (ignore) and rg (ignore) (mmap). In particular, this controls for
everything except for the search strategy and fairly conclusively points right
at memory maps as the problem.

With all that said, the performance of memory maps is very dependent on
your environment, and the absolute difference between rg (ignore) and
ag (ignore) (mmap) can be misleading. In particular, since these
benchmarks were run on an EC2 c3.2xlarge, we were probably inside a
virtual machine, which could feasibly impact memory map performance. To
test this, | ran the same benchmark on my machine under my desk (Intel
i7-6900K 3.2 GHz, 16 CPUs, 64 GB memory, SSD) and got these results:

rg (ignore) 0.156 +/- 0.006 (lines: 16)
rg (ignore) (mmap) ©.397 +/- 0.013 (lines: 16)
ag (ignore) (mmap) 0.444 +/- 0.016 (lines: 16)
pt (ignore) ©.159 +/- 0.008 (lines: 16)
sift (ignore) 0.344 +/- 0.002 (lines: 16)
git grep (ignore) ©.195 +/- 0.023 (lines: 16)
rg (whitelist) 0.108 +/- 0.005 (lines: 16)*+
ucg (whitelist) ©@.165 +/- 0.005 (lines: 16)

rg (ignore) still soundly beats ag, and our memory map conclusions
above are still supported by this data, but the difference between rg
(ignore) and ag (ignore) (mmap) has narrowed quite a bit!

linux_literal_casei

Description: This benchmark is like 1inux_literal, except it asks the
search tool to perform a case insensitive search.

Pattern: PM_RESUME (with the -1 flag set)

rg (ignore) ©.345 +/- 0.073 (lines: 370)
rg (ignore) (mmap) 1.612 +/- 0.011 (lines: 370)
ag (ignore) (mmap) 1.609 +/- ©.015 (lines: 370)
pt (ignore) 17.204 +/- ©0.126 (lines: 370)
sift (ignore) ©.805 +/- 0.005 (lines: 370)
git grep (ignore) 0.343 +/- 0.007 (lines: 370)
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rg (whitelist) 0.222 +/- 0.021 (lines: 370)+
ucg (whitelist) 0.217 +/- 0.006 (lines: 370)*

e * - Best mean time.
e + - Best sample time.

Analysis: The biggest change from the previous benchmark is that pt got
an order of magnitude slower than the next slowest tool.

So why did pt get so slow? In particular, both sift and pt use Go's regexp
package for searching, so why did one perish while the other only got
slightly slower? It turns out that when pt sees the -1 flag indicating case
insensitive search, it will force itself to use Go's regexp engine with the i
flag set. So for example, given a CLI invocation of pt -1 foo, it will
translate that to a Go regexp of (?1)foo, which will handle the case
insensitive search.

On the other hand, sift will notice the -1 flag and take a different route.
sift will lowercase both the pattern and every block of bytes it searches.
This filter over all the bytes searched is likely the cause of sift's
performance drop from the previous 1inux_literal benchmark. (It's worth
pointing out that this optimization is actually incorrect, because it only
accounts for ASCII case insensitivity, and not full Unicode case insensitivity,
which pt gets by virture of Go's regexp engine.)

But still, is Go's regexp engine really that slow? Unfortunately, yes, it is.
While Go's regexp engine takes worst case linear time on all searches (and
is therefore exponentially faster than even PCRE2 for some set of regexes
and corpora), its actual implementation hasn't quite matured yet. Indeed,
every fast regex engine based on finite automata that I'm aware of
implements some kind of DFA engine. For example, GNU grep, Google's RE2
and Rust's regex library all do this. Go's does not (but there is work in
progress to make this happen, so perhaps pt will get faster on this
benchmark without having to do anything at all!).

There is one other thing worth noting here before moving on. Namely, that
rg, ag, git grep and ucg didn't noticeably change much from the previous
benchmark. Shouldn't a case insensitive search incur some kind of
overhead? The answer is complicated and actually requires more
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knowledge of the underlying regex engines than | have. Thankfully, | can at
least answer it for Rust's regex engine.

The key insight is that a case insensitive search for PM_RESUME is precisely
the same as a case sensitive search of the alternation of all possible case
agnostic versions of PM_RESUME. So for example, it might start like:
PM_RESUME | pM_RESUME | Pm_RESUME | PM_rESUME | . . . and so on. Of
course, the full alternation, even for a small literal like this, would be quite
large. The key is that we can extract a small prefix and enumerate all of its
combinations quite easily. In this case, Rust's regex engine figures out this
alternation (which you can see by passing - -debug to rg and examining
stderr):

PM_RE
PM_Re
PM_rE
PM_re
Pm_RE
Pm_Re
Pm_rE
Pm_xe
pPM_RE
pM_Re
pM_rE
pM_re
pm_RE
pm_Re
pm_xE
pm_xe

(Rest assured that Unicode support is baked into this process. For example,
a case insensitive search for S would yield the following literals: S, s and [.)

Now that we have this alternation of literals, what do we do with them? The
classical answer is to compile them into a DFA (perhaps Aho-Corasick), and
use it as a way to quickly skip through the search text. A match of any of the
literals would then cause the regex engine to activate and try to verify the
match. This way, we aren't actually running the entire search text through
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the regex engine, which could be quite a bit slower.

But, Rust's regex engine doesn't actually use Aho-Corasick for this. When
SIMD acceleration is enabled (and you can be sure it is for these
benchmarks, and for the binaries | distribute), a special multiple pattern
search algorithm called Teddy is used. The algorithm is unpublished, but
was invented by Geoffrey Langdale as part of Intel's Hyperscan regex
library. The algorithm works roughly by using packed comparisons of 16
bytes at a time to find candidate locations where a literal might match. |
adapted the algorithm from the Hyperscan project to Rust, and included an
extensive write up in the comments if you're interested.

While Teddy doesn’t buy us much over other tools in this particular
benchmark, we will see much larger wins in later benchmarks.

linux_woxd

Description: This benchmarks the PM_RESUME literal again, but adds the -w
flag to each tool. The -w flag has the following behavior: all matches
reported must be considered “words.” That is, a “word"” is something that
starts and ends at a word boundary, where a word boundary is defined as a
position in the search text that is adjacent to both a word character and a
non-word character.

Pattern: PM_RESUME (with the -w flag set)

rg (ignore) 0.362 +/- 0.080 (lines: 6)
ag (ignore) 1.603 +/- 0.009 (lines: 6)
pt (ignore) 14.417 +/- ©0.144 (lines: 6)
sift (ignore) 7.840 +/- ©0.123 (lines: 6)
git grep (ignore) ©0.341 +/- ©0.005 (lines: 6)
rg (whitelist) 0.220 +/- ©0.026 (lines: 6)*+
ucg (whitelist) 0.221 +/- ©0.007 (lines: 6)

e * - Best mean time.
e + - Best sample time.

Analysis: Not much has changed between this benchmark and the previous
linux_literal or linux_literal caseil benchmarks. The most
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important thing to note is that most search tools handle the -w flag just fine
without any noticeable drop in performance. There are two additional things
I'd like to note.

rg is searching with Unicode aware word boundaries where as the rest of
the tools are using ASCII only word boundaries. (git grep can be made to
use Unicode word boundaries by adjusting your system'’s locale settings. In
this benchmark, we force it to use ASCII word boundaries.)

sift and pt are the only tools that gets noticeably slower in this benchmark
compared to previous benchmarks. The reason is the same as the reason
why pt got noticeably slower in the linux_literal_casei benchmark:
both pt and sift are now also bottlenecked on Go's regexp library. pt and
sift could do a little better here by staying out of Go's regexp library and
searching for the PM_RESUME literal, and then only confirming whether the
match corresponds to a word boundary after it found a hit for PM_RESUME.
This still might use Go's regexp library, but in a much more limited form.

linux_unicode_word

Description: This benchmarks a simple query for all prefixed forms of the
"amp-hour” (Ah) unit of measurement. For example, it should show things
like mAh (for milliamp-hour) and pAh (for microamp-hour). It is particularly
interesting because the second form starts with p, which is part of a
Unicode aware \w character class, but not an ASCII-only \w character class.
We again continue to control for the overhead of respecting .gitignore
files.

Pattern: \wAh

rg (ignore) ©.355 +/- 0.073 (lines: 186)
rg (ignore) (ASCII) 0.329 +/- 0.060 (lines: 174)
ag (ignore) (ASCII) 1.774 +/- 0.011 (lines: 174)
pt (ignore) (ASCII) 14.180 +/- 0.180 (lines: 174)
sift (ignore) (ASCII) 11.087 +/- ©0.108 (lines: 174)
git grep (ignore) 13.045 +/- ©.008 (lines: 186)

git grep (ignore) (ASCII) 2.991 +/- 0.004 (lines: 174)
rg (whitelist) ©.235 +/- 0.031 (lines: 180)
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rg (whitelist) (ASCII) 0.225 +/- 0.023 (lines: 168)*+
ucg (ASCII) 0.229 +/- 0.007 (lines: 168)

e * - Best mean time.
e + - Best sample time.

Analysis: In this benchmark, we've introduced a new variable: whether or
not to enable Unicode support in each tool. Searches that are Unicode
aware report slightly more matches that are missed by the other ASCII only
searches.

Of all the tools here, the only ones that support Unicode toggling are rg and
git grep. rg's Unicode support can be toggled by setting a flag in the
pattern itself (e.g., \w is Unicode aware while (?-u)\w is not), and git
grep's Unicode suport can be toggled by setting the LC_ALL environment
variable (where en_US.UTF-8 is one way to enable Unicode support and C
forces it to be ASCII). More generally, git grep’s Unicode support is
supposed to line up with your system'’s locale settings—setting LC_ALL is a
bit of a hack.

It gets a little worse than that actually. Not only are rg and git grep the
only ones to support toggling Unicode, but they are the only ones to support
Unicode at all. ag, pt, sift and ucg will all force you to use the ASCII only
\w character class. (For pt and sift in particular, Go's regexp library
doesn't have the ability to treat \w as Unicode aware. For ag and ucg, which
use PCRE, \w could be made Unicode aware with a flag sent to PCRE.
Neither tool exposes that functionality though.)

The key result to note here is that while git grep suffers a major
performance hit for enabling Unicode support, ripgrep hums along just
fine with no noticeable loss in performance, even though both rg
(ignore) and git grep (ignore) report the same set of results.

As in the previous benchmark, both pt and sift could do better here by
searching for the Ah literal, and only using Go's regexp library to verify a
match.)

Looking at the benchmark results, | can think of two important questions to
ask:



1. Whyisgit grep (ignore) (ASCII) so much slower than rg
(ignore) (ASCII)? And while the two aren't directly comparable, it's
also a lot slower than ucg (ASCII).

2.How is rg (ignore) (which is Unicode aware) just as fast as rg
(ignore) (ASCII)?

| actually don't have a great answer for (1). In the case of rg at least, it will
extract the Ah literal suffix from the regex and use that to find candidate
matches before running the \w prefix. While GNU grep has sophisticated
literal extraction as well, it looks like git grep doesn't go to similar lengths
to extract literals. (I'm arriving at this conclusion after skimming the source
of git grep, so | could be wrong.)

In the case of ucg, it's likely that PCRE2 is doing a similar literal optimization
that rg is doing.

(2) is fortunately much easier to answer. The trick is not inside of rg, but
inside its regex library. Namely, the regex engine builds UTF-8 decoding
into its finite state machine. (This is a trick that is originally attributed to Ken
Thompson, but was more carefully described by Russ Cox. To read more
about how this is achieved in Rust's regex engine, please see the utf8-
ranges library.) The reason why this is fast is because there is no extra
decoding step required. The regex can be matched directly against UTF-8
encoded byte strings one byte at a time. Invalid UTF-8 doesn't pose any
problems: the finite automaton simply won't match it because it doesn't
recognize it.

In contrast, git grep (and GNU grep) have a completely separate path in
their core matching code for handling Unicode aware features like this. To
be fair, git grep can handle text encodings other than UTF-8, where as rg
is limited to UTF-8 (or otherwise "ASCIlI compatible” text encodings) at the
moment.

linux_re_literal_suffix

Description: This benchmarks a simple regex pattern that ends with a
literal. We continue to control for the overhead of respecting .gitignore
files.

Pattern: [A-Z]+_RESUME
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rg (ignore) 0.318 +/- 0.034 (lines: 1652)
ag (ignore) 1.899 +/- 0.008 (lines: 1652)
pt (ignore) 13.713 +/- ©0.241 (lines: 1652)
sift (ignore) 10.172 +/- ©0.186 (lines: 1652)
git grep (ignore) 1.108 +/- 0.004 (lines: 1652)
rg (whitelist) 0.221 +/- ©0.022 (lines: 1630)*+
ucg (whitelist) 0.301 +/- 0.001 (lines: 1630)

e * - Best mean time.
e + - Best sample time.

Analysis: This benchmark doesn't reveal anything particularly new that we
haven't already learned from previous benchmarks. In particular, both rg
and ucg continue to be competitive, pt and sift are getting bottlenecked
by Go's regexp library and git grep has a slow down similar to the one
observed in 1inux_unicode_word. (My hypothesis for that slow down
continues to be that git grep is missing the literal optimization.) Finally, ag
continues to be held back by its use of memory maps.

rg, and almost assuredly ucg (by virtue of PCRE2), are picking on the
_RESUME literal suffix and searching for that instead of running the regex
over the entire search text. This explains why both tools are able to maintain
their speed even as the pattern gets slightly more complex. rg does seem to
slightly edge out ucg here, which might be attributable to differences in how
each underlying regex library does literal search.

linux_alternates

Description: This benchmarks an alternation of four literals. The literals
were specifically chosen to start with four distinct bytes to make it harder to
optimize.

Pattern: ERR_SYS | PME_TURN_OFF | LINK_REQ_RST|CFG_BME_EVT

rg (ignore) ©.351 +/- 0.074 (lines: 68)
ag (ignore) 1.747 +/- ©0.005 (lines: 68)
git grep (ignore) ©0.501 +/- ©0.003 (lines: 68)

68)

rg (whitelist) 0.216 +/- 0.031 (lines: +



https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word

ucg (whitelist) 0.214 +/- ©0.008 (lines: 68)*

e * - Best mean time.

e + - Best sample time.

e We drop pt and sift from this benchmark and the next one for
expediency. In this benchmark and in a few previous benchmarks, they
have been hovering around an order of magnitude slower than the next
slowest tool. Neither get any better as the complexity of our patterns
increase.

Analysis: Yet again, both rg and ucg maintain high speed even as the
pattern grows beyond a simple literal. In this case, there isn't any one
particular literal that we can search to find match candidates quickly, but a
good regular expression engine can still find ways to speed this up.

For rg in particular, it sees the four literals and diverts to the Teddy multiple
pattern SIMD algorithm (as described inthe 1linux_literal_casei
benchmark). In fact, for this particular pattern, Rust's core regex engine is
never used at all. Namely, it notices that a literal match of any of the
alternates corresponds to an overall match of the pattern, so it can
completely skip the verification step. This makes searching alternates of
literals very fast.

linux_alternates_casei

Description: This benchmark is precisely the same as the
linux_alternates benchmark, except we make the search case
insensitive by adding the -1 flag. Note that git grep is run under ASCII
mode, in order to give it every chance to be fast.

Pattern: ERR_SYS|PME_TURN_OFF | LINK_REQ_RST|CFG_BME_EVT (with the
-1 flag set)

rg (ignore) 0.391 +/- 0.078 (lines: 160)
ag (ignore) 1.968 +/- 0.009 (lines: 160)
git grep (ignore) 2.018 +/- 0.006 (lines: 160)
rg (whitelist) 0.222 +/- 0.001 (lines: 160)*+

ucg (whitelist) 0.522 +/- 0.002 (lines: 160)
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e * - Best mean time.
e + - Best sample time.

Analysis: The case insensitive flag causes quite a bit of separation, relative
to the previous linux_alterates benchmark. For one, git grep gets over
4 times slower. Even ucg gets twice as slow. Yet, rg continues to maintain
its speed!

The secret continues to be the Teddy algorithm, just as in the
linux_alternates benchmark. The trick lies in how we transform an
alternation of case insensitive literals into a larger alternation that the Teddy
algorithm can actually use. In fact, it works exactly how it was described in
the linux_literal_casei benchmark: we enumerate all possible
alternations of each literal that are required for case insensitive match.
Since that can be quite a large number, we limit ourselves to a small number
of prefixes from that set that we can enumerate. In this case, we use the
following prefixes (which can be seen by running rg with the - -debug flag):

CFG_
CFg_
CfG_
Cfg_
ERR_
ERr
ExR_
Exrr
LIN

LIn

LiN

Lin

PME_
PMe_
PmE_
Pme_
cFG_
cFg_
cfG_
cfg_
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eRR_
eRr_
erR_
err_
1IN
1In
1iN
1lin
PME_
pMe_
pmME_
pme

We feed these literals to the Teddy algorithm, which will quickly identify
candidate matches in the search text. When a candidate match is found, we
need to verify it since a match of a prefix doesn’t necessarily mean the
entire pattern matches. It is only at that point that we actually invoke the full
regex engine.

linux_unicode_greek

Description: This benchmarks usage of a particular Unicode feature that
permits one to match a certain class of codepoints defined in Unicode. Both
Rust’'s regex engine and Go's regex engine support this natively, but none of
the other tools do.

Pattern: \p{Greek} (matches any Greek symbol)

rg 0.414 +/- 0.021 (lines: 23)*+
pt 12.745 +/- 0.166 (lines: 23)
sift 7.767 +/- 0.264 (lines: 23)

e * - Best mean time.
e + - Best sample time.

Analysis: This one is pretty simple. rg compiles \p{Greek} into a
deterministic finite state machine while Go (used in pt and sift) will also
use a finite state machine, but it is a nondeterministic simulation. The core



difference between the two approaches is that the former is only ever in one
state at any point in time, while the latter must constantly keep track of all
the different states it is in.

linux_unicode_greek_casei

Description: This benchmark is just like the 1inux_unicode_greek
benchmark, except it makes the search case insensitive. This particular
query is a bit idiosyncratic, but it does demonstrate just how well supported
Unicode is in rg.

Pattern: \p{Greek} (with the -1 flag set, matches any Greek symbol)

rg 0.425 +/- 0.027 (lines: 103)
pt 12.612 +/- 0.217 (lines: 23)
sift 0.002 +/- 0.000 (lines: @)*+

e * - Best mean time.
e + - Best sample time.

Analysis: sift doesn't actually beat rg here: it just gets so confused by the
search request that it gives up and reports no matches. pt seems to execute
the search, but doesn't handle Unicode case insensitivity correctly.
Meanwhile, rg handles the request just fine, and it’s still fast.

In this particular case, the entire Greek category, along with all of its case-
insensitive variants, are compiled into a single fast deterministic finite state
machine.

One interesting thing to note about this search is that if you run it, you'll see
a lot more results containing the character p, which looks essentially
identical to the character p that also shows up in a case sensitive search. As
you might have guessed, even though these two characters look the same,
they are in fact distinct Unicode codepoints:

e pis MICRO SIGN with codepoint U+000000B5.
e pis GREEK SMALL LETTER MU with codepoint U+000003BC.

The latter codepoint is considered part of the \p{Greek} group while the
former codepoint is not (the former codepoint appears to be the correct sigil
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to use in the case of the Linux kernel). However, the Unicode simple case
folding tables map MICRO SIGN to GREEK SMALL LETTER MU, which
causes rg to pick up on lines containing MICRO SIGN even though it strictly
isn't part of the Greek group.

linux_no_literal

Description: This is the last benchmark on the Linux kernel source code
and is a bit idiosyncratic like 1inux_unicode_greek_casei. In particular, it
looks for lines containing 5 consecutive repetitions of 5 word characters,
each separated by one or more space characters. The key distinction of this
pattern from every other pattern in this benchmark is that it does not contain
any literals. Given the presence of \w and \s, which have valid Unicode and
ASCIl interpretations, we attempt to control for the presence of Unicode
support.

Pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}

rg (ignore) ©.577 +/- ©0.003 (lines: 490)
rg (ignore) (ASCII) 0.416 +/- ©0.025 (lines: 490)
ag (ignore) (ASCII) 2.339 +/- 0.010 (lines: 766)
pt (ignore) (ASCII) 22.066 +/- ©0.057 (lines: 490)
sift (ignore) (ASCII) 25.563 +/- 0.108 (lines: 490)
git grep (ignore) 26.382 +/- 0.044 (lines: 490)
git grep (ignore) (ASCII) 4.153 +/- 0.010 (lines: 490)
rg (whitelist) 0.503 +/- 0.011 (lines: 419)
rg (whitelist) (ASCII) 0.343 +/- 0.038 (lines: 419)*+
ucg (whitelist) (ASCII) 1.130 +/- 0.003 (lines: 416)

- Best mean time.
e + - Best sample time.
e ag reports many more matches than other tools because it does
multiline search where the \'s can match a \n.

Analysis: Since this particular pattern doesn’t have any literals in it, it's
entirely up to the underlying regex engine to answer this query. It can't be
smart and skip through the input—it has to pass it completely through the
regex engine. Since non-literal patterns are pretty rare in my experience,
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this benchmark exists primarily as an engineered way to test how well the
underlying regex engines perform.

rg, regardless of whether it respects .gitignore files or whether it
handles Unicode correctly, does quite well here compared to other tools.
git grep in particular pays a 5x penalty for Unicode support. rg on the
other hand pays about a 0.3x penalty for Unicode support. Interestingly,
even though ucg doesn’t enable Unicode support, not even PCRE2's JIT can
compete with rg!

What makes rg so fast here? And what actually causes the 0.3x penalty?

rg continues to be fast on this benchmark primarily for the same reason
why it's fast with other Unicode-centric benchmarks: it compiles the UTF-8
decoding right into its deterministic finite state machine. This means there is
no extra step to decode the search text into Unicode codepoints first. We
can match directly on the raw bytes.

To a first approximation, the performance penalty comes from compiling the
DFA to match the pattern. In particular, the DFA to match the Unicode variant
is much much larger than the DFA to match the ASCII variant. To give you a
rough idea of the size difference:

e The ASCII DFA has about 250 distinct NFA states.
e The Unicode DFA has about 77,000 distinct NFA states.

(These numbers are produced directly from the compiler in Rust’s regex
library, and don't necessarily reflect a minimal automaton.)

A DFA produced from these patterns doesn’t necessarily have the same
number of states, since each DFA state typically corresponds to multiple
NFA states. (Check out the Powerset construction Wikipedia article.
Although it doesn't correspond to the same implementation strategy used in
Rust's regex engine, it should give good intuition.)

However, the first approximation is a bit misleading. While Rust's regex
engine does have a preprocessing compilation phase, it does not actually
include converting an NFA into a DFA. Indeed, that would be far too slow
and could take exponential time! Instead, Rust's regex engine builds the DFA
on the fly or "lazily," as it searches the text. In the case of the ASCII pattern,
this search barely spends any time constructing the DFA states since there
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are so few of them. However, in the Unicode case, since there are so many
NFA states, it winds up spending a lot of time compiling new DFA states.
(I've confirmed this by inspecting a profile generated by perf.) Digging a bit
deeper, the actual story here might be subtler. For example, the Unicode
pattern might wind up with the same number of DFA states as the ASCII
pattern, primarily because the input its searching is the same and is
primarily ASCII. The slow down then must come from the fact that each
individual DFA state takes longer to build. This is likely correct since a single
Unicode \w is over two orders of magnitude larger than a single ASCII \w.
Therefore, each DFA state probably has a lot more NFA states in it for the
Unicode pattern as opposed to the ASCII pattern. It's not clear whether we
can do any better here (other than trying to minimize the Unicode \w, which
would be totally feasible), since we don't actually know the composition of
the search text ahead of time.

One idea for improvement is to have multiple types of DFAs. For example,
you might imagine trying to match with an ASCII only DFA. If the DFA sees a
non-ASCIl byte, then it could cause a transition into a Unicode-aware DFA.
However, the penalty here is so small that it's hard to justify this kind of
implementation complexity!

Single file benchmarks

In the second half of our benchmarks, we will shift gears and look more
closely at the performance of search tools on a single large file. Each
benchmark will be run on two samples of the OpenSubtitles2016 dataset.
One sample will be English and therefore predominantly ASCII, and another
sample will be in Russian and therefore predominantly Cyrillic. The patterns
for the Russian sample were translated from English using Google Translate.
(Sadly, | can't read Russian, but | have tried each search by hand and
confirmed that a sample of the results | was looking at were relevant by
piping them back through Google Translate.) The English sample is around
1GB and the Russian sample is around 1.6GB, so the benchmark timings
aren't directly comparable.

In this benchmark, the performance of the underlying regex engine and
various literal optimizations matter a lot more. The two key variables we'll
need to control for are line counting and Unicode support. Normally, we'd
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just not request line counting from any of the tools, but neither of The Silver
Searcher or Universal Code Grep support disabling line numbers.
Additionally, Unicode support is tricky to control for in some examples
because ripgrep does not support ASCII only case insensitive semantics
when searching with a non-ASCII string. It's Unicode all the way and there's
no way to turn it off. As we'll see, at least for ripgrep, it's still faster than its
ASCII alternatives even when providing case insensitive Unicode support.

As with the Linux benchmark, you can see precisely which command was
run and its recorded time in the raw data.

ripgrep utterly dominates this round, both in performance and
correctness.

subtitles_literal

Description: This benchmarks the simplest case for any search tool: find all
occurrences of a literal string. Tools annotated with (1ines) were passed
the -n flag (or equivalent) so that the output reports line numbers.

English pattern: Sherlock Holmes

rg 0.268 +/- 0.000 (lines: 629)*+
rg (no mmap) 0.336 +/- 0.001 (lines: 629)
pt 3.433 +/- 0.002 (lines: 629)
sift 0.326 +/- 0.002 (lines: 629)
grep ©.516 +/- 0.001 (lines: 629)
rg (lines) ©.595 +/- 0.001 (lines: 629)
ag (lines) 2.730 +/- 0.003 (lines: 629)
ucg (lines) ©.745 +/- 0.001 (lines: 629)
pt (lines) 3.434 +/- 0.005 (lines: 629)
sift (lines) ©0.756 +/- 0.002 (lines: 629)
grep (lines) ©.969 +/- ©0.001 (lines: 629)
Russian pattern: llepnok Xonmc

rg ©.325 +/- 0.001 (lines: 583)*+

rg (no mmap) 0.452 +/- 0.002 (lines: 583)
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pt 12.917 +/- ©.009 (lines: 583)

sift 16.418 +/- 0.008 (lines: 583)
grep 0.780 +/- 0.001 (lines: 583)
rg (lines) 0.926 +/- 0.001 (lines: 583)
ag (lines) 4.481 +/- 0.003 (lines: 583)
ucg (lines) 1.889 +/- 0.004 (lines: 583)
pt (lines) 12.935 +/- 0.011 (lines: 583)

sift (lines) 17.177 +/- ©0.010 (lines: 583)
grep (lines) 1.300 +/- 0.003 (lines: 583)

e * - Best mean time.

e + - Best sample time.

e This is the only benchmark that contains pt and sift, since they
become too slow in all future benchmarks.

Analysis: Whether it's part of the underlying regex engine or part of the
search tool itself, every search tool in this benchmark does some kind of
literal optimization. ag will inspect the pattern, and if it doesn’t contain any
special regex characters, then it will use a Boyer-Moore variant to perform
the search instead of PCRE. GNU grep does something similar, although it
has clearly been the subject of much optimization.

If that's true, how does rg beat GNU grep by almost a factor of 2? Well, first
and foremost, we note that both sift and ucg beat GNU grep as well. |
won't be able to go into detail on ucg's speed since PCRE2's JIT isn't
something | understand very well, but | can at least tell you that the reasons
why rg and sift are faster than GNU grep are actually distinct:

e sift uses Go's regexp library, which will do at least one small literal
optimization: if every match of a regex starts with the same byte, the
regex engine will scan for that byte before starting a match. If you
follow the code that does the scan for the byte all the way back to its
source for x86_64 systems, then you'll find that it is using AVX2
instructions and ymm registers, which permit scanning 32 bytes in each
iteration. In contrast, GNU grep uses libc's memchxr, which doesn't use
AVX2. However, that C code will be autovectorized to use xmm registers
and SIMD instructions, which are half the size of ymm registers. In other
words, by virture of being written in Go, sift is making more efficient
use of the CPU.

e rg also uses memchr from libc. The rg binary that was used in this
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benchmark was statically linked with mus 1, which provides its own
implementation of memchzr. Despite it being quite a bit terser than GNU's
libc implementation used in GNU grep, it appears to be doing roughly
the same work. If that's the case, how is rqg faster? The answer lies not
in memchxr nor in the variant of Boyer-Moore nor in the number
characters Boyer-Moore can skip. The answer instead lies in which
byte is given to memchzr. xg will actually try to guess the “rarest” byte in
a literal, and use memchzr on that. (A standard Boyer-Moore
implementation will use memchr always on the last byte.) In this
particular case, running memchr on either S or H is probably quite a bit
better than running it on s because S and H are far less common than s.
That is, rg tries harder than GNU grep to spend more time skipping
bytes in a fast SIMD optimized loop. rg can get this wrong, but it seems
strictly better to at least guess and probably get it right in the common
case than to submit to an artifact of common Boyer-Moore
implementations.

Now that the secrets of literal search have been revealed, we can better
analyze the Russian benchmark. The answer once again lies in which byte is
used for quick scanning. Both sift and pt use the same AVX2 routine in
Go's runtime, so why did they get so much slower than every other tool in
the Russian benchmark? The answer becomes more clear when we look at
the actual UTF-8 bytes of the pattern llepnok Xonmc:

\xd@\xa8\xd@\xb5\xd1\x80\xd@\xbb\xd@d\xbe\xd@\xba \xd@\xa5\xd

There are two key observations to take away from this:

1. Every character in the pattern llepnok Xonmc is encoded with two
UTF-8 code units, which corresponds to two bytes.
2. Every character starts with either the byte \xD@ or \xD1.

If we looked at the UTF-8 bytes of the Russian subtitles we're searching,
we'd end up seeing exactly the same pattern. This pattern occurs because
the contents of the file are mostly Cyrllic, which are all mostly part of a
couple small ranges in Unicode. This means that the \xD@ and \xD1 bytes
occur a lot.

If you recall from above, Go's regex engine will scan for occurrences of the
first byte. But if that first byte happens as frequently as it does here, the
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overall search will wind up going slower because there is overhead
associated with doing that scan. This is precisely the trade off one is
exposed to whenever memchr is used.

As you might have guessed, rg works around this issue by trying to guess
the rarest byte. rg specifically draws from a pre-computed frequency table
of all 256 bytes. Bytes like \xD@ and \xD1 are considered to be among the
most frequent while bytes like \xA8 and \x81 are considered more rare.
Therefore, rg will prefer bytes other than \xD@ and \xD1 for use with
memchr.

GNU grep continues to do well on this benchmark mostly because of blind
luck: Boyer-Moore uses the last byte, which will correspond to \x81, which
is much rarer than \xD@ or \xD1.

Switching gears, we should briefly discuss memory maps. In this
benchmark, rg beats out rg (no mmap) by about 25%. The only difference
between the two is that the former memory maps the file into memory while
the latter incrementally reads bytes from the file into an intermediate buffer,
and searches it. In this case, the overhead of the memory map is very small
because we only need to create one of them. This is the opposite result
from our Linux benchmark above, where memory maps proved to be worse
than searching with an intermediate buffer since we needed to create a new
memory map for every file we searched, which ends up incurring quite a bit
of overhead. rg takes an empirical approach here and enables memory map
searching when it knows it only needs to search a few files, and otherwise
searches using an intermediate buffer.

One last note: I've neglected to talk about (1ines) because there's really
not much to say here: counting lines takes work, and if you don't need to
report line numbers, you can avoid doing that work. ucg has a rather cool
SIMD algorithm to count lines and rg also has a packed counting algorithm
that works similarly to the memchr implementations we talked about.

If it were up to me, I'd probably remove benchmarks with line numbers
altogether, since most tools tend to reliably pay just a little bit extra for
them. However, neither ag nor ucg allow turning them off, so we need to
turn them on in other tools in order to make a fair comparison.



subtitles_literal casei

Description: This benchmark is just like subtitles_literal, except it
does case insensitive search. Tools annotated with (1ines) show line
numbers in their output, and tools annotated with (ASCII) are doing an
ASCIll-only search. Correspondingly, tools not labeled with (ASCII) are
doing a proper Unicode search.

English pattern: Sherlock Holmes (with the -1 flag set)

rg 0.366 +/- 0.001 (lines: 642)*+
grep 4.084 +/- ©0.005 (lines: 642)
grep (ASCII) 0.614 +/- 0.001 (lines: 642)
rg (lines) 0.696 +/- 0.002 (lines: 642)
ag (lines) (ASCII) 2.775 +/- 0.004 (lines: 642)
ucg (lines) (ASCII) 0.841 +/- ©0.002 (lines: 642)
Russian pattern: llepnok Xonmc

rg 1.131 +/- 0.001 (lines: 604)
grep 8.187 +/- 0.006 (lines: 604)
grep (ASCII) ©0.785 +/- 0.001 (lines: 583)
rg (lines) 1.733 +/- ©0.002 (lines: 604)
ag (lines) (ASCII) 0.729 +/- 0.001 (lines: @)*+
ucg (lines) (ASCII) 1.896 +/- 0.005 (lines: 583)

e * - Best mean time.

e + - Best sample time.

e Thereisno rg (ASCII) because rg can't do ASCIl-only case
insensitive search.

Analysis: This is a fun benchmark, because we start to see just how
awesome rg's support for Unicode is. Namely, that it not only gets it correct,
but it's also fast. It's fast enough that it beats the competition even when the
competition is using ASCII-only rules.

Right off the bat, GNU grep pays dearly for doing a case insensitive search
with Unicode support. The problem it faces is that it can no longer do a


https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal

straight-forward Boyer-Moore search, so it either needs to fall back to some
alternative literal search or its full regex engine. Even though GNU grep is
much faster at ASCII-only case sensitive search than its Unicode aware
variant, rg's Unicode case insensitive search still handedly beats GNU
grep's ASCIl-only case insensitive search.

The reason why rg is so fast on this benchmark is the same reason why it's
fastinthe linux_literal_casei benchmark: it turns the pattern
Sherlock Holmes into an alternation of all possible literals according to
Unicode’s simple case folding rules. It then takes a small prefix from each
alternate so that our set of literals looks like this:

SHER
SHEr
SHeR
SHer
ShER
ShEr
SheR
Sher
sHER
SHET
sHeR
sHer
shER
shEr
sheR
sher
(HER
[HET
[HeR
[Her
fhER
(hEx
heR
(her

(Notice that we get Unicode right by including I as a case variant of S.)
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It then feeds these literals to the Teddy SIMD multiple pattern algorithm. The
algorithm is unpublished, but was invented by Geoffrey Langdale as part of
Intel's Hyperscan regex library. The algorithm works roughly by using
packed comparisons of 16 bytes at a time to find candidate locations where
a literal might match. | adapted the algorithm from the Hyperscan project to
Rust, and included an extensive write up in the comments if you're
interested.

While essentially the same analysis applies to the Russian benchmark, there
are a few interesting things to note. Namely, while the results show grep
(ASCII) as being very fast, it seems clear that it's completely ignoring the -
i flag in this case since the pattern is not an ASCII string. Notably, its timing
is essentially identical to its timing on the previous subtitles_literal
benchmark. The other interesting thing to note is that ag reports @ matches.
This isn't entirely unreasonable, if it somehow knows that it can't satisfy the
request (case insensitive search of a non-ASCII string when Unicode
support isn't enabled). If | had to guess, I'd say PCRE is returning an error
(possibly from pcre_exec) and it isn't being forwarded to the end user, but
that's just a shot in the dark.

subtitles_alternate

Description: This benchmarks an alternation of literals, where there are
several distinct leading bytes from each literal. We control for line counting.

English pattern: Sherlock Holmes|John Watson|Irene Adler|
Inspector Lestrade|Professor Moriarty

rg 0.294 +/- 0.001 (lines: 848)*+
grep 2.955 +/- 0.003 (lines: 848)
rg (lines) 0.619 +/- 0.001 (lines: 848)
ag (lines) 3.757 +/- 0.001 (lines: 848)
ucg (lines) 1.479 +/- 0.002 (lines: 848)
grep (lines) 3.412 +/- ©0.004 (lines: 848)

Russian pattern: llepnok Xonmc |xoH YoTcoOH |VpeH Aanep|uHcnekTop
NecTpena | npodeccop MopuapTun
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rg 1.300 +/- ©0.002 (lines: 691)*+
grep 7.994 +/- 0.017 (lines: 691)
rg (lines) 1.902 +/- 0.002 (lines: 691)
ag (lines) 5.892 +/- 0.003 (lines: 691)
ucg (lines) 2.864 +/- 0.006 (lines: 691)
grep (lines) 8.511 +/- @0.005 (lines: 691)

e * - Best mean time.
e + - Best sample time.

Analysis: rg does really well here, on both the English and Russian
patterns, primarily thanks to Teddy as described in the analysis for
subtitles_literal_ casei. On the English pattern, rqg is around an order
of magnitude faster than GNU grep.

The performance cost of counting lines is on full display here. For rg at
least, it makes returning search results take twice as long.

Note that the benchmark description mentions picking literals with distinct
leading bytes. This is to avoid measuring an optimization where the regex
engine detects the leading byte and runs memchr on it. Of course, this
optimization is important (and rg will of course do it), but it's far more
interesting to benchmark what happens in a slightly trickier case.

subtitles_alternate_casei

Description: This benchmark is just like subtitles_alternate, except it
searches case insensitively. In this benchmark, instead of controlling for line
counting (all commands count lines), we control for Unicode support.

English pattern: Sherlock Holmes|John Watson|Irene Adler|
Inspector Lestrade|Professor Moriarty (with the -1 flag set)
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rg 2.724 +/- 0.002 (lines: 862)*+
grep 5.125 +/- 0.006 (lines: 862)
ag (ASCII) 5.170 +/- 0.004 (lines: 862)
ucg (ASCII) 3.453 +/- ©0.005 (lines: 862)
grep (ASCII) 4.537 +/- 0.025 (lines: 862)

Russian pattern: llepnok Xonmc |IxoH YOTcOH |VpeH Apnep|unHcnekTop
NecTpeng |npogpeccop MopuapTun

rg 4.834 +/- 0.004 (lines: 735
grep 8.729 +/- ©0.004 (lines: 735
ag (ASCII) 5.891 +/- 0.001 (lines: 691

*4

ucg (ASCII) 2.868 +/- 0.005 (lines: 691
grep (ASCII) 8.572 +/- 0.009 (lines: 691

Nerf N’ N’ N N

e * - Best mean time.
e + - Best sample time.

Analysis: While rg gets an order of magnitude slower on this benchmark
compared to subtitles_alternate, it still comfortably beats out the rest
of the search tools, even when other tools don't support Unicode. A key
thing this benchmark demonstrates are the limits of the Teddy algorithm. In
fact, rg opts to not use Teddy in this benchmark because it predicts it won't
perform well.

Why doesn't Teddy perform well here? Well, the answer is in how we
generate literals for this pattern. Namely, rg will try to generate all possible
literals that satisfy Unicode simple case folding rules, and then will take a
short prefix of that set to cut the number of literals down to reasonable size.
In this particular case, we wind up with 48 literals:

INS
INs
INT
IRE
IRe
InS
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Ins
Infl
IrE
Ire
JOH
JOh
JoH
Joh
PRO
PRoO
Px0
Pro
SHE
SHe
ShE
She
iNS
iNs
iNT
iRE
iRe
inS
ins
inf
irE
ire
jOH
jOh
joH
joh
pRO
pRO
pr0
pro
SHE
sHe
shE
she




HE
[He
(hE
he

If we passed all of those to Teddy, it would become overwhelmed. In
particular, Teddy works by finding candidates for matches very quickly.
When there are roughly the same number of candidates as there are
matches, Teddy performs exceedingly well. But, if we give it more literals,
then it's more likely to find candidates that don't match, and will therefore
have to spend a lot more time verifying the match, which can be costly.

(A more subtle aspect of the Teddy implementation is that a larger number
of literals increases the cost of every verification, even if the number of
candidates produced doesn't increase. As I've mentioned before, if you
want the full scoop on Teddy, see its well commented implementation.
Going into more detail on Teddy would require a whole blog post on its
own!)

When rg sees that there are a large number of literals, it could do one of
two things:

1. Try to cut down the set even more. For example, in this case, we could
strip the last character from each prefix off and end up with a much
smaller set. Unfortunately, even though we have fewer literals, we wind
up with a still not-so-small set of two-character literals, which will also
tend to produce a lot more false positive candidates just because of
their length.

2. Move to a different multiple pattern algorithm, such as Aho-Corasick.

| have tried to implement (1) in the past, but I've always wound up in a game
of whack-a-mole. | might make one common case faster, but another
common case a lot slower. In those types of cases, it's usually better to try
and achieve good average case performance. Luckily for us, Aho-Corasick
does exactly that.

We do still have a few tricks up our sleeve though. For example, many Aho-
Corasick implementations are built as-if they were tries with back-pointers
for their failure transitions. We can actually do better than that. We can
compile all of its failure transitions into a DFA with a transition table
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contiguous in memory. This means that every byte of input corresponds to a
single lookup in the transition table to find the next state. We never have to
waste time chasing pointers or walking more than one failure transition for
any byte in the search text.

Of course, this transition table based approach is memory intensive, since
you need space for number_of_literals * number_of_states, where
number_of_states is roughly capped at the total number of bytes in all of
the literals. While 48 literals of length 3 is too much for Teddy to handle, it's
barely a blip when it comes to Aho-Corasick, even with its memory
expensive transition table based approach. (N.B. In the literature, this
particular implementation of Aho-Corasick is often called “Advanced” Aho-
Corasick.)

subtitles_surrounding_words

Description: This benchmarks a pattern that searches for words
surrounding the literal string Holmes. This pattern was specifically
constructed to defeat both prefix and suffix literal optimizations.

English pattern: \w+\s+Holmes\s+\w+

rg 0.605 +/- 0.000 (lines: 317)
grep 1.286 +/- 0.002 (lines: 317)
rg (ASCII) 0.602 +/- 0.000 (lines: 317)*+
ag (ASCII) 11.663 +/- 0.008 (lines: 323)
ucg (ASCII) 4.690 +/- 0.002 (lines: 317)
grep (ASCII) 1.276 +/- ©0.002 (lines: 317)

Russian pattern: \w+\s+Xonmc\s+\w+

rg 0.957 +/- 0.001 (lines: 278)*+
grep 1.660 +/- 0.002 (lines: 278)
ag (ASCII) 2.411 +/- 0.001 (lines: 0)

ucg (ASCII) 2.980 +/- 0.002 (lines: 0)
grep (ASCII) 1.596 +/- 0.003 (lines: 0)




e * - Best mean time.
e + - Best sample time.

Analysis: In order to compete on this benchmark, a search tool will need to
implement a so-called “inner literal” optimization. You can probably guess
what that means: it is an optimization that looks for literal strings that appear
anywhere in the pattern, and if a literal is found that must appear in every
match, then a search tool can quickly scan for that literal instead of applying
the full regex to the search text.

The key thing that permits this optimization to work is the fact that most
search tools report results per line. For example, in this case, if a line
contains the literal Holmes, then the search tool can find the beginning and
ending of that line and run the full pattern on just that line. If the literal is
relatively rare, this keeps us out of the regex engine for most of the search.
And of course, if the literal doesn't appear at all in the corpus, then we will
have never touched the regex engine at all.

To achieve the full optimization, you probably need to parse your pattern
into its abstract syntax (abbreviated "AST" for abstract syntax tree) to
extract the literal. It is worth pointing out however that one can probably get
a lot of mileage with simpler heuristics, but a real pattern parser is the only
way to do this optimization robustly. The problem here is that for most regex
engines, parsing the pattern is an unexposed implementation detail, so it
can be hard for search tools to extract literals in a robust way without
writing their own parser, and a modern regex parser is no easy task!
Thankfully, Rust's regex library exposes an additional library, regex-
syntax, which provides a full parser. rg implements this optimization
relatively easily with the help of regex-syntax, while GNU grep
implements this optimization because the search tool and the underlying
regex engine are coupled together.

Why does the search tool need to perform this optimization? Why can't the
underlying regex engine do it? | personally have thought long and hard
about this particular problem and haven't been able to come up with an
elegant solution. The core problem is that once you find an occurrence of
the literal, you don’t know where to start searching the full regex. In a
general purpose regex engine, a pattern could match an arbitrarily long
string. For example, \w+\s+Holmes\s+\w+ mightly only match at the very
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end of a gigabyte sized document. There are ways to work around this. For
example, you could split the regex into three pieces: \w+\s+, Holmes and
\s+\w+. On every occurrence of the Holmes literal, you could search for the
beginning of the match by executing \w+\s+ in reverse starting just before
the literal, and executing \s+\w+ forwards starting just after the literal. The
key problem with this approach is that it exposes you to quadratic behavior
in the worst case (since \w+\s+ or \s+\w+ could cause you to re-scan text
you've already seen). While | believe there is a general purpose way to
solve this and still guarantee linear time searching, a good solution hasn't
revealed itself yet.

Based on the data in this benchmark, only rg and GNU grep perform this
optimization. Neither ag nor ucg attempt to extract any inner literals from
the pattern, and it looks like PCRE doesn't try to do anything too clever. (Of
course, Rust's regex library doesn't either, this optimization is done in rg
proper.)

As for the Russian pattern, we see that only tools with proper Unicode
support can execute the query successfully. The reason is because \w is
ASCIl only in ucg and ag, so it can't match the vast majority of word
characters (which are Cyrllic) in our sample. Otherwise, both rg and GNU
grep remain fast, primarily because of the inner literal optimization.

subtitles_no_literal

Description: This benchmark purposefully has no literals in it, which makes
it a bit idiosyncratic, since most searches done by end users probably have
at least some literal in them. However, it is a useful benchmark to gauge the
general performance of the underlying regex engine.

English pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+
\w{5}\s+\w{5}

rg 2.777 +/- 0.003 (lines: 13)
rg (ASCII) 2.541 +/- 0.005 (lines: 13)*+
ag (ASCII) 10.076 +/- ©0.005 (lines: 48)

ucg (ASCII) 7.771 +/- 0.004 (lines: 13)
grep (ASCII) 4.411 +/- 0.004 (lines: 13)




Russian pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+
\w{5}\s+\w{5}

rg 4.905 +/- 0.003 (lines: 41)
rg (ASCII) 3.973 +/- 0.002 (lines: 0)
ag (ASCII) 2.395 +/- 0.004 (lines: Q)*+

ucg (ASCII) 3.006 +/- 0.005 (lines: 0)
grep (ASCII) 2.483 +/- 0.005 (lines: Q)

* - Best mean time.

+ - Best sample time.

ag gets more matches on the English pattern since it does multiline
search. Namely, the \'s can match a \n.

grep with Unicode support was dropped from this benchmark because
it takes over 90 seconds on the English pattern and over 4 minutes on
the Russian pattern. In both cases, GNU grep and rg report the same
results.

Analysis: Once again, no other search tool performs as well as rg. For the
English pattern, both rg and rg (ASCII) have very similar performance,
despite rg supporting Unicode.

What specifically makes rg faster than GNU grep in this case? Both search
tools ultimately use a DFA to execute this pattern, so their performance
should be roughly the same. | don't actually have a particularly good answer
for this. Both GNU grep and Rust's regex library unroll the DFA's inner loop,
and both implementations compute states on the fly. | can make a guess
though.

Rust's regex library avoids a single pointer dereference when following a
transition. How it achieves this is complicated, but it's done by representing
states as indices into the transition table rather than simple incremental ids.
This permits the generated code to use simple addition to address the
location of the next transition, which can be done with addressing modes in
a single instruction. (Specifically, this optimization means we don't need to
do any multiplication to find the state transition.) A single pointer
dereference might not seem like much, but when it's done for every state
transition over a large corpus such as this, it can have an impact.



When it comes to the Russian pattern, such details are far less important
because GNU grep takes minutes to run. This suggests that it isn't building
UTF-8 decoding into its DFA, and is instead doing something like decoding a
character at a time, which can have a lot of overhead associated with it. |
admit that | don't quite grok this aspect of GNU grep though, so | could have
its cost model wrong. Now, in all fairness, GNU grep’s locale and encoding
support far exceeds what rg supports. However, in today’s world, UTF-8 is
quite prevalent, so supporting that alone is often enough. More to the point,
given how common UTF-8 is, it's important to remain fast while supporting
Unicode, which GNU grep isn't able to do.

Unfortunately, the other tools don't support Unicode, so they can't be
meaningfully benchmarked on the Russian pattern.

Bonus benchmarks

In this section, we'll take a look at a few crazier benchmarks that aren't
actually part of the suite I've published. Indeed, the performance
differences between tools are often so large that a fastidious analysis isn't
really necessary. More to the point, these usage patterns aren't necessarily
representative of common usage (not that these usages aren't important,
they're just niche), so the performance differences are less important.
Nevertheless, it is fun to see how well rg and the other tools hold up under
these requests.

everything

Description: In this benchmark, we compare how long it takes for each tool
to report every line as a match. This benchmark was run in the root of the
Linux repository.

Pattern: . *

rg 1.081 (lines: 22065361)
ag 1.660 (lines: 55939)
git grep 3.448 (lines: 22066395)
sift 110.018 (lines: 22190112)

pt ©.245 (lines: 3027)




rg (whitelist) ©.987 (lines: 20936584)
ucg (whitelist) 5.558 (lines: 23163359)

Analysis: This benchmark is somewhat silly since it's something you
probably never want a search tool to do. Nevertheless, it is useful to know
that rg scales quite well to a huge number of matches.

One of the key tricks that a good regex engine will do in this case is stop
searching text as soon as it knows it has a match if all the caller cares about
is “is there a match or not?" In this case, we will find a match at the
beginning of every line, immediately quit, find the line boundaries and then
repeat the process. There is no particular special cased optimization for . *
in either rg or Rust's regex library (although there could be).

Interestingly, neither ag nor pt actually report every line. They appear to
have some kind of match limit. Which isn't altogether unreasonable. This is
a search tool after all, and some might consider that returning every result
isn't useful.

nothing

Description: This is just like the everything benchmark, except it inverts
the results. The correct result is for a search tool to report no lines as
matching. This benchmark also searches the Linux kernel source code,
from the root of repository.

Pattern: . * (with the -v or --invert-match flag set)

rg 0.302 (lines: 0)
ag takes minutes
git grep 0.905 (lines: 0)
sift 12.804 (lines: 0)
pt -

rg (whitelist) 0.251 (lines: 0)
ucg (whitelist)  -----

Analysis: While this benchmark is even more ridiculous than the previous
one (“"give me nothing of everything”), it does expose a few warts and



omissions in other tools. Namely, ag seems to slow way down when
reporting inverted matches. Neither pt nor ucg support inverted searching
at all. sift redeems itself from the previous benchmark (perhaps it has a lot
of overhead associated with printing matches that it doesn't hit here).
Neither rg nor git grep have any problems satisfying the request.

context

Description: This benchmarks how well a search tool can show the context
around each match. Specifically, in this case, we ask for the two lines
preceding and succeeding every match. We run this benchmark on the
English subtitle corpus. Note that all tools are asked to count lines.

Pattern: Sherlock Holmes (with --context 2)

rg 0.612 (lines: 3533)
ag 3.530 (lines: 3533)
grep 1.075 (lines: 3533)
sift ©.717 (lines: 3533)
pt 17.331 (lines: 2981)
ucg  -----

Analysis: rg continues to do well here, but beats sift by only a hair. In
general, computing the context shouldn’t be that expensive since it is done
rarely (only for each match). Nevertheless, both ag and pt seem to take a
pretty big hit for it. pt also seems to have a bug. (Which is understandable,
getting contexts right is tricky.) Finally, ucg doesn't support this feature, so
we can't benchmark it.

huge

Description: This benchmark runs a simple literal search on a file that is
9.3GB. In fact, this is the original English subtitle corpus in its entirety. (In
the benchmark suite, we take a 1GB sample.)

Pattern: Sherlock Holmes

rg 1.786 (lines: 5107)



grep 5.119 (lines: 5107)

sift 3.047 (lines: 5107)
pt 14.966 (lines: 5107)
rg (lines) 4.467 (lines: 5107)
ag (lines) 19.132 (lines: 5107)
grep (lines) 9.213 (lines: 5107)
sift (lines) 6.303 (lines: 5107)
pt (lines) 15.485 (lines: 5107)
ucg (lines) 4.843 (lines: 1543)

Analysis: At first glance, it appears ucg competes with rg when counting
lines (being only slightly slower), but in fact, ucg reports the wrong number
of results! My suspicion is that ucg gets into trouble when trying to search
files over 2GB.

The other intesting bit here is how slow pt is, even when not counting lines,
despite the fact that sift is fast. They both use Go's regexp engine and
should be able to be fast in the case of a simple literal. It's not clear what
pt's slow down here is. One hypothesis is that even though I'm asking it to
not count lines, it's still counting them but simply not showing them.

Conclusions

| started this blog post by claiming that | could support the following claims
with evidence:

e For both searching single files and huge directories of files, no other
tool obviously stands above ripgrep in either performance or
correctness.

e ripgrep is the only tool with proper Unicode support that doesn't
make you pay dearly for it.

e Tools that search many files at once are generally slower if they use
memory maps, not faster.

| attempted to substantiate the first claim by picking a popular repository
(Linux kernel) and a variety of patterns that an end user might search for.
While rg doesn't quite come out on top on every benchmark, no other tool
can claim superiority. In particular, git grep edges out rg on occasion by
a few milliseconds, but rg in turn will beat git grep handedly (sometimes



by an order of magnitude, as in the case of 1inux_unicode_word) as the
patterns grow more complex, especially when the search tool is asked to

support Unicode. rg manages to compete with git grep and beat other

tools like The Silver Searcher by:

¢ Implementing fast directory traversal with a minimal number of stat
calls.

e Applying .gitignore filters with a RegexSet, which enables matching
multiple globs against a single path all at once.

e Distributing work quickly to multiple threads with a Chase-Lev work
stealing queue.

o Explicitly not using memory maps.

e Using an overall very fast regex engine.

| also attempted to substantiate the first claim by showing benchmarks of rg
against other tools on a single file. In this benchmark, rg comes out on top
in every single one, often by a large margin. Some of those results are a
result of the following optimizations:

o Attempting to pick a “rare” byte to use memchr with for fast skipping.

e Using a special SIMD algorithm called Teddy for fast multiple pattern
search.

e When Teddy isn't usable, fallback to an “advanced” form of Aho-
Corasick that never moves through more than one transition on each
byte of input.

 Building UTF-8 decoding into a finite state machine.

For the second claim, | provided benchmarks that attempt to use Unicode
features such as conforming to Unicode's simple case folding rules and
Unicode aware character classes such as \w. The only tools capable of
handling Unicode are rg, GNU grep and git grep. The latter two tend to
get much slower when supporting the full gamut of Unicode while rg mostly
maintains its performance.

For the third claim, | showed multiple benchmarks of rg controlling for
memory maps. Namely, we measured how fast rg was both with and
without memory maps, and showed that memory maps perform worse when
searching many small files in parallel, but perform better on searching
single large files. (At least, on Linux x86_64.) We also learned that
memory maps probably pay an additional penalty inside a VM.


https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html

My hope is that this article not only convinced you that rg is quite fast, but
more importantly, that you found my analysis of each benchmark
educational. String searching is an old problem in computer science, but
there is still plenty of work left to do to advance the state of the art.
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