
About Projects GitHub Sponsor MeAndrew Gaant's Bog

ripgrep is faster than {grep, ag, git grep,
ucg, pt, sift}
Sep 23, 2016

In this artice I wi introduce a new command ine search too, ripgrep, that

combines the usabiity of The Siver Searcher (an ack cone) with the raw

performance of GNU grep. ripgrep is fast, cross patform (with binaries
avaiabe for Linux, Mac and Windows) and written in Rust.

ripgrep is avaiabe on Github.

We wi attempt to do the impossibe: a fair benchmark comparison between
severa popuar code search toos. Specificay, we wi dive into a series of
25 benchmarks that substantiate the foowing caims:

• For both searching singe fies and huge directories of fies, no other
too obviousy stands above ripgrep in either performance or
correctness.

• ripgrep is the ony too with proper Unicode support that doesnʼt
make you pay deary for it.

• Toos that search many fies at once are generay sower if they use
memory maps, not faster.

As someone who has worked on text search in Rust in their free time for the

ast 2.5 years, and as the author of both ripgrep and the underying reguar
expression engine, I wi use this opportunity to provide detaied insights into
the performance of each code search too. No benchmark wi go
unscrutinized!

Target audience: Some famiiarity with Unicode, programming and some
experience with working on the command ine.

NOTE: Iʼm hearing reports from some peope that rg isnʼt as fast as Iʼve
caimed on their data. Iʼd ove to hep expain whatʼs going on, but to do that,
Iʼ need to be abe to reproduce your resuts. If you fie an issue with

https://burntsushi.net/about/
https://burntsushi.net/about/
https://burntsushi.net/projects/
https://burntsushi.net/projects/
https://github.com/BurntSushi
https://github.com/BurntSushi
https://github.com/sponsors/BurntSushi
https://github.com/sponsors/BurntSushi
https://blog.burntsushi.net/
https://blog.burntsushi.net/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
http://beyondgrep.com/
http://beyondgrep.com/
http://beyondgrep.com/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
https://github.com/BurntSushi/ripgrep/issues
https://github.com/BurntSushi/ripgrep/issues

something I can reproduce, Iʼd be happy to try and expain it.

Screenshot of search resuts

Tabe of Contents
• Introducing ripgrep

◦ Pitch
◦ Anti-pitch
◦ Instaation
◦ Whirwind tour
◦ Regex syntax

• Anatomy of a grep
◦ Background
◦ Gathering fies to search
◦ Searching

▪ Regex engine
▪ Litera optimizations
▪ Mechanics

◦ Printing
• Methodoogy

◦ Overview
◦ Benchmark runner
◦ Environment

• Code search benchmarks
◦ linux_literal_default
◦ linux_literal
◦ linux_literal_casei
◦ linux_word

https://burntsushi.net/stuff/ripgrep1.png
https://burntsushi.net/stuff/ripgrep1.png

◦ linux_unicode_word
◦ linux_re_literal_suffix
◦ linux_alternates
◦ linux_alternates_casei
◦ linux_unicode_greek
◦ linux_unicode_greek_casei
◦ linux_no_literal

• Singe fie benchmarks
◦ subtitles_literal
◦ subtitles_literal_casei
◦ subtitles_alternate
◦ subtitles_alternate_casei
◦ subtitles_surrounding_words
◦ subtitles_no_literal

• Bonus benchmarks
◦ everything
◦ nothing
◦ context
◦ huge

• Concusions

Introducing ripgrep

Pitch

Why shoud you use ripgrep over any other search too? We…

• It can repace many use cases served by other search toos because it
contains most of their features and is generay faster. See the FAQ for
more detais on whether ripgrep can truy repace grep.)

• Like other toos speciaized to code search, ripgrep defauts to
recursive directory search and wonʼt search fies ignored by your
.gitignore fies. It aso ignores hidden and binary fies by defaut.
ripgrep aso impements fu support for .gitignore, whereas there
are many bugs reated to that functionaity in other code search toos
caiming to provide the same functionaity.

• ripgrep can search specific types of fies. For exampe, rg -tpy foo
imits your search to Python fies and rg -Tjs foo excudes
Javascript fies from your search. ripgrep can be taught about new fie
types with custom matching rues.

• ripgrep supports many features found in grep, such as showing the

https://github.com/BurntSushi/ripgrep/blob/master/FAQ.md#posix4ever
https://github.com/BurntSushi/ripgrep/blob/master/FAQ.md#posix4ever

context of search resuts, searching mutipe patterns, highighting
matches with coor and fu Unicode support. Unike GNU grep, ripgrep
stays fast whie supporting Unicode (which is aways on).

• ripgrep has optiona support for switching its regex engine to use
PCRE2. Among other things, this makes it possibe to use ook-around
and backreferences in your patterns, which are not supported in
ripgrepʼs defaut regex engine. PCRE2 support is enabed with -P.

• ripgrep supports searching fies in text encodings other than UTF8,
such as UTF16, atin-1, GBK, EUCJP, Shift_JIS and more. Some
support for automaticay detecting UTF16 is provided. Other text
encodings must be specificay specified with the -E/--encoding
fag.)

• ripgrep supports searching fies compressed in a common format (gzip,
xz, zma, bzip2 or z4) with the -z/--search-zip fag.

• ripgrep supports arbitrary input preprocessing fiters which coud be
PDF text extraction, ess supported decompression, decrypting,
automatic encoding detection and so on.

In other words, use ripgrep if you ike speed, fitering by defaut, fewer bugs
and Unicode support.

Anti-pitch

Iʼd ike to try to convince you why you shoudnʼt use ripgrep. Often, this is

far more reveaing than reasons why I think you shoud use ripgrep.

Despite initiay not wanting to add every feature under the sun to ripgrep,
over time, ripgrep has grown support for most features found in other fie
searching toos. This incudes searching for resuts spanning across
mutipe ines, and opt-in support for PCRE2, which provides ook-around
and backreference support.

At this point, the primary reasons not to use ripgrep probaby consist of one
or more of the foowing:

• You need a portabe and ubiquitous too. Whie ripgrep works on
Windows, macOS and Linux, it is not ubiquitous and it does not
conform to any standard such as POSIX. The best too for this job is
good od grep.

• There sti exists some other feature (or bug) not isted in this README
that you rey on thatʼs in another too that isnʼt in ripgrep.

• There is a performance edge case where ripgrep doesnʼt do we where

another too does do we. Pease fie a bug report!
• ripgrep isnʼt possibe to insta on your machine or isnʼt avaiabe for

your patform. Pease fie a bug report!

Instaation

The binary name for ripgrep is rg.

Binaries for ripgrep are avaiabe for Windows, Mac and Linux. Linux
binaries are static executabes. Windows binaries are avaiabe either as
buit with MinGW GNU) or with Microsoft Visua C MSVC. When
possibe, prefer MSVC over GNU, but youʼ need to have the Microsoft VC
 2015 redistributabe instaed.

If youʼre a Homebrew user, then you can insta it ike so:

$ brew install ripgrep

If youʼre an Archinux user, then you can insta ripgrep from the officia
repos:

$ pacman -Syu ripgrep

If youʼre a Rust programmer, ripgrep can be instaed with cargo:

$ cargo install ripgrep

If youʼd ike to buid ripgrep from source, that is aso easy to do. ripgrep
is written in Rust, so youʼ need to grab a Rust instaation in order to

compie it. ripgrep compies with Rust 1.9 (stabe) or newer. To buid:

$ git clone git://github.com/BurntSushi/ripgrep
$ cd ripgrep
$ cargo build --release
$./target/release/rg --version
0.1.2

https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.rust-lang.org/
https://www.rust-lang.org/

If you have a Rust nighty compier, then you can enabe optiona SIMD
acceeration ike so, which is used in a benchmarks reported in this artice.

RUSTFLAGS="-C target-cpu=native" cargo build --release --features simd-accel

Whirwind tour

The command ine usage of ripgrep doesnʼt differ much from other toos
that perform a simiar function, so you probaby aready know how to use

ripgrep. The fu detais can be found in rg --help, but etʼs go on a
whirwind tour.

ripgrep detects when its printing to a termina, and wi automaticay
coorize your output and show ine numbers, just ike The Siver Searcher.
Cooring works on Windows too! Coors can be controed more granuary

with the --color fag.

One ast thing before we get started: generay speaking, ripgrep assumes
the input is reading is UTF8. However, if ripgrep notices a fie is encoded
as UTF16, then it wi know how to search it. For other encodings, youʼ

need to expicity specify them with the -E/--encoding fag.

To recursivey search the current directory, whie respecting a .gitignore
fies, ignore hidden fies and directories and skip binary fies:

$ rg foobar

The above command aso respects a .rgignore fies, incuding in parent

directories. .rgignore fies can be used when .gitignore fies are

insufficient. In a cases, .rgignore patterns take precedence over

.gitignore.

To ignore a ignore fies, use -u. To additionay search hidden fies and

directories, use -uu. To additionay search binary fies, use -uuu. In other

words, “search everything, dammit!ˮ) In particuar, rg -uuu is simiar to

grep -a -r.

$ rg -uu foobar # similar to `grep -r`
$ rg -uuu foobar # similar to `grep -a -r`

Tip: If your ignore fies arenʼt being adhered to ike you expect, run your

search with the --debug fag.)

Make the search case insensitive with -i, invert the search with -v or show

the 2 ines before and after every search resut with -C2.

Force a matches to be surrounded by word boundaries with -w.

Search and repace (find first and ast names and swap them):

$ rg '([A-Z][a-z]+)\s+([A-Z][a-z]+)' --replace '$2, $1'

Named groups are supported:

$ rg '(?P<first>[A-Z][a-z]+)\s+(?P<last>[A-Z][a-z]+)' --replace

Up the ante with fu Unicode support, by matching any uppercase Unicode
etter foowed by any sequence of owercase Unicode etters (good uck
doing this with other search toos!

$ rg '(\p{Lu}\p{Ll}+)\s+(\p{Lu}\p{Ll}+)' --replace '$2, $1'

Search ony fies matching a particuar gob:

$ rg foo -g 'README.*'

Or excude fies matching a particuar gob:

$ rg foo -g '!*.min.js'

Search ony HTML and CSS fies:

$ rg -thtml -tcss foobar

Search everything except for Javascript fies:

$ rg -Tjs foobar

To see a ist of types supported, run rg --type-list. To add a new type,

use --type-add, which must be accompanied by a pattern for searching

(rg wonʼt persist your type settings):

$ rg --type-add 'foo:*.{foo,foobar}' -tfoo bar

The type foo wi now match any fie ending with the .foo or .foobar
extensions.

Regex syntax

The syntax supported is documented as part of Rustʼs regex ibrary.

Anatomy of a grep

Before we dive into benchmarks, I thought it might be usefu to provide a
high eve overview of how a grep-ike search too works, with a specia

focus on ripgrep in particuar. The goa of this section is to provide you
with a bit of context that wi hep make understanding the anaysis for each
benchmark easier.

Background

Moduo parsing command ine arguments, the first “reaˮ step in any search

too is figuring out what to search. Toos ike grep donʼt try to do anything
smart: they simpy search the fies given to it on the command ine. An

exception to this is the -r fag, which wi cause grep to recursivey search
a fies in the current directory. Various command ine fags can be passed
to contro which fies are or arenʼt searched.

https://docs.rs/regex/1.*/regex/#syntax
https://docs.rs/regex/1.*/regex/#syntax

ack came aong and turned this type of defaut behavior on its head. Instead

of trying to search everything by defaut, ack tries to be smarter about what
to search. For exampe, it wi recursivey search your current directory by
defaut, and it wi automaticay skip over any source contro specific fies

and directories (ike .git). This method of searching undoubtedy has its
own pros and cons, because it tends to make the too “smarter,ˮ which is
another way of saying “opaque.ˮ That is, when you reay do need the too to
search everything, it can sometimes be tricky to know how to speak the
right incantation for it to do so. With that said, being smart by defaut is
incrediby convenient, especiay when “smartˮ means “figure out what to
search based on your source contro configuration.ˮ Thereʼs no she aias

that can do that with grep.

A of the other search toos in this benchmark share a common ancestor

with either grep or ack. sift is descended from grep, whie ag, ucg, and

pt are descended from ack. ripgrep is a bit of a hybrid because it was

specificay buit to be good at searching huge fies just ike grep, but at the

same time, provide the “smartˮ kind of defaut searching ike ack. Finay,

git grep deserves a bit of a specia mention. git grep is very simiar to

pain grep in the kinds of options it supports, but its defaut mode of

searching is ceary descended from ack: it wi ony search fies checked
into source contro.

Of course, both types of search toos have a ot in common, but there are a
few broad distinctions worth making if you aow yoursef to squint your
eyes a bit:

• grep-ike toos need to be reay good at searching arge fies, so the
performance of the underying regex ibrary is paramount.

• ack-ike toos need to be reay good at recursive directory traversa
whie aso appying ignore rues from fies ike .gitignore quicky.
ack-ike toos are buit to run many searches in parae, so the raw
performance of the underying regex ibrary can be papered over
somewhat whie sti being faster than singe-threaded “search
everythingˮ toos ike grep. If the “smartsˮ of ack aso mean skipping
over that 2GB artifact in your directory tree, then the performance
difference becomes even bigger.

• ripgrep tries hard to combine the best of both words. Not ony is its
underying regex engine very fast, but it paraeizes searches and tries
to be smart about what it searches too.

http://beyondgrep.com/
http://beyondgrep.com/
http://beyondgrep.com/

Gathering fies to search

For an ack-ike too, it is important to figure out which fies to search in the
current directory. This means using a very fast recursive directory iterator,
fitering fie paths quicky and distributing those fie paths to a poo of
workers that actuay execute the search.

Directory traversa can be tricky because some recursive directory iterators
make more stat cas than are stricty necessary, which can have a arge
impact on performance. It can be terriby difficut to track down these types
of performance probems because they tend to be buried in a standard
ibrary somewhere. Python ony recenty fixed this, for exampe. Rest

assured that ripgrep uses a recursive directory iterator that makes the
minimum number of system cas possibe.

Fitering fie paths requires not ony respecting rues given at the command

ine (e.g., grepʼs --include or --exclude) fags, but aso requires reading

fies ike .gitignore and appying their rues correcty to a fie paths.

Even the mere act of ooking for a .gitignore fie in every directory can
have measurabe overhead! Otherwise, the key performance chaenge with
this functionaity is making sure you donʼt try to match every ignore rue
individuay against every fie path. Large repositories ike the Linux kerne

source tree have over a hundred .gitignore fies with thousands of rues
combined.

Finay, distributing work to other threads for searching requires some kind
of synchronization. One soution is a mutex protected ring buffer that acts
as a sort of queue, but there are ock-free soutions that might be faster.
Rustʼs ecosystem is so great that I was abe to reuse a ock-free Chase-Lev
work-steaing queue for distributing work to a poo of searchers. Every
other too that paraeizes work in this benchmark uses a variant of a mutex

protected queue. (sift and pt might not fit this criteria, since they use Go
channes, and I havenʼt foowed any impementation improvements to that
code for a few years.)

Searching

Searching is the heart of any of these toos, and we coud dig ourseves into
a hoe on just this section aone and not come out aive for at east 2.5

http://benhoyt.com/writings/scandir/
http://benhoyt.com/writings/scandir/
https://docs.rs/walkdir
https://docs.rs/walkdir
https://docs.rs/walkdir
https://docs.rs/walkdir
https://github.com/kinghajj/deque
https://github.com/kinghajj/deque
https://github.com/kinghajj/deque
https://github.com/kinghajj/deque

years. Wecome to “How Long Iʼve Been Working On Text Search In Rust.ˮ)
Instead, we wi ighty touch on the big points.

Regex engine

First up is the regex engine. Every search too supports some kind of syntax
for reguar expressions. Some exampes:

• foo|bar matches any itera string foo or bar
• [a-z]{2}_[a-z]+ matches two owercase atin etters, foowed by an

underscore, foowed by one or more owercase atin etters.
• \bfoo\b matches the itera foo ony when it is surrounded by word

boundaries. For exampe, the foo in foobar wonʼt match but it wi in I
love foo..

• (\w+) \1 matches any sequence of word characters foowed by a
space and foowed by exacty the word characters that were matched
previousy. The \1 in this exampe is caed a “back-reference.ˮ For
exampe, this pattern wi match foo foo but not foo bar.

Reguar expression engines themseves tend to be divided into two
categories predominanty based on the features they expose. Regex
engines that provide support for a of the above tend to use an approach
caed backtracking, which is typicay quite fast, but can be very sow on
some inputs. “Very sowˮ in this case means that it might take exponentia
time to compete a search. For exampe, try running this Python code:

>>> import re
>>> re.search('(a*)*c', 'a' * 30)

Even though both the regex and the search string are tiny, it wi take a very
ong time to terminate, and this is because the underying regex engine uses
backtracking, and can therefore take exponentia time to answer some
queries.

The other type of regex engine generay supports fewer features and is
based on finite automata. For exampe, these kinds of regex engines
typicay donʼt support back-references. Instead, these regex engines wi
often provide a guarantee that a searches, regardess of the regex or the
input, wi compete in inear time with respect to the search text.

Itʼs worth pointing out that neither type of engine has a monopoy on
average case performance. There are exampes of regex engines of both
types that are bazing fast. With that said, hereʼs a breakdown of some
search toos and the type of regex engine they use:

• GNU grep and git grep each use their own hand-roed finite
automata based engine.

• ripgrep uses Rustʼs regex ibrary, which uses finite automata.
• The Siver Searcher and Universa Code Grep use PCRE, which uses

backtracking.
• Both The Patinum Searcher and sift use Goʼs regex ibrary, which uses

finite automata.

Both Rustʼs regex ibrary and Goʼs regex ibrary share Googeʼs RE2 as a
common ancestor.

Finay, both toos that use PCRE The Siver Searcher and Universa Code
Grep) are susceptibe to worst case backtracking behavior. For exampe:

$ cat wat
c
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
c
$ ucg '(a*)*c' wat
terminate called after throwing an instance of 'FileScannerException'
 what(): PCRE2 match error: match limit exceeded
Aborted (core dumped)

The Siver Searcher fais simiary. It reports the first ine as a match and
negects the match in the third ine. The rest of the search toos
benchmarked in this artice hande this case without a probem.

Litera optimizations

Picking a fast regex engine is important, because every search too wi
need to rey on it sooner or ater. Nevertheess, even the performance of the
fastest regex engine can be dwarfed by the time it takes to search for a
simpe itera string. Boyer-Moore is the cassica agorithm that is used to
find a substring, and even today, it is hard to beat for genera purpose
searching. One of its defining quaities is its abiity to skip some characters

https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
http://www.pcre.org/
http://www.pcre.org/
https://golang.org/pkg/regexp/
https://golang.org/pkg/regexp/
https://github.com/google/re2
https://github.com/google/re2
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm

in the search text by pre-computing a sma skip tabe at the beginning of
the search.

On modern CPUs, the key to making a Boyer-Moore impementation fast is
not necessariy the number of characters it can skip, but how fast it can
identify a candidate for a match. For exampe, most Boyer-Moore
impementations ook for the ast byte in a itera. Each occurrence of that
byte is considered a candidate for a match by Boyer-Moore. It is ony at this
point that Boyer-Moore can use its precomputed tabe to skip characters,
which means you sti need a fast way of identifying the candidate in the
first pace. Thankfuy, speciaized routines found in the C standard ibrary,

ike memchr, exist for precisey this purpose. Often, memchr impementations
are compied down to SIMD instructions that examine sixteen bytes in a

singe oop iteration. This makes it very fast. On my system, memchr often
gets throughputs at around severa gigabytes a second. In my own

experiments, Boyer-Moore with memchr can be just as fast as an expicit
SIMD impementation using the PCMPESTRI instruction, but this is
something Iʼd ike to revisit.)

For a search too to compete in most benchmarks, either it or its regex
engine needs to use some kind of itera optimizations. For exampe, Rustʼs
regex ibrary goes to great engths to extract both prefix and suffix iteras
from every pattern. The foowing patterns a have iteras extracted from
them:

• foo|bar detects foo and bar
• (a|b)c detects ac and bc
• [ab]foo[yz] detects afooy, afooz, bfooy and bfooz
• (foo)?bar detects foobar and bar
• (foo)*bar detects foo and bar
• (foo){3,6} detects foofoofoo

If any of these patterns appear at the beginning of a regex, Rustʼs regex
ibrary wi notice them and use them to find candidate matches very quicky
(even when there is more than one itera detected). Whie Rustʼs core regex
engine is fast, it is sti faster to ook for iteras first, and ony drop down into
the core regex engine when itʼs time to verify a match.

The best case happens when an entire regex can be broken down into a
singe itera or an aternation of iteras. In that case, the core regex engine

http://man7.org/linux/man-pages/man3/memchr.3.html
http://man7.org/linux/man-pages/man3/memchr.3.html
http://man7.org/linux/man-pages/man3/memchr.3.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=PCMPESTR&expand=786
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=PCMPESTR&expand=786

wonʼt be used at a!

A search too in particuar has an additiona trick up its seeve. Namey,
since most search toos do ine-by-ine searching The Siver Searcher is a
notabe exception, which does mutiine searching by defaut), they can
extract non-prefix or “innerˮ iteras from a regex pattern, and search for
those to identify candidate ines that match. For exampe, the regex

\w+foo\d+ coud have foo extracted. Namey, when a candidate ine is

found, ripgrep wi find the beginning and end of ony that ine, and then

run the fu regex engine on the entire ine. This ets ripgrep very quicky
skip through fies by staying out of the regex engine. Most of the search
toos we benchmark here donʼt perform this optimization, which can eave a
ot of performance on the tabe, especiay if your core regex engine isnʼt
that fast.

Handing the case of mutipe iteras (e.g., foo|bar) is just as important.
GNU grep uses a itte known agorithm simiar to Commentz-Water for
searching mutipe patterns. In short, Commentz-Water is what you get
when you merge Aho-Corasick with Boyer-Moore: a skip tabe with a
reverse automaton. Rustʼs regex ibrary, on the other hand, wi either use
pain Aho-Corasick, or, when enabed, a specia SIMD agorithm caed
Teddy, which was invented by Geoffrey Langdae as part of the Hyperscan
regex ibrary deveoped by Inte. This SIMD agorithm wi prove to be at

east one of the key optimizations that propes ripgrep past GNU grep.

The great thing about this is that ripgrep doesnʼt have to do much of this
itera optimization work itsef. Most of it is done inside Rustʼs regex ibrary,
so every consumer of that ibrary gets a these performance optimizations
automaticay!

Mechanics

Repeat after me: Thou Shat Not Search Line By Line.

The naive approach to impementing a search too is to read a fie ine by
ine and appy the search pattern to each ine individuay. This approach is
probematic primariy because, in the common case, finding a match is rare.
Therefore, you wind up doing a ton of work parsing out each ine a for
naught, because most fies simpy arenʼt going to match at a in a arge
repository of code.

https://en.wikipedia.org/wiki/Commentz-Walter_algorithm
https://en.wikipedia.org/wiki/Commentz-Walter_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan

Not ony is finding every ine extra work that you donʼt need to do, but
youʼre aso paying a huge price in overhead. Whether youʼre searching for a
itera or a regex, youʼ need to start and stop that search for every singe
ine in a fie. The overhead of each search wi be your undoing.

Instead, a search toos find a way to search a big buffer of bytes a at
once. Whether thatʼs memory mapping a fie, reading an entire fie into
memory at once or incrementay searching a fie using a constant sized
intermediate buffer, they a find a way to do it to some extent. There are
some exceptions though. For exampe, toos that use memory maps or read

entire fies into memory either canʼt support stdin (ike Universa Code
Grep), or revert to ine-by-ine searching (ike The Siver Searcher). Toos

that support incrementa searching (ripgrep, GNU grep and git grep) can
use its incrementa approach on any fie or stream with no probems.

Thereʼs a reason why not every too impements incrementa search: itʼs
hard. For exampe, you need to consider a of the foowing in a fuy
featured search too:

• Line counting, when requested.
• If a read from a fie ends in the midde of a ine, you need to do the

bookkeeping required to make sure the incompete ine isnʼt searched
unti more data is read from the fie.

• If a ine is too ong to fit into your buffer, you need to decide to either
give up or grow your buffer to fit it.

• Your searcher needs to know how to invert the match.
• Worst of a: your searcher needs to be abe to show the context of a

match, e.g., the ines before and after a matching ine. For exampe,
consider the case of a match that appears at the beginning of your
buffer. How do you show the previous ines if they arenʼt in your buffer?
You guessed it: you need to carry over at east as many ines that are
required to satisfy a context request from buffer to buffer.

Itʼs a steep price to pay in terms of code compexity, but by goy, is it worth
it. Youʼ need to read on to the benchmarks to discover when it is faster
than memory maps!

Printing

It might seem ike printing is such a trivia step, but it must be done with at
east some care. For exampe, you canʼt just print matches from each search

thread as you find them, because you reay donʼt want to intereave the
search resuts of one fie with the search resuts of another fie. A naive
approach to this is to seriaize the printer so that ony one thread can print to
it at a time. This is probematic though, because if a search thread acquires
a ock to the printer before starting the search (and not reeasing it unti it
has finished searching one fie), youʼ end up aso seriaizing every search
as we, effectivey defeating your entire approach to paraeism.

A code search toos in this benchmark that paraeize search therefore
write resuts to some kind of intermediate buffer in memory. This enabes a
of the search threads to actuay perform a search in parae. The printing
sti needs to be seriaized, but weʼve reduced that down to simpy dumping

the contents of the intermediate buffer to stdout. Using an in memory
buffer might set off aarm bes: what if you search a 2GB fie and every ine
matches? Doesnʼt that ead to excessive memory usage? The answer is:
“Why, yes, indeed it does!ˮ The key insight is that the common case is
returning far fewer matches than there are tota ines searched.
Nevertheess, there are ways to mitigate excessive memory usage. For

exampe, if ripgrep is used to search stdin or a singe fie, then it wi

write search resuts directy to stdout and forgo the intermediate buffer

because it just doesnʼt need it. (ripgrep shoud aso do this when asked to
not do any paraeism, but I havenʼt gotten to it yet.) In other words, pick
two: space, time or correctness.

Note that the detais arenʼt quite the same in every too. Namey, whie The
Siver Searcher and Universa Code Grep write matches as structured data

to memory (i.e., an array of match structs or something simiar), both git
grep and ripgrep write the actua output to a dynamicay growabe string

buffer in memory. Whie either approach does seem to be fast enough, git
grep and ripgrep have to do things this way because they support
incrementa search where as The Siver Searcher aways memory maps the
entire fie and Universa Code Grep aways reads the entire contents of the
fie into memory. The atter approach can refer back to the fieʼs contents in

memory when doing the actua printing, where as neither git grep nor

ripgrep can do that.

Methodoogy

Overview

Coming up with a good and fair benchmark is hard, and I have assuredy
made some mistakes in doing so. In particuar, there are so many variabes
to contro for that testing every possibe permutation isnʼt feasibe. This
means that the benchmarks Iʼm presenting here are curated, and, given that
I am the author of one of the toos in the benchmark, they are therefore aso
biased. Nevertheess, even if I fai in my effort to provide a fair benchmark
suite, I do hope that some of you may find my anaysis interesting, which
wi try to expain the resuts in each benchmark. The anaysis is in turn
heaviy biased toward expaining my own work, since that is the
impementation Iʼm most famiiar with. I have, however, read at east part of
the source code of every too I benchmark, incuding their underying regex
engines.

In other words, Iʼm pretty confident that Iʼve gotten the detais correct, but I
coud have missed something in the bigger picture. Because of that, etʼs go
over some important insights that guided construction of this benchmark.

• Focus on the probem that an end user is trying to sove. For exampe,
we spit the entire benchmark in two: one for searching a arge
directory of fies and one for searching a singe arge fie. The former
might correspond to an end user searching their code whie the atter
might correspond to an end user searching ogs. As we wi see, these
two use cases have markedy different performance characteristics. A
too that is good at one isnʼt necessariy good at the other. The
premise of ripgrep is that it is possibe to be good at both!

• Appy end user probems more granuary as we. For exampe, most
searches resut in few hits reative to the corpus searched, so prefer
benchmarks that report few matches. Another exampe: I hypothesize,
based on my own experience, that most searches use patterns that are
simpe iteras, aternations or very ight regexes, so bias the
benchmarks towards those types of patterns.

• Amost every search too has sighty different defaut behavior, and
these behaviora changes can have an impact on performance. There is
some vaue in ooking at “out-of-the-boxˮ performance, and we
therefore do ook at a benchmark for that, but stopping there is a bit
unsatisfying. If our goa is to do a fair comparison, then we need to at
east try to convince each too to do roughy the same work, from the
perspective of an end user. A good exampe of this is reporting ine
numbers. Some toos donʼt provide a way of disabing ine counting, so

when doing comparisons between toos that do, we need to expicity
enabe ine numbers. This is important, because counting ines can be
quite costy! A good non-exampe of this is if one too uses memory
maps and another uses an intermediate buffer. This is an
impementation choice, and not one that aters what the user actuay
sees, therefore comparing those two impementation choices in a
benchmark is competey fair (assuming an anaysis that points it out).

With that out of the way, etʼs get into the nitty gritty. First and foremost,
what toos are we benchmarking?

• ripgrep (rg) (v0.1.2) - Youʼve heard enough about this one aready.
• GNU grep (v2.25) - Oʼ reiabe.
• git grep (v2.7.4) - Like grep, but buit into git. Ony works we in git

repositories.
• The Siver Searcher (ag) (commit cda635, using PCRE 8.38 - Like ack,

but written in C and much faster. Reads your .gitignore fies just ike
ripgrep.

• Universa Code Grep (ucg) (commit 487bfb, using PCRE 10.21 with the
JIT enabed) - Aso ike ack but written in C, and ony searches fies
from a whiteist, and doesnʼt support reading .gitignore.

• The Patinum Searcher (pt) (commit 509368) - Written in Go and does
support .gitignore fies.

• sift (commit 2d175c) - Written in Go and supports .gitignore fies
with an optiona fag, but generay prefers searching everything (unike
every other too in this ist except for grep).

Notaby absent from this ist is ack. I chose not to benchmark it because, at

the time of writing, ack was much sower than the other toos in this ist.
However, ack 3 is now in beta and incudes some performance
improvements, sometimes decreasing search times by haf.

Benchmark runner

The benchmark runner is a Python program (requires at east Python 3.5)
that you can use to not ony run the benchmarks themseves, but downoad
the corpora used in the benchmarks as we. The script is caed

benchsuite and is in the ripgrep repository. You can use it ike so:

$ git clone git://github.com/BurntSushi/ripgrep
$ cd ripgrep/benchsuite

https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
https://www.kernel.org/pub/software/scm/git/docs/git-grep.html
https://www.kernel.org/pub/software/scm/git/docs/git-grep.html
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/gvansickle/ucg
https://github.com/gvansickle/ucg
https://github.com/monochromegane/the_platinum_searcher
https://github.com/monochromegane/the_platinum_searcher
https://github.com/svent/sift
https://github.com/svent/sift
https://beyondgrep.com/ack3/
https://beyondgrep.com/ack3/
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite

WARNING! This downloads several GB of data, and builds the Linux kernel.
This took about 15 minutes on a high speed connection.
Tip: try `--download subtitles-ru` to grab the smallest corpus, but you'll
be limited to running benchmarks for only that corpus.
$./benchsuite --dir /path/to/data/dir --download all
List benchmarks available.
$./benchsuite --dir /path/to/data/dir --list
Run a benchmark.
Omit the benchmark name to run all benchmarks. The full suite can take arou
30 minutes to complete on default settings and 120 minutes to complete with
--warmup-iter 3 --bench-iter 10.
$./benchsuite --dir /path/to/data/dir '^subtitles_ru_literal$'

If you donʼt have a of the code search toos used in the benchmarks, then

pass --allow-missing to give benchsuite permission to skip running

them. To save the raw data (the timing for every command run), pass --raw
/path/to/raw.csv.

The benchmark runner tries to do a few basic things for us to hep reduce
the chance that we get miseading data:

• Every benchmarked command is run three times before being
measured as a “warm up.ˮ Specificay, this is to ensure that the
corpora being searched is aready in the operating systemʼs page
cache. If we didnʼt do this, we might end up benchmarking disk I/O,
which is not ony uninteresting for our purposes, but is probaby not a
common end user scenario. Itʼs more ikey that youʼ be executing ots
of searches against the same corpus (at east, I know I do).

• Every benchmarked command is run ten times, with a timing recorded
for each run. The fina “resutˮ of that command is its distribution (mean
+/- standard deviation). If I were a statistician, I coud probaby prove
that ten sampes is insufficient. Nevertheess, getting more sampes
takes more time, and for the most part, the variance is very ow.

Each individua benchmark definition is responsibe for making sure each
command is trying to do simiar work as other commands weʼre comparing it
to. For exampe, we need to be carefu to enabe and disabe Unicode
support in GNU grep where appropriate, because fu Unicode handing can
make GNU grep run very sowy. Within each benchmark, there are often
mutipe variabes of interest. To account for this, Iʼve added abes ike

(ASCII) or (whitelist) where appropriate. Weʼ dig into those abes in
more detai ater.

Pease aso fee encouraged to add your own benchmarks if youʼd ike to
pay around. The benchmarks are in the top-haf of the fie, and it shoud be
fairy straight-forward to copy & paste another benchmark and modify it.
Simpy defining a new benchmark wi make it avaiabe. The second haf of
the script is the runner itsef and probaby shoudnʼt need to be modified.

Environment

The actua environment used to run the benchmarks presented in this artice

was a c3.2xlarge instance on Amazon EC2. It ran Ubuntu 16.04, had a
Xeon E52680 2.8 GHz CPU, 16 GB of memory and an 80 GB SSD (on which
the corpora was stored). This was enough memory to fit a of the corpora in
memory. The box was specificay provisioned for the purpose of running
benchmarks, so it was not doing anything ese.

The fu og of system setup and commands I used to insta each of the
search toos and run benchmarks can be found here. I aso captured the
output of the bench runner SPOILER ALERT) and the raw output, which
incudes the timings, fu set of command ine arguments and any
environment variabes set for every command run in every benchmark.

Code search benchmarks

This is the first haf of our benchmarks, and corresponds to an end user
trying to search a arge repository of code for a particuar pattern.

The corpus used for this benchmark is a buit checkout of the Linux kerne,

specificay commit d0acc7. We actuay buid the Linux kerne because the
process of buiding the kerne eaves a ot of garbage in the repository that
you probaby donʼt want to search. This can infuence not ony the
reevance of the resuts returned by a search too, but the performance as
we.

A benchmarks run in this section were run in the root of the repository.
Remember, you can see the fu raw resuts of each command if you ike.
The benchmark names correspond to the headings beow.

https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/README.SETUP
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/README.SETUP
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/summary
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/summary
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv

Note that since these benchmarks were run on an EC2 instance, which uses
a VM, which in turn can penaize search toos that use memory maps, Iʼve
aso recorded benchmarks on my oca machine. My oca machine is an
Inte i76900K 3.2 GHz, 16 CPUs, 64 GB memory and an SSD. Youʼ notice

that ag does a ot better (but sti worse than rg) on my machine. Lest you

think Iʼve chosen resuts from the EC2 machine because they paint rg more

favoraby, rest assured that I havenʼt. Namey, rg wins every singe

benchmark on my oca machine except for one, where as rg is beat out just
sighty by a few toos on some benchmarks on the EC2 machine.

Without further ado, etʼs start ooking at benchmarks.

linux_literal_default

Description: This benchmark compares the time it takes to execute a simpe
itera search using each tooʼs defaut settings. This is an intentionay unfair
benchmark meant to highight the differences between toos and their “out-
of-the-boxˮ settings.

Pattern: PM_RESUME

rg 0.349 +/- 0.104 (lines: 16)
ag 1.589 +/- 0.009 (lines: 16)
ucg 0.218 +/- 0.007 (lines: 16)*+
pt 0.462 +/- 0.012 (lines: 16)
sift 0.352 +/- 0.018 (lines: 16)
git grep 0.342 +/- 0.005 (lines: 16)

• * - Best mean time.
• + - Best sampe time.
• rg == ripgrep, ag == The Silver Searcher, ucg == Universal
Code Grep, pt == The Platinum Searcher

Anaysis: Weʼ first start by actuay describing what each too is doing:

• rg respects the Linux repoʼs .gitignore fies (of which there are
178!) of them), and skips hidden and binary fies. rg does not count
ines.

• ag has the same defaut behavior as rg, except it counts ines.

https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-22-archlinux-cheetah/summary
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-22-archlinux-cheetah/summary

• ucg aso counts ines, but does not attempt to read .gitignore fies.
Instead, it ony searches fies from an (extensibe) whiteist according
to a set of gob rues. For exampe, both rg and ag wi search fs/
jffs2/README.Locking whie ucg wonʼt, because it doesnʼt recognize
the Locking extension. A search too probaby shoud search that fie,
athough it does not impact the resuts of this specific benchmark.)

• pt has the same defaut behavior as ag.
• sift searches everything, incuding binary fies and hidden fies. It

shoud be equivaent to grep -r, for exampe. It aso does not count
ines.

• git grep shoud have the same behavior at rg, and simiary does not
count ines. Note though that git grep has a specia advantage: it
does not need to traverse the directory hierarchy. It can discover the
set of fies to search straight from its git index.

The high-order bit to extract from this benchmark is that a naive comparison
between search toos is competey unfair from the perspective of
performance, but is reay important if you care about the reevance of

resuts returned to you. sift, ike grep -r, wi throw everything it can
back at you, which is totay at odds with the phiosophy behind every other
too in this benchmark: ony return resuts that are probaby reevant. Things

inside your .git probaby arenʼt, for exampe. This isnʼt to say that siftʼs
phiosophy is wrong. The too is ceary intended to be configured by an end
user to their own tastes, which has its own pros and cons.)

With respect to performance, there are two key variabes to pay attention to.
They wi appear again and again throughout our benchmark:

• Counting ines can be quite expensive. A naive soution—a oop over
every byte and comparing it to a \n—wi be quite sow for exampe.
Universa Code Grep counts ines using SIMD and ripgrep counts
ines using packed comparisons 16 bytes at a time). However, in the
Linux code search benchmarks, because the size of each individua fie
is very sma and the number of matches is tiny compared to the corpus
size, the time spent counting ines tends to not be so significant.
Especiay since every too in this benchmark paraeizes search to
some degree. When we get to the singe-fie benchmarks, this variabe
wi become much more pertinent.

• Respecting .gitignore fies incurs some amount of overhead. Even
though respecting .gitignore reduces the number of fies searched,
it can be sower overa to actuay read the patterns, compie them and

https://github.com/gvansickle/ucg/blob/8bbebc002bbf112d147928f89677cba703d007bb/src/FileScanner_sse4_2.cpp#L190
https://github.com/gvansickle/ucg/blob/8bbebc002bbf112d147928f89677cba703d007bb/src/FileScanner_sse4_2.cpp#L190
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549

match them against every path than to just search every fie. This is
precisey how ucg soundy beats ripgrep in this benchmark. We wi
contro for this variabe in future benchmarks.) In other words,
respecting .gitignore is a feature that improves reevance first and
foremost. It is stricty a bonus if it aso happens to improve
performance.

The specific reasons why supporting .gitignore eads to a sower overa
search are:

• Every directory descended requires ooking for a corresponding
.gitignore. Mutipy the number of cas if you support additiona
ignore fies, ike both The Siver Searcher and ripgrep do. The Linux
kerne repository has 4,640 directories. 178 of them have .gitignore
fies.

• Each .gitignore fie needs to be compied into something that can
match fie paths. Both The Siver Searcher and ripgrep use tricks to
make this faster. For exampe, simpe patterns ike /vmlinux or *.o
can be matched using simpe itera comparisons or by ooking at the
fie extension of a candidate path and comparing it directy. For more
compex patterns ike *.c.[012]*.*, a fu gob matcher needs to be
used. The Siver Searcher uses fnmatch whie ripgrep transates a
such gobs into a singe reguar expression which can be matched
against a singe path a at once. Doing a this work takes time.

• Unike ag, rg wi try to support the fu semantics of a .gitignore fie.
This means finding every ignore pattern that matches a fie path and
giving precedent to the most recenty defined pattern. ag wi bai on
the first match it sees.

• Actuay matching a path has non-trivia overhead that must be paid for
every path searched. The compiation phase described above is
compex precisey for making this part faster. We try to stay out of the
regex machinery as best we can, but we canʼt avoid it competey.

In contrast, a whiteist ike the one used by ucg is comparativey easy to
make fast. The set of gobs is known upfront, so no additiona checks need
to be made whie traversing the fie tree. Moreover, the gobs tend to be of

the *.ext variety, which fa into the bucket of gobs that can be matched
efficienty just by ooking at the extension of a fie path.

The downside of a whiteist is obvious: you might end up missing search

resuts simpy because ucg didnʼt know about a particuar fie extension.

You coud aways teach ucg about the fie extension, but youʼre sti bind to

“unknown unknownsˮ (i.e., fies that you probaby want to search but didnʼt
know upfront that you needed to).

linux_literal

Description: This benchmark runs the same query as in the

linux_literal_default benchmark, but we try to do a fair comparison.

In particuar, we run ripgrep in two modes: one where it respects

.gitignore fies (corresponding to the (ignore) abe) and one where it

uses a whiteist and doesnʼt respect .gitignore (corresponding to the

(whitelist) abe). The former mode is comparabe to ag, pt, sift and

git grep, whie the atter mode is comparabe to ucg. We aso run rg a
third time by expicity teing it to use memory maps for search, which

matches the impementation strategy used by ag. sift is run such that it

respects .gitignore fies and excudes binary, hidden and PDF fies. A

commands executed here count ines, because some commands (ag and

ucg) donʼt support disabing ine counting.

Pattern: PM_RESUME

rg (ignore) 0.334 +/- 0.053 (lines: 16)
rg (ignore) (mmap) 1.611 +/- 0.009 (lines: 16)
ag (ignore) (mmap) 1.588 +/- 0.011 (lines: 16)
pt (ignore) 0.456 +/- 0.025 (lines: 16)
sift (ignore) 0.630 +/- 0.004 (lines: 16)
git grep (ignore) 0.345 +/- 0.007 (lines: 16)
rg (whitelist) 0.228 +/- 0.042 (lines: 16)+
ucg (whitelist) 0.218 +/- 0.007 (lines: 16)*

• * - Best mean time.
• + - Best sampe time.

Anaysis: We have a ton of ground to cover on this one.

First and foremost, the (ignore) vs. (whitelist) variabes have a cear

impact on the performance of rg. We wonʼt rehash a the detais from the

anaysis in linux_literal_default, but switching rg into its whiteist

mode brings it into a dead heat with ucg.

https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default

Secondy, ucg is just as fast as ripgrep and git grep (ignore) is just as

fast as rg (ignore), even though Iʼve said that ripgrep is the fastest. It

turns out that ucg, git grep and rg are pretty eveny matched when
searching for pain iteras in arge repositories. We wi see a stronger

separation in ater benchmarks. Sti, what makes ucg fast?

• ucg reads the entire fie into memory before searching it, which means
it avoids the memory map probem described beow. On a code
repository, this approach works we, but it comes with a steep price in
the singe-fie benchmarks.

• It has a fast expicity SIMD based ine counting agorithm. ripgrep has
something simiar, but reies on the compier for autovectorization.

• ucg uses PCRE2ʼs JIT, which is insaney fast. In my own very rough
benchmarks, PCRE2ʼs JIT is one of the few genera purpose regex
engines that is competitive with Rustʼs regex engine (on regexes that
donʼt expose PCREʼs exponentia behavior due to backtracking, since
Rustʼs regex engine doesnʼt suffer from that weakness).

• ucg paraeizes directory traversa, which is something that ripgrep
doesnʼt do. ucg has it a bit easier here because it doesnʼt support
.gitignore fies. Paraeizing directory traversa whie maintaining
state for .gitignore fies in a way that scaes isnʼt a probem Iʼve
figured out how to ceany sove yet.

What about git grep? A key performance advantage of git grep is that it
doesnʼt need to wak the directory tree, which can save it quite a bit of time.
Its regex engine is aso quite fast, and works simiary to GNU grepʼs, RE2
and Rustʼs regex engine (i.e., it uses a DFA.

Both sift and pt perform amost as we as ripgrep. In fact, both sift
and pt do impement a parae recursive directory traversa whie sti

respecting .gitignore fies, which is ikey one reason for their speed. As
we wi see in future benchmarks, their speed here is miseading. Namey,
they are fast because they stay outside of Goʼs regexp engine since the
pattern is a itera. There wi be more discussion on this point ater.)

Finay, whatʼs going on with The Siver Searcher? Is it reay that much
sower than everything ese? The key here is that its use of memory maps is
making it sower, not faster (in direct contradiction to the caims in its
README.

OK, etʼs pause and pop up a eve to tak about what this actuay means.

First, we need to consider how these search toos fundamentay work.
Generay speaking, a search too ike this has two ways of actuay
searching fies on disk:

�It can memory map the fie and search the entire fie a at once as if it
were a singe contiguous region of bytes in memory. The operating
system does the work behind the scenes to make a fie ook ike a
contiguous region of memory. This particuar approach is reay
convenient when comparing it to the aternative described next.

�… or it can aocate an intermediate buffer, read a fixed size bock of
bytes from the fie into it, search the buffer and then repeat the
process. This particuar approach is absoutey ghouish to impement,
because you need to account for the fact that a buffer may end in the
midde of the ine. You aso need to account for the fact that a singe
ine may exceed the size of your buffer. Finay, if youʼre going to
support showing the ines around a match (its “contextˮ) as both grep
and ripgrep do, then you need to do additiona bookkeeping to make
sure any ines from a previous buffer are printed even if a match occurs
at the beginning of the next bock read from the fie.

Naivey, it seems ike 1) woud be obviousy faster. Surey, a of the
bookkeeping and copying in 2) woud make it much sower! In fact, this is
not at a true. 1) may not require much bookkeeping from the perspective
of the programmer, but there is a ot of bookkeeping going on inside the
Linux kerne to maintain the memory map. That ink goes to a maiing ist
post that is quite od, but it sti appears reevant today.)

When I first started writing ripgrep, I used the memory map approach. It
took me a ong time to be convinced enough to start down the second path
with an intermediate buffer (because neither a CPU profie nor the output of

strace ever showed any convincing evidence that memory maps were to
bame), but as soon as I had a prototype of 2) working, it was cear that it
was much faster than the memory map approach.

With a that said, memory maps arenʼt a bad. They just happen to be bad
for the particuar use case of “rapidy open, scan and cose memory maps
for thousands of sma fies.ˮ For a different use case, ike, say, “open this
arge fie and search it once,ˮ memory maps turn out to be a boon. Weʼ see
that in action in our singe-fie benchmarks ater.

The key datapoint that supports this concusion is the comparison between

http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html
http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html
http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html
http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html

rg (ignore) and rg (ignore) (mmap). In particuar, this contros for
everything except for the search strategy and fairy concusivey points right
at memory maps as the probem.

With a that said, the performance of memory maps is very dependent on

your environment, and the absoute difference between rg (ignore) and

ag (ignore) (mmap) can be miseading. In particuar, since these

benchmarks were run on an EC2 c3.2xlarge, we were probaby inside a
virtua machine, which coud feasiby impact memory map performance. To
test this, I ran the same benchmark on my machine under my desk Inte
i76900K 3.2 GHz, 16 CPUs, 64 GB memory, SSD) and got these resuts:

rg (ignore) 0.156 +/- 0.006 (lines: 16)
rg (ignore) (mmap) 0.397 +/- 0.013 (lines: 16)
ag (ignore) (mmap) 0.444 +/- 0.016 (lines: 16)
pt (ignore) 0.159 +/- 0.008 (lines: 16)
sift (ignore) 0.344 +/- 0.002 (lines: 16)
git grep (ignore) 0.195 +/- 0.023 (lines: 16)
rg (whitelist) 0.108 +/- 0.005 (lines: 16)*+
ucg (whitelist) 0.165 +/- 0.005 (lines: 16)

rg (ignore) sti soundy beats ag, and our memory map concusions

above are sti supported by this data, but the difference between rg
(ignore) and ag (ignore) (mmap) has narrowed quite a bit!

linux_literal_casei

Description: This benchmark is ike linux_literal, except it asks the
search too to perform a case insensitive search.

Pattern: PM_RESUME (with the -i fag set)

rg (ignore) 0.345 +/- 0.073 (lines: 370)
rg (ignore) (mmap) 1.612 +/- 0.011 (lines: 370)
ag (ignore) (mmap) 1.609 +/- 0.015 (lines: 370)
pt (ignore) 17.204 +/- 0.126 (lines: 370)
sift (ignore) 0.805 +/- 0.005 (lines: 370)
git grep (ignore) 0.343 +/- 0.007 (lines: 370)

https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal

rg (whitelist) 0.222 +/- 0.021 (lines: 370)+
ucg (whitelist) 0.217 +/- 0.006 (lines: 370)*

• * - Best mean time.
• + - Best sampe time.

Anaysis: The biggest change from the previous benchmark is that pt got
an order of magnitude sower than the next sowest too.

So why did pt get so sow? In particuar, both sift and pt use Goʼs regexp
package for searching, so why did one perish whie the other ony got

sighty sower? It turns out that when pt sees the -i fag indicating case

insensitive search, it wi force itsef to use Goʼs regexp engine with the i
fag set. So for exampe, given a CLI invocation of pt -i foo, it wi

transate that to a Go regexp of (?i)foo, which wi hande the case
insensitive search.

On the other hand, sift wi notice the -i fag and take a different route.

sift wi owercase both the pattern and every bock of bytes it searches.

This fiter over a the bytes searched is ikey the cause of siftʼs
performance drop from the previous linux_literal benchmark. Itʼs worth
pointing out that this optimization is actuay incorrect, because it ony
accounts for ASCII case insensitivity, and not fu Unicode case insensitivity,

which pt gets by virture of Goʼs regexp engine.)

But sti, is Goʼs regexp engine reay that sow? Unfortunatey, yes, it is.
Whie Goʼs regexp engine takes worst case inear time on a searches (and
is therefore exponentiay faster than even PCRE2 for some set of regexes
and corpora), its actua impementation hasnʼt quite matured yet. Indeed,
every fast regex engine based on finite automata that Iʼm aware of
impements some kind of DFA engine. For exampe, GNU grep, Googeʼs RE2
and Rustʼs regex ibrary a do this. Goʼs does not (but there is work in

progress to make this happen, so perhaps pt wi get faster on this
benchmark without having to do anything at a!.

There is one other thing worth noting here before moving on. Namey, that

rg, ag, git grep and ucg didnʼt noticeaby change much from the previous
benchmark. Shoudnʼt a case insensitive search incur some kind of
overhead? The answer is compicated and actuay requires more

https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal

knowedge of the underying regex engines than I have. Thankfuy, I can at
east answer it for Rustʼs regex engine.

The key insight is that a case insensitive search for PM_RESUME is precisey
the same as a case sensitive search of the aternation of a possibe case

agnostic versions of PM_RESUME. So for exampe, it might start ike:

PM_RESUME|pM_RESUME|Pm_RESUME|PM_rESUME|... and so on. Of
course, the fu aternation, even for a sma itera ike this, woud be quite
arge. The key is that we can extract a sma prefix and enumerate a of its
combinations quite easiy. In this case, Rustʼs regex engine figures out this

aternation (which you can see by passing --debug to rg and examining

stderr):

PM_RE
PM_Re
PM_rE
PM_re
Pm_RE
Pm_Re
Pm_rE
Pm_re
pM_RE
pM_Re
pM_rE
pM_re
pm_RE
pm_Re
pm_rE
pm_re

Rest assured that Unicode support is baked into this process. For exampe,

a case insensitive search for S woud yied the foowing iteras: S, s and ſ.)

Now that we have this aternation of iteras, what do we do with them? The
cassica answer is to compie them into a DFA (perhaps Aho-Corasick), and
use it as a way to quicky skip through the search text. A match of any of the
iteras woud then cause the regex engine to activate and try to verify the
match. This way, we arenʼt actuay running the entire search text through

https://github.com/BurntSushi/aho-corasick
https://github.com/BurntSushi/aho-corasick

the regex engine, which coud be quite a bit sower.

But, Rustʼs regex engine doesnʼt actuay use Aho-Corasick for this. When
SIMD acceeration is enabed (and you can be sure it is for these
benchmarks, and for the binaries I distribute), a specia mutipe pattern
search agorithm caed Teddy is used. The agorithm is unpubished, but
was invented by Geoffrey Langdae as part of Inteʼs Hyperscan regex
ibrary. The agorithm works roughy by using packed comparisons of 16
bytes at a time to find candidate ocations where a itera might match. I
adapted the agorithm from the Hyperscan project to Rust, and incuded an
extensive write up in the comments if youʼre interested.

Whie Teddy doesnʼt buy us much over other toos in this particuar
benchmark, we wi see much arger wins in ater benchmarks.

linux_word

Description: This benchmarks the PM_RESUME itera again, but adds the -w
fag to each too. The -w fag has the foowing behavior: a matches
reported must be considered “words.ˮ That is, a “wordˮ is something that
starts and ends at a word boundary, where a word boundary is defined as a
position in the search text that is adjacent to both a word character and a
non-word character.

Pattern: PM_RESUME (with the -w fag set)

rg (ignore) 0.362 +/- 0.080 (lines: 6)
ag (ignore) 1.603 +/- 0.009 (lines: 6)
pt (ignore) 14.417 +/- 0.144 (lines: 6)
sift (ignore) 7.840 +/- 0.123 (lines: 6)
git grep (ignore) 0.341 +/- 0.005 (lines: 6)
rg (whitelist) 0.220 +/- 0.026 (lines: 6)*+
ucg (whitelist) 0.221 +/- 0.007 (lines: 6)

• * - Best mean time.
• + - Best sampe time.

Anaysis: Not much has changed between this benchmark and the previous

linux_literal or linux_literal_casei benchmarks. The most

https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

important thing to note is that most search toos hande the -w fag just fine
without any noticeabe drop in performance. There are two additiona things
Iʼd ike to note.

rg is searching with Unicode aware word boundaries where as the rest of

the toos are using ASCII ony word boundaries. (git grep can be made to
use Unicode word boundaries by adjusting your systemʼs ocae settings. In
this benchmark, we force it to use ASCII word boundaries.)

sift and pt are the ony toos that gets noticeaby sower in this benchmark
compared to previous benchmarks. The reason is the same as the reason

why pt got noticeaby sower in the linux_literal_casei benchmark:

both pt and sift are now aso bottenecked on Goʼs regexp ibrary. pt and

sift coud do a itte better here by staying out of Goʼs regexp ibrary and

searching for the PM_RESUME itera, and then ony confirming whether the

match corresponds to a word boundary after it found a hit for PM_RESUME.
This sti might use Goʼs regexp ibrary, but in a much more imited form.

linux_unicode_word

Description: This benchmarks a simpe query for a prefixed forms of the
“amp-hourˮ Ah unit of measurement. For exampe, it shoud show things

ike mAh (for miiamp-hour) and µAh (for microamp-hour). It is particuary

interesting because the second form starts with µ, which is part of a

Unicode aware \w character cass, but not an ASCII-ony \w character cass.

We again continue to contro for the overhead of respecting .gitignore
fies.

Pattern: \wAh

rg (ignore) 0.355 +/- 0.073 (lines: 186)
rg (ignore) (ASCII) 0.329 +/- 0.060 (lines: 174)
ag (ignore) (ASCII) 1.774 +/- 0.011 (lines: 174)
pt (ignore) (ASCII) 14.180 +/- 0.180 (lines: 174)
sift (ignore) (ASCII) 11.087 +/- 0.108 (lines: 174)
git grep (ignore) 13.045 +/- 0.008 (lines: 186)
git grep (ignore) (ASCII) 2.991 +/- 0.004 (lines: 174)
rg (whitelist) 0.235 +/- 0.031 (lines: 180)

https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

rg (whitelist) (ASCII) 0.225 +/- 0.023 (lines: 168)*+
ucg (ASCII) 0.229 +/- 0.007 (lines: 168)

• * - Best mean time.
• + - Best sampe time.

Anaysis: In this benchmark, weʼve introduced a new variabe: whether or
not to enabe Unicode support in each too. Searches that are Unicode
aware report sighty more matches that are missed by the other ASCII ony
searches.

Of a the toos here, the ony ones that support Unicode togging are rg and

git grep. rgʼs Unicode support can be togged by setting a fag in the

pattern itsef (e.g., \w is Unicode aware whie (?-u)\w is not), and git
grepʼs Unicode suport can be togged by setting the LC_ALL environment

variabe (where en_US.UTF-8 is one way to enabe Unicode support and C
forces it to be ASCII. More generay, git grepʼs Unicode support is

supposed to ine up with your systemʼs ocae settings—setting LC_ALL is a
bit of a hack.

It gets a itte worse than that actuay. Not ony are rg and git grep the
ony ones to support togging Unicode, but they are the ony ones to support

Unicode at a. ag, pt, sift and ucg wi a force you to use the ASCII ony

\w character cass. For pt and sift in particuar, Goʼs regexp ibrary

doesnʼt have the abiity to treat \w as Unicode aware. For ag and ucg, which

use PCRE, \w coud be made Unicode aware with a fag sent to PCRE.
Neither too exposes that functionaity though.)

The key resut to note here is that whie git grep suffers a major

performance hit for enabing Unicode support, ripgrep hums aong just

fine with no noticeabe oss in performance, even though both rg
(ignore) and git grep (ignore) report the same set of resuts.

As in the previous benchmark, both pt and sift coud do better here by

searching for the Ah itera, and ony using Goʼs regexp ibrary to verify a
match.)

Looking at the benchmark resuts, I can think of two important questions to
ask:

�Why is git grep (ignore) (ASCII) so much sower than rg
(ignore) (ASCII)? And whie the two arenʼt directy comparabe, itʼs
aso a ot sower than ucg (ASCII).

�How is rg (ignore) (which is Unicode aware) just as fast as rg
(ignore) (ASCII)?

I actuay donʼt have a great answer for 1. In the case of rg at east, it wi

extract the Ah itera suffix from the regex and use that to find candidate

matches before running the \w prefix. Whie GNU grep has sophisticated

itera extraction as we, it ooks ike git grep doesnʼt go to simiar engths
to extract iteras. Iʼm arriving at this concusion after skimming the source

of git grep, so I coud be wrong.)

In the case of ucg, itʼs ikey that PCRE2 is doing a simiar itera optimization

that rg is doing.

2) is fortunatey much easier to answer. The trick is not inside of rg, but
inside its regex ibrary. Namey, the regex engine buids UTF8 decoding
into its finite state machine. This is a trick that is originay attributed to Ken
Thompson, but was more carefuy described by Russ Cox. To read more

about how this is achieved in Rustʼs regex engine, pease see the utf8-
ranges ibrary.) The reason why this is fast is because there is no extra
decoding step required. The regex can be matched directy against UTF8
encoded byte strings one byte at a time. Invaid UTF8 doesnʼt pose any
probems: the finite automaton simpy wonʼt match it because it doesnʼt
recognize it.

In contrast, git grep (and GNU grep) have a competey separate path in
their core matching code for handing Unicode aware features ike this. To

be fair, git grep can hande text encodings other than UTF8, where as rg
is imited to UTF8 (or otherwise “ASCII compatibeˮ text encodings) at the
moment.

linux_re_literal_suffix

Description: This benchmarks a simpe regex pattern that ends with a

itera. We continue to contro for the overhead of respecting .gitignore
fies.

Pattern: [A-Z]+_RESUME

https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges

rg (ignore) 0.318 +/- 0.034 (lines: 1652)
ag (ignore) 1.899 +/- 0.008 (lines: 1652)
pt (ignore) 13.713 +/- 0.241 (lines: 1652)
sift (ignore) 10.172 +/- 0.186 (lines: 1652)
git grep (ignore) 1.108 +/- 0.004 (lines: 1652)
rg (whitelist) 0.221 +/- 0.022 (lines: 1630)*+
ucg (whitelist) 0.301 +/- 0.001 (lines: 1630)

• * - Best mean time.
• + - Best sampe time.

Anaysis: This benchmark doesnʼt revea anything particuary new that we

havenʼt aready earned from previous benchmarks. In particuar, both rg
and ucg continue to be competitive, pt and sift are getting bottenecked

by Goʼs regexp ibrary and git grep has a sow down simiar to the one

observed in linux_unicode_word. My hypothesis for that sow down

continues to be that git grep is missing the itera optimization.) Finay, ag
continues to be hed back by its use of memory maps.

rg, and amost assuredy ucg (by virtue of PCRE2, are picking on the

_RESUME itera suffix and searching for that instead of running the regex
over the entire search text. This expains why both toos are abe to maintain

their speed even as the pattern gets sighty more compex. rg does seem to

sighty edge out ucg here, which might be attributabe to differences in how
each underying regex ibrary does itera search.

linux_alternates

Description: This benchmarks an aternation of four iteras. The iteras
were specificay chosen to start with four distinct bytes to make it harder to
optimize.

Pattern: ERR_SYS|PME_TURN_OFF|LINK_REQ_RST|CFG_BME_EVT

rg (ignore) 0.351 +/- 0.074 (lines: 68)
ag (ignore) 1.747 +/- 0.005 (lines: 68)
git grep (ignore) 0.501 +/- 0.003 (lines: 68)
rg (whitelist) 0.216 +/- 0.031 (lines: 68)+

https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word

ucg (whitelist) 0.214 +/- 0.008 (lines: 68)*

• * - Best mean time.
• + - Best sampe time.
• We drop pt and sift from this benchmark and the next one for

expediency. In this benchmark and in a few previous benchmarks, they
have been hovering around an order of magnitude sower than the next
sowest too. Neither get any better as the compexity of our patterns
increase.

Anaysis: Yet again, both rg and ucg maintain high speed even as the
pattern grows beyond a simpe itera. In this case, there isnʼt any one
particuar itera that we can search to find match candidates quicky, but a
good reguar expression engine can sti find ways to speed this up.

For rg in particuar, it sees the four iteras and diverts to the Teddy mutipe

pattern SIMD agorithm (as described in the linux_literal_casei
benchmark). In fact, for this particuar pattern, Rustʼs core regex engine is
never used at a. Namey, it notices that a itera match of any of the
aternates corresponds to an overa match of the pattern, so it can
competey skip the verification step. This makes searching aternates of
iteras very fast.

linux_alternates_casei

Description: This benchmark is precisey the same as the

linux_alternates benchmark, except we make the search case

insensitive by adding the -i fag. Note that git grep is run under ASCII
mode, in order to give it every chance to be fast.

Pattern: ERR_SYS|PME_TURN_OFF|LINK_REQ_RST|CFG_BME_EVT (with the

-i fag set)

rg (ignore) 0.391 +/- 0.078 (lines: 160)
ag (ignore) 1.968 +/- 0.009 (lines: 160)
git grep (ignore) 2.018 +/- 0.006 (lines: 160)
rg (whitelist) 0.222 +/- 0.001 (lines: 160)*+
ucg (whitelist) 0.522 +/- 0.002 (lines: 160)

https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates

• * - Best mean time.
• + - Best sampe time.

Anaysis: The case insensitive fag causes quite a bit of separation, reative

to the previous linux_alterates benchmark. For one, git grep gets over

4 times sower. Even ucg gets twice as sow. Yet, rg continues to maintain
its speed!

The secret continues to be the Teddy agorithm, just as in the

linux_alternates benchmark. The trick ies in how we transform an
aternation of case insensitive iteras into a arger aternation that the Teddy
agorithm can actuay use. In fact, it works exacty how it was described in

the linux_literal_casei benchmark: we enumerate a possibe
aternations of each itera that are required for case insensitive match.
Since that can be quite a arge number, we imit ourseves to a sma number
of prefixes from that set that we can enumerate. In this case, we use the

foowing prefixes (which can be seen by running rg with the --debug fag):

CFG_
CFg_
CfG_
Cfg_
ERR_
ERr_
ErR_
Err_
LIN
LIn
LiN
Lin
PME_
PMe_
PmE_
Pme_
cFG_
cFg_
cfG_
cfg_

https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

eRR_
eRr_
erR_
err_
lIN
lIn
liN
lin
pME_
pMe_
pmE_
pme_

We feed these iteras to the Teddy agorithm, which wi quicky identify
candidate matches in the search text. When a candidate match is found, we
need to verify it since a match of a prefix doesnʼt necessariy mean the
entire pattern matches. It is ony at that point that we actuay invoke the fu
regex engine.

linux_unicode_greek

Description: This benchmarks usage of a particuar Unicode feature that
permits one to match a certain cass of codepoints defined in Unicode. Both
Rustʼs regex engine and Goʼs regex engine support this nativey, but none of
the other toos do.

Pattern: \p{Greek} (matches any Greek symbo)

rg 0.414 +/- 0.021 (lines: 23)*+
pt 12.745 +/- 0.166 (lines: 23)
sift 7.767 +/- 0.264 (lines: 23)

• * - Best mean time.
• + - Best sampe time.

Anaysis: This one is pretty simpe. rg compies \p{Greek} into a

deterministic finite state machine whie Go (used in pt and sift) wi aso
use a finite state machine, but it is a nondeterministic simuation. The core

difference between the two approaches is that the former is ony ever in one
state at any point in time, whie the atter must constanty keep track of a
the different states it is in.

linux_unicode_greek_casei

Description: This benchmark is just ike the linux_unicode_greek
benchmark, except it makes the search case insensitive. This particuar
query is a bit idiosyncratic, but it does demonstrate just how we supported

Unicode is in rg.

Pattern: \p{Greek} (with the -i fag set, matches any Greek symbo)

rg 0.425 +/- 0.027 (lines: 103)
pt 12.612 +/- 0.217 (lines: 23)
sift 0.002 +/- 0.000 (lines: 0)*+

• * - Best mean time.
• + - Best sampe time.

Anaysis: sift doesnʼt actuay beat rg here: it just gets so confused by the

search request that it gives up and reports no matches. pt seems to execute
the search, but doesnʼt hande Unicode case insensitivity correcty.

Meanwhie, rg handes the request just fine, and itʼs sti fast.

In this particuar case, the entire Greek category, aong with a of its case-
insensitive variants, are compied into a singe fast deterministic finite state
machine.

One interesting thing to note about this search is that if you run it, youʼ see

a ot more resuts containing the character µ, which ooks essentiay

identica to the character μ that aso shows up in a case sensitive search. As
you might have guessed, even though these two characters ook the same,
they are in fact distinct Unicode codepoints:

• µ is MICRO SIGN with codepoint U+000000B5.
• μ is GREEK SMALL LETTER MU with codepoint U+000003BC.

The atter codepoint is considered part of the \p{Greek} group whie the
former codepoint is not (the former codepoint appears to be the correct sigi

https://burntsushi.net/ripgrep/#linux-unicode-greek
https://burntsushi.net/ripgrep/#linux-unicode-greek
https://burntsushi.net/ripgrep/#linux-unicode-greek

to use in the case of the Linux kerne). However, the Unicode simpe case

foding tabes map MICRO SIGN to GREEK SMALL LETTER MU, which

causes rg to pick up on ines containing MICRO SIGN even though it stricty

isnʼt part of the Greek group.

linux_no_literal

Description: This is the ast benchmark on the Linux kerne source code

and is a bit idiosyncratic ike linux_unicode_greek_casei. In particuar, it
ooks for ines containing 5 consecutive repetitions of 5 word characters,
each separated by one or more space characters. The key distinction of this
pattern from every other pattern in this benchmark is that it does not contain

any iteras. Given the presence of \w and \s, which have vaid Unicode and
ASCII interpretations, we attempt to contro for the presence of Unicode
support.

Pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}

rg (ignore) 0.577 +/- 0.003 (lines: 490)
rg (ignore) (ASCII) 0.416 +/- 0.025 (lines: 490)
ag (ignore) (ASCII) 2.339 +/- 0.010 (lines: 766)
pt (ignore) (ASCII) 22.066 +/- 0.057 (lines: 490)
sift (ignore) (ASCII) 25.563 +/- 0.108 (lines: 490)
git grep (ignore) 26.382 +/- 0.044 (lines: 490)
git grep (ignore) (ASCII) 4.153 +/- 0.010 (lines: 490)
rg (whitelist) 0.503 +/- 0.011 (lines: 419)
rg (whitelist) (ASCII) 0.343 +/- 0.038 (lines: 419)*+
ucg (whitelist) (ASCII) 1.130 +/- 0.003 (lines: 416)

• * - Best mean time.
• + - Best sampe time.
• ag reports many more matches than other toos because it does

mutiine search where the \s can match a \n.

Anaysis: Since this particuar pattern doesnʼt have any iteras in it, itʼs
entirey up to the underying regex engine to answer this query. It canʼt be
smart and skip through the input—it has to pass it competey through the
regex engine. Since non-itera patterns are pretty rare in my experience,

http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
https://burntsushi.net/ripgrep/#linux-unicode-greek-casei
https://burntsushi.net/ripgrep/#linux-unicode-greek-casei
https://burntsushi.net/ripgrep/#linux-unicode-greek-casei

this benchmark exists primariy as an engineered way to test how we the
underying regex engines perform.

rg, regardess of whether it respects .gitignore fies or whether it
handes Unicode correcty, does quite we here compared to other toos.

git grep in particuar pays a 5x penaty for Unicode support. rg on the
other hand pays about a 0.3x penaty for Unicode support. Interestingy,

even though ucg doesnʼt enabe Unicode support, not even PCRE2ʼs JIT can

compete with rg!

What makes rg so fast here? And what actuay causes the 0.3x penaty?

rg continues to be fast on this benchmark primariy for the same reason
why itʼs fast with other Unicode-centric benchmarks: it compies the UTF8
decoding right into its deterministic finite state machine. This means there is
no extra step to decode the search text into Unicode codepoints first. We
can match directy on the raw bytes.

To a first approximation, the performance penaty comes from compiing the
DFA to match the pattern. In particuar, the DFA to match the Unicode variant
is much much arger than the DFA to match the ASCII variant. To give you a
rough idea of the size difference:

• The ASCII DFA has about 250 distinct NFA states.
• The Unicode DFA has about 77,000 distinct NFA states.

These numbers are produced directy from the compier in Rustʼs regex
ibrary, and donʼt necessariy refect a minima automaton.)

A DFA produced from these patterns doesnʼt necessariy have the same
number of states, since each DFA state typicay corresponds to mutipe
NFA states. Check out the Powerset construction Wikipedia artice.
Athough it doesnʼt correspond to the same impementation strategy used in
Rustʼs regex engine, it shoud give good intuition.)

However, the first approximation is a bit miseading. Whie Rustʼs regex
engine does have a preprocessing compiation phase, it does not actuay
incude converting an NFA into a DFA. Indeed, that woud be far too sow
and coud take exponentia time! Instead, Rustʼs regex engine buids the DFA
on the fy or “aziy,ˮ as it searches the text. In the case of the ASCII pattern,
this search barey spends any time constructing the DFA states since there

https://en.wikipedia.org/wiki/Powerset_construction
https://en.wikipedia.org/wiki/Powerset_construction

are so few of them. However, in the Unicode case, since there are so many
NFA states, it winds up spending a ot of time compiing new DFA states.

Iʼve confirmed this by inspecting a profie generated by perf.) Digging a bit
deeper, the actua story here might be subter. For exampe, the Unicode
pattern might wind up with the same number of DFA states as the ASCII
pattern, primariy because the input its searching is the same and is
primariy ASCII. The sow down then must come from the fact that each
individua DFA state takes onger to buid. This is ikey correct since a singe

Unicode \w is over two orders of magnitude arger than a singe ASCII \w.
Therefore, each DFA state probaby has a ot more NFA states in it for the
Unicode pattern as opposed to the ASCII pattern. Itʼs not cear whether we

can do any better here (other than trying to minimize the Unicode \w, which
woud be totay feasibe), since we donʼt actuay know the composition of
the search text ahead of time.

One idea for improvement is to have mutipe types of DFAs. For exampe,
you might imagine trying to match with an ASCII ony DFA. If the DFA sees a
non-ASCII byte, then it coud cause a transition into a Unicode-aware DFA.
However, the penaty here is so sma that itʼs hard to justify this kind of
impementation compexity!

Singe fie benchmarks

In the second haf of our benchmarks, we wi shift gears and ook more
cosey at the performance of search toos on a singe arge fie. Each
benchmark wi be run on two sampes of the OpenSubtites2016 dataset.
One sampe wi be Engish and therefore predominanty ASCII, and another
sampe wi be in Russian and therefore predominanty Cyriic. The patterns
for the Russian sampe were transated from Engish using Googe Transate.
Sady, I canʼt read Russian, but I have tried each search by hand and
confirmed that a sampe of the resuts I was ooking at were reevant by
piping them back through Googe Transate.) The Engish sampe is around
1GB and the Russian sampe is around 1.6GB, so the benchmark timings
arenʼt directy comparabe.

In this benchmark, the performance of the underying regex engine and
various itera optimizations matter a ot more. The two key variabes weʼ
need to contro for are ine counting and Unicode support. Normay, weʼd

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://opus.lingfil.uu.se/OpenSubtitles2016.php
http://opus.lingfil.uu.se/OpenSubtitles2016.php

just not request ine counting from any of the toos, but neither of The Siver
Searcher or Universa Code Grep support disabing ine numbers.
Additionay, Unicode support is tricky to contro for in some exampes

because ripgrep does not support ASCII ony case insensitive semantics
when searching with a non-ASCII string. Itʼs Unicode a the way and thereʼs

no way to turn it off. As weʼ see, at east for ripgrep, itʼs sti faster than its
ASCII aternatives even when providing case insensitive Unicode support.

As with the Linux benchmark, you can see precisey which command was
run and its recorded time in the raw data.

ripgrep uttery dominates this round, both in performance and
correctness.

subtitles_literal

Description: This benchmarks the simpest case for any search too: find a

occurrences of a itera string. Toos annotated with (lines) were passed

the -n fag (or equivaent) so that the output reports ine numbers.

Engish pattern: Sherlock Holmes

rg 0.268 +/- 0.000 (lines: 629)*+
rg (no mmap) 0.336 +/- 0.001 (lines: 629)
pt 3.433 +/- 0.002 (lines: 629)
sift 0.326 +/- 0.002 (lines: 629)
grep 0.516 +/- 0.001 (lines: 629)
rg (lines) 0.595 +/- 0.001 (lines: 629)
ag (lines) 2.730 +/- 0.003 (lines: 629)
ucg (lines) 0.745 +/- 0.001 (lines: 629)
pt (lines) 3.434 +/- 0.005 (lines: 629)
sift (lines) 0.756 +/- 0.002 (lines: 629)
grep (lines) 0.969 +/- 0.001 (lines: 629)

Russian pattern: Шерлок Холмс

rg 0.325 +/- 0.001 (lines: 583)*+
rg (no mmap) 0.452 +/- 0.002 (lines: 583)

https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv

pt 12.917 +/- 0.009 (lines: 583)
sift 16.418 +/- 0.008 (lines: 583)
grep 0.780 +/- 0.001 (lines: 583)
rg (lines) 0.926 +/- 0.001 (lines: 583)
ag (lines) 4.481 +/- 0.003 (lines: 583)
ucg (lines) 1.889 +/- 0.004 (lines: 583)
pt (lines) 12.935 +/- 0.011 (lines: 583)
sift (lines) 17.177 +/- 0.010 (lines: 583)
grep (lines) 1.300 +/- 0.003 (lines: 583)

• * - Best mean time.
• + - Best sampe time.
• This is the ony benchmark that contains pt and sift, since they

become too sow in a future benchmarks.

Anaysis: Whether itʼs part of the underying regex engine or part of the
search too itsef, every search too in this benchmark does some kind of

itera optimization. ag wi inspect the pattern, and if it doesnʼt contain any
specia regex characters, then it wi use a Boyer-Moore variant to perform
the search instead of PCRE. GNU grep does something simiar, athough it
has ceary been the subject of much optimization.

If thatʼs true, how does rg beat GNU grep by amost a factor of 2? We, first

and foremost, we note that both sift and ucg beat GNU grep as we. I

wonʼt be abe to go into detai on ucgʼs speed since PCRE2ʼs JIT isnʼt
something I understand very we, but I can at east te you that the reasons

why rg and sift are faster than GNU grep are actuay distinct:

• sift uses Goʼs regexp ibrary, which wi do at east one sma itera
optimization: if every match of a regex starts with the same byte, the
regex engine wi scan for that byte before starting a match. If you
foow the code that does the scan for the byte a the way back to its
source for x86_64 systems, then youʼ find that it is using AVX2
instructions and ymm registers, which permit scanning 32 bytes in each
iteration. In contrast, GNU grep uses libcʼs memchr, which doesnʼt use
AVX2. However, that C code wi be autovectorized to use xmm registers
and SIMD instructions, which are haf the size of ymm registers. In other
words, by virture of being written in Go, sift is making more efficient
use of the CPU.

• rg aso uses memchr from libc. The rg binary that was used in this

http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD

benchmark was staticay inked with musl, which provides its own
impementation of memchr. Despite it being quite a bit terser than GNUʼs
ibc impementation used in GNU grep, it appears to be doing roughy
the same work. If thatʼs the case, how is rg faster? The answer ies not
in memchr nor in the variant of Boyer-Moore nor in the number
characters Boyer-Moore can skip. The answer instead ies in which
byte is given to memchr. rg wi actuay try to guess the “rarestˮ byte in
a itera, and use memchr on that. A standard Boyer-Moore
impementation wi use memchr aways on the ast byte.) In this
particuar case, running memchr on either S or H is probaby quite a bit
better than running it on s because S and H are far ess common than s.
That is, rg tries harder than GNU grep to spend more time skipping
bytes in a fast SIMD optimized oop. rg can get this wrong, but it seems
stricty better to at east guess and probaby get it right in the common
case than to submit to an artifact of common Boyer-Moore
impementations.

Now that the secrets of itera search have been reveaed, we can better
anayze the Russian benchmark. The answer once again ies in which byte is

used for quick scanning. Both sift and pt use the same AVX2 routine in
Goʼs runtime, so why did they get so much sower than every other too in
the Russian benchmark? The answer becomes more cear when we ook at

the actua UTF8 bytes of the pattern Шерлок Холмс:

\xd0\xa8\xd0\xb5\xd1\x80\xd0\xbb\xd0\xbe\xd0\xba \xd0\xa5\xd0\xbe\xd0\xbb\xd0

There are two key observations to take away from this:

�Every character in the pattern Шерлок Холмс is encoded with two
UTF8 code units, which corresponds to two bytes.

�Every character starts with either the byte \xD0 or \xD1.

If we ooked at the UTF8 bytes of the Russian subtites weʼre searching,
weʼd end up seeing exacty the same pattern. This pattern occurs because
the contents of the fie are mosty Cyric, which are a mosty part of a

coupe sma ranges in Unicode. This means that the \xD0 and \xD1 bytes
occur a ot.

If you reca from above, Goʼs regex engine wi scan for occurrences of the
first byte. But if that first byte happens as frequenty as it does here, the

http://www.musl-libc.org/
http://www.musl-libc.org/
http://www.musl-libc.org/
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c

overa search wi wind up going sower because there is overhead
associated with doing that scan. This is precisey the trade off one is

exposed to whenever memchr is used.

As you might have guessed, rg works around this issue by trying to guess

the rarest byte. rg specificay draws from a pre-computed frequency tabe

of a 256 bytes. Bytes ike \xD0 and \xD1 are considered to be among the

most frequent whie bytes ike \xA8 and \x81 are considered more rare.

Therefore, rg wi prefer bytes other than \xD0 and \xD1 for use with

memchr.

GNU grep continues to do we on this benchmark mosty because of bind

uck: Boyer-Moore uses the ast byte, which wi correspond to \x81, which

is much rarer than \xD0 or \xD1.

Switching gears, we shoud briefy discuss memory maps. In this

benchmark, rg beats out rg (no mmap) by about 25%. The ony difference
between the two is that the former memory maps the fie into memory whie
the atter incrementay reads bytes from the fie into an intermediate buffer,
and searches it. In this case, the overhead of the memory map is very sma
because we ony need to create one of them. This is the opposite resut
from our Linux benchmark above, where memory maps proved to be worse
than searching with an intermediate buffer since we needed to create a new
memory map for every fie we searched, which ends up incurring quite a bit

of overhead. rg takes an empirica approach here and enabes memory map
searching when it knows it ony needs to search a few fies, and otherwise
searches using an intermediate buffer.

One ast note: Iʼve negected to tak about (lines) because thereʼs reay
not much to say here: counting ines takes work, and if you donʼt need to

report ine numbers, you can avoid doing that work. ucg has a rather coo

SIMD agorithm to count ines and rg aso has a packed counting agorithm

that works simiary to the memchr impementations we taked about.

If it were up to me, Iʼd probaby remove benchmarks with ine numbers
atogether, since most toos tend to reiaby pay just a itte bit extra for

them. However, neither ag nor ucg aow turning them off, so we need to
turn them on in other toos in order to make a fair comparison.

subtitles_literal_casei

Description: This benchmark is just ike subtitles_literal, except it

does case insensitive search. Toos annotated with (lines) show ine

numbers in their output, and toos annotated with (ASCII) are doing an

ASCII-ony search. Correspondingy, toos not abeed with (ASCII) are
doing a proper Unicode search.

Engish pattern: Sherlock Holmes (with the -i fag set)

rg 0.366 +/- 0.001 (lines: 642)*+
grep 4.084 +/- 0.005 (lines: 642)
grep (ASCII) 0.614 +/- 0.001 (lines: 642)
rg (lines) 0.696 +/- 0.002 (lines: 642)
ag (lines) (ASCII) 2.775 +/- 0.004 (lines: 642)
ucg (lines) (ASCII) 0.841 +/- 0.002 (lines: 642)

Russian pattern: Шерлок Холмс

rg 1.131 +/- 0.001 (lines: 604)
grep 8.187 +/- 0.006 (lines: 604)
grep (ASCII) 0.785 +/- 0.001 (lines: 583)
rg (lines) 1.733 +/- 0.002 (lines: 604)
ag (lines) (ASCII) 0.729 +/- 0.001 (lines: 0)*+
ucg (lines) (ASCII) 1.896 +/- 0.005 (lines: 583)

• * - Best mean time.
• + - Best sampe time.
• There is no rg (ASCII) because rg canʼt do ASCII-ony case

insensitive search.

Anaysis: This is a fun benchmark, because we start to see just how

awesome rgʼs support for Unicode is. Namey, that it not ony gets it correct,
but itʼs aso fast. Itʼs fast enough that it beats the competition even when the
competition is using ASCII-ony rues.

Right off the bat, GNU grep pays deary for doing a case insensitive search
with Unicode support. The probem it faces is that it can no onger do a

https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal

straight-forward Boyer-Moore search, so it either needs to fa back to some
aternative itera search or its fu regex engine. Even though GNU grep is
much faster at ASCII-ony case sensitive search than its Unicode aware

variant, rgʼs Unicode case insensitive search sti handedy beats GNU
grepʼs ASCII-ony case insensitive search.

The reason why rg is so fast on this benchmark is the same reason why itʼs

fast in the linux_literal_casei benchmark: it turns the pattern

Sherlock Holmes into an aternation of a possibe iteras according to
Unicodeʼs simpe case foding rues. It then takes a sma prefix from each
aternate so that our set of iteras ooks ike this:

SHER
SHEr
SHeR
SHer
ShER
ShEr
SheR
Sher
sHER
sHEr
sHeR
sHer
shER
shEr
sheR
sher
ſHER
ſHEr
ſHeR
ſHer
ſhER
ſhEr
ſheR
ſher

Notice that we get Unicode right by incuding ſ as a case variant of S.)

https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

It then feeds these iteras to the Teddy SIMD mutipe pattern agorithm. The
agorithm is unpubished, but was invented by Geoffrey Langdae as part of
Inteʼs Hyperscan regex ibrary. The agorithm works roughy by using
packed comparisons of 16 bytes at a time to find candidate ocations where
a itera might match. I adapted the agorithm from the Hyperscan project to
Rust, and incuded an extensive write up in the comments if youʼre
interested.

Whie essentiay the same anaysis appies to the Russian benchmark, there

are a few interesting things to note. Namey, whie the resuts show grep
(ASCII) as being very fast, it seems cear that itʼs competey ignoring the -
i fag in this case since the pattern is not an ASCII string. Notaby, its timing

is essentiay identica to its timing on the previous subtitles_literal
benchmark. The other interesting thing to note is that ag reports 0 matches.
This isnʼt entirey unreasonabe, if it somehow knows that it canʼt satisfy the
request (case insensitive search of a non-ASCII string when Unicode
support isnʼt enabed). If I had to guess, Iʼd say PCRE is returning an error

(possiby from pcre_exec) and it isnʼt being forwarded to the end user, but
thatʼs just a shot in the dark.

subtitles_alternate

Description: This benchmarks an aternation of iteras, where there are
severa distinct eading bytes from each itera. We contro for ine counting.

Engish pattern: Sherlock Holmes|John Watson|Irene Adler|
Inspector Lestrade|Professor Moriarty

rg 0.294 +/- 0.001 (lines: 848)*+
grep 2.955 +/- 0.003 (lines: 848)
rg (lines) 0.619 +/- 0.001 (lines: 848)
ag (lines) 3.757 +/- 0.001 (lines: 848)
ucg (lines) 1.479 +/- 0.002 (lines: 848)
grep (lines) 3.412 +/- 0.004 (lines: 848)

Russian pattern: Шерлок Холмс|Джон Уотсон|Ирен Адлер|инспектор
Лестрейд|профессор Мориарти

https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal

rg 1.300 +/- 0.002 (lines: 691)*+
grep 7.994 +/- 0.017 (lines: 691)
rg (lines) 1.902 +/- 0.002 (lines: 691)
ag (lines) 5.892 +/- 0.003 (lines: 691)
ucg (lines) 2.864 +/- 0.006 (lines: 691)
grep (lines) 8.511 +/- 0.005 (lines: 691)

• * - Best mean time.
• + - Best sampe time.

Anaysis: rg does reay we here, on both the Engish and Russian
patterns, primariy thanks to Teddy as described in the anaysis for

subtitles_literal_casei. On the Engish pattern, rg is around an order
of magnitude faster than GNU grep.

The performance cost of counting ines is on fu dispay here. For rg at
east, it makes returning search resuts take twice as ong.

Note that the benchmark description mentions picking iteras with distinct
eading bytes. This is to avoid measuring an optimization where the regex

engine detects the eading byte and runs memchr on it. Of course, this

optimization is important (and rg wi of course do it), but itʼs far more
interesting to benchmark what happens in a sighty trickier case.

subtitles_alternate_casei

Description: This benchmark is just ike subtitles_alternate, except it
searches case insensitivey. In this benchmark, instead of controing for ine
counting (a commands count ines), we contro for Unicode support.

Engish pattern: Sherlock Holmes|John Watson|Irene Adler|
Inspector Lestrade|Professor Moriarty (with the -i fag set)

https://burntsushi.net/ripgrep/#subtitles-literal-casei
https://burntsushi.net/ripgrep/#subtitles-literal-casei
https://burntsushi.net/ripgrep/#subtitles-literal-casei
https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate

rg 2.724 +/- 0.002 (lines: 862)*+
grep 5.125 +/- 0.006 (lines: 862)
ag (ASCII) 5.170 +/- 0.004 (lines: 862)
ucg (ASCII) 3.453 +/- 0.005 (lines: 862)
grep (ASCII) 4.537 +/- 0.025 (lines: 862)

Russian pattern: Шерлок Холмс|Джон Уотсон|Ирен Адлер|инспектор
Лестрейд|профессор Мориарти

rg 4.834 +/- 0.004 (lines: 735)
grep 8.729 +/- 0.004 (lines: 735)
ag (ASCII) 5.891 +/- 0.001 (lines: 691)
ucg (ASCII) 2.868 +/- 0.005 (lines: 691)*+
grep (ASCII) 8.572 +/- 0.009 (lines: 691)

• * - Best mean time.
• + - Best sampe time.

Anaysis: Whie rg gets an order of magnitude sower on this benchmark

compared to subtitles_alternate, it sti comfortaby beats out the rest
of the search toos, even when other toos donʼt support Unicode. A key
thing this benchmark demonstrates are the imits of the Teddy agorithm. In

fact, rg opts to not use Teddy in this benchmark because it predicts it wonʼt
perform we.

Why doesnʼt Teddy perform we here? We, the answer is in how we

generate iteras for this pattern. Namey, rg wi try to generate a possibe
iteras that satisfy Unicode simpe case foding rues, and then wi take a
short prefix of that set to cut the number of iteras down to reasonabe size.
In this particuar case, we wind up with 48 iteras:

INS
INs
INſ
IRE
IRe
InS

https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate

Ins
Inſ
IrE
Ire
JOH
JOh
JoH
Joh
PRO
PRo
PrO
Pro
SHE
SHe
ShE
She
iNS
iNs
iNſ
iRE
iRe
inS
ins
inſ
irE
ire
jOH
jOh
joH
joh
pRO
pRo
prO
pro
sHE
sHe
shE
she

ſHE
ſHe
ſhE
ſhe

If we passed a of those to Teddy, it woud become overwhemed. In
particuar, Teddy works by finding candidates for matches very quicky.
When there are roughy the same number of candidates as there are
matches, Teddy performs exceedingy we. But, if we give it more iteras,
then itʼs more ikey to find candidates that donʼt match, and wi therefore
have to spend a ot more time verifying the match, which can be costy.

A more subte aspect of the Teddy impementation is that a arger number
of iteras increases the cost of every verification, even if the number of
candidates produced doesnʼt increase. As Iʼve mentioned before, if you
want the fu scoop on Teddy, see its we commented impementation.
Going into more detai on Teddy woud require a whoe bog post on its
own!

When rg sees that there are a arge number of iteras, it coud do one of
two things:

�Try to cut down the set even more. For exampe, in this case, we coud
strip the ast character from each prefix off and end up with a much
smaer set. Unfortunatey, even though we have fewer iteras, we wind
up with a sti not-so-sma set of two-character iteras, which wi aso
tend to produce a ot more fase positive candidates just because of
their ength.

�Move to a different mutipe pattern agorithm, such as Aho-Corasick.

I have tried to impement 1) in the past, but Iʼve aways wound up in a game
of whack-a-moe. I might make one common case faster, but another
common case a ot sower. In those types of cases, itʼs usuay better to try
and achieve good average case performance. Luckiy for us, Aho-Corasick
does exacty that.

We do sti have a few tricks up our seeve though. For exampe, many Aho-
Corasick impementations are buit as-if they were tries with back-pointers
for their faiure transitions. We can actuay do better than that. We can
compie a of its faiure transitions into a DFA with a transition tabe

https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/Trie

contiguous in memory. This means that every byte of input corresponds to a
singe ookup in the transition tabe to find the next state. We never have to
waste time chasing pointers or waking more than one faiure transition for
any byte in the search text.

Of course, this transition tabe based approach is memory intensive, since

you need space for number_of_literals * number_of_states, where

number_of_states is roughy capped at the tota number of bytes in a of
the iteras. Whie 48 iteras of ength 3 is too much for Teddy to hande, itʼs
barey a bip when it comes to Aho-Corasick, even with its memory
expensive transition tabe based approach. N.B. In the iterature, this
particuar impementation of Aho-Corasick is often caed “Advancedˮ Aho-
Corasick.)

subtitles_surrounding_words

Description: This benchmarks a pattern that searches for words

surrounding the itera string Holmes. This pattern was specificay
constructed to defeat both prefix and suffix itera optimizations.

Engish pattern: \w+\s+Holmes\s+\w+

rg 0.605 +/- 0.000 (lines: 317)
grep 1.286 +/- 0.002 (lines: 317)
rg (ASCII) 0.602 +/- 0.000 (lines: 317)*+
ag (ASCII) 11.663 +/- 0.008 (lines: 323)
ucg (ASCII) 4.690 +/- 0.002 (lines: 317)
grep (ASCII) 1.276 +/- 0.002 (lines: 317)

Russian pattern: \w+\s+Холмс\s+\w+

rg 0.957 +/- 0.001 (lines: 278)*+
grep 1.660 +/- 0.002 (lines: 278)
ag (ASCII) 2.411 +/- 0.001 (lines: 0)
ucg (ASCII) 2.980 +/- 0.002 (lines: 0)
grep (ASCII) 1.596 +/- 0.003 (lines: 0)

• * - Best mean time.
• + - Best sampe time.

Anaysis: In order to compete on this benchmark, a search too wi need to
impement a so-caed “inner iteraˮ optimization. You can probaby guess
what that means: it is an optimization that ooks for itera strings that appear
anywhere in the pattern, and if a itera is found that must appear in every
match, then a search too can quicky scan for that itera instead of appying
the fu regex to the search text.

The key thing that permits this optimization to work is the fact that most
search toos report resuts per ine. For exampe, in this case, if a ine

contains the itera Holmes, then the search too can find the beginning and
ending of that ine and run the fu pattern on just that ine. If the itera is
reativey rare, this keeps us out of the regex engine for most of the search.
And of course, if the itera doesnʼt appear at a in the corpus, then we wi
have never touched the regex engine at a.

To achieve the fu optimization, you probaby need to parse your pattern
into its abstract syntax (abbreviated “ASTˮ for abstract syntax tree) to
extract the itera. It is worth pointing out however that one can probaby get
a ot of mieage with simper heuristics, but a rea pattern parser is the ony
way to do this optimization robusty. The probem here is that for most regex
engines, parsing the pattern is an unexposed impementation detai, so it
can be hard for search toos to extract iteras in a robust way without
writing their own parser, and a modern regex parser is no easy task!

Thankfuy, Rustʼs regex ibrary exposes an additiona ibrary, regex-
syntax, which provides a fu parser. rg impements this optimization

reativey easiy with the hep of regex-syntax, whie GNU grep
impements this optimization because the search too and the underying
regex engine are couped together.

Why does the search too need to perform this optimization? Why canʼt the
underying regex engine do it? I personay have thought ong and hard
about this particuar probem and havenʼt been abe to come up with an
eegant soution. The core probem is that once you find an occurrence of
the itera, you donʼt know where to start searching the fu regex. In a
genera purpose regex engine, a pattern coud match an arbitrariy ong

string. For exampe, \w+\s+Holmes\s+\w+ mighty ony match at the very

https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html

end of a gigabyte sized document. There are ways to work around this. For

exampe, you coud spit the regex into three pieces: \w+\s+, Holmes and

\s+\w+. On every occurrence of the Holmes itera, you coud search for the

beginning of the match by executing \w+\s+ in reverse starting just before

the itera, and executing \s+\w+ forwards starting just after the itera. The
key probem with this approach is that it exposes you to quadratic behavior

in the worst case (since \w+\s+ or \s+\w+ coud cause you to re-scan text
youʼve aready seen). Whie I beieve there is a genera purpose way to
sove this and sti guarantee inear time searching, a good soution hasnʼt
reveaed itsef yet.

Based on the data in this benchmark, ony rg and GNU grep perform this

optimization. Neither ag nor ucg attempt to extract any inner iteras from
the pattern, and it ooks ike PCRE doesnʼt try to do anything too cever. Of

course, Rustʼs regex ibrary doesnʼt either, this optimization is done in rg
proper.)

As for the Russian pattern, we see that ony toos with proper Unicode

support can execute the query successfuy. The reason is because \w is

ASCII ony in ucg and ag, so it canʼt match the vast majority of word

characters (which are Cyric) in our sampe. Otherwise, both rg and GNU
grep remain fast, primariy because of the inner itera optimization.

subtitles_no_literal

Description: This benchmark purposefuy has no iteras in it, which makes
it a bit idiosyncratic, since most searches done by end users probaby have
at east some itera in them. However, it is a usefu benchmark to gauge the
genera performance of the underying regex engine.

Engish pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+
\w{5}\s+\w{5}

rg 2.777 +/- 0.003 (lines: 13)
rg (ASCII) 2.541 +/- 0.005 (lines: 13)*+
ag (ASCII) 10.076 +/- 0.005 (lines: 48)
ucg (ASCII) 7.771 +/- 0.004 (lines: 13)
grep (ASCII) 4.411 +/- 0.004 (lines: 13)

Russian pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+
\w{5}\s+\w{5}

rg 4.905 +/- 0.003 (lines: 41)
rg (ASCII) 3.973 +/- 0.002 (lines: 0)
ag (ASCII) 2.395 +/- 0.004 (lines: 0)*+
ucg (ASCII) 3.006 +/- 0.005 (lines: 0)
grep (ASCII) 2.483 +/- 0.005 (lines: 0)

• * - Best mean time.
• + - Best sampe time.
• ag gets more matches on the Engish pattern since it does mutiine

search. Namey, the \s can match a \n.
• grep with Unicode support was dropped from this benchmark because

it takes over 90 seconds on the Engish pattern and over 4 minutes on
the Russian pattern. In both cases, GNU grep and rg report the same
resuts.

Anaysis: Once again, no other search too performs as we as rg. For the

Engish pattern, both rg and rg (ASCII) have very simiar performance,

despite rg supporting Unicode.

What specificay makes rg faster than GNU grep in this case? Both search
toos utimatey use a DFA to execute this pattern, so their performance
shoud be roughy the same. I donʼt actuay have a particuary good answer
for this. Both GNU grep and Rustʼs regex ibrary unro the DFAʼs inner oop,
and both impementations compute states on the fy. I can make a guess
though.

Rustʼs regex ibrary avoids a singe pointer dereference when foowing a
transition. How it achieves this is compicated, but itʼs done by representing
states as indices into the transition tabe rather than simpe incrementa ids.
This permits the generated code to use simpe addition to address the
ocation of the next transition, which can be done with addressing modes in
a singe instruction. Specificay, this optimization means we donʼt need to
do any mutipication to find the state transition.) A singe pointer
dereference might not seem ike much, but when itʼs done for every state
transition over a arge corpus such as this, it can have an impact.

When it comes to the Russian pattern, such detais are far ess important
because GNU grep takes minutes to run. This suggests that it isnʼt buiding
UTF8 decoding into its DFA, and is instead doing something ike decoding a
character at a time, which can have a ot of overhead associated with it. I
admit that I donʼt quite grok this aspect of GNU grep though, so I coud have
its cost mode wrong. Now, in a fairness, GNU grepʼs ocae and encoding

support far exceeds what rg supports. However, in todayʼs word, UTF8 is
quite prevaent, so supporting that aone is often enough. More to the point,
given how common UTF8 is, itʼs important to remain fast whie supporting
Unicode, which GNU grep isnʼt abe to do.

Unfortunatey, the other toos donʼt support Unicode, so they canʼt be
meaningfuy benchmarked on the Russian pattern.

Bonus benchmarks

In this section, weʼ take a ook at a few crazier benchmarks that arenʼt
actuay part of the suite Iʼve pubished. Indeed, the performance
differences between toos are often so arge that a fastidious anaysis isnʼt
reay necessary. More to the point, these usage patterns arenʼt necessariy
representative of common usage (not that these usages arenʼt important,
theyʼre just niche), so the performance differences are ess important.

Nevertheess, it is fun to see how we rg and the other toos hod up under
these requests.

everything

Description: In this benchmark, we compare how ong it takes for each too
to report every ine as a match. This benchmark was run in the root of the
Linux repository.

Pattern: .*

rg 1.081 (lines: 22065361)
ag 1.660 (lines: 55939)
git grep 3.448 (lines: 22066395)
sift 110.018 (lines: 22190112)
pt 0.245 (lines: 3027)

rg (whitelist) 0.987 (lines: 20936584)
ucg (whitelist) 5.558 (lines: 23163359)

Anaysis: This benchmark is somewhat siy since itʼs something you
probaby never want a search too to do. Nevertheess, it is usefu to know

that rg scaes quite we to a huge number of matches.

One of the key tricks that a good regex engine wi do in this case is stop
searching text as soon as it knows it has a match if a the caer cares about
is “is there a match or not?ˮ In this case, we wi find a match at the
beginning of every ine, immediatey quit, find the ine boundaries and then

repeat the process. There is no particuar specia cased optimization for .*
in either rg or Rustʼs regex ibrary (athough there coud be).

Interestingy, neither ag nor pt actuay report every ine. They appear to
have some kind of match imit. Which isnʼt atogether unreasonabe. This is
a search too after a, and some might consider that returning every resut
isnʼt usefu.

nothing

Description: This is just ike the everything benchmark, except it inverts
the resuts. The correct resut is for a search too to report no ines as
matching. This benchmark aso searches the Linux kerne source code,
from the root of repository.

Pattern: .* (with the -v or --invert-match fag set)

rg 0.302 (lines: 0)
ag takes minutes
git grep 0.905 (lines: 0)
sift 12.804 (lines: 0)
pt -----
rg (whitelist) 0.251 (lines: 0)
ucg (whitelist) -----

Anaysis: Whie this benchmark is even more ridicuous than the previous
one (“give me nothing of everythingˮ), it does expose a few warts and

omissions in other toos. Namey, ag seems to sow way down when

reporting inverted matches. Neither pt nor ucg support inverted searching

at a. sift redeems itsef from the previous benchmark (perhaps it has a ot
of overhead associated with printing matches that it doesnʼt hit here).

Neither rg nor git grep have any probems satisfying the request.

context

Description: This benchmarks how we a search too can show the context
around each match. Specificay, in this case, we ask for the two ines
preceding and succeeding every match. We run this benchmark on the
Engish subtite corpus. Note that a toos are asked to count ines.

Pattern: Sherlock Holmes (with --context 2)

rg 0.612 (lines: 3533)
ag 3.530 (lines: 3533)
grep 1.075 (lines: 3533)
sift 0.717 (lines: 3533)
pt 17.331 (lines: 2981)
ucg -----

Anaysis: rg continues to do we here, but beats sift by ony a hair. In
genera, computing the context shoudnʼt be that expensive since it is done

rarey (ony for each match). Nevertheess, both ag and pt seem to take a

pretty big hit for it. pt aso seems to have a bug. Which is understandabe,

getting contexts right is tricky.) Finay, ucg doesnʼt support this feature, so
we canʼt benchmark it.

huge

Description: This benchmark runs a simpe itera search on a fie that is

9.3GB. In fact, this is the origina Engish subtite corpus in its entirety. In
the benchmark suite, we take a 1GB sampe.)

Pattern: Sherlock Holmes

rg 1.786 (lines: 5107)

grep 5.119 (lines: 5107)
sift 3.047 (lines: 5107)
pt 14.966 (lines: 5107)
rg (lines) 4.467 (lines: 5107)
ag (lines) 19.132 (lines: 5107)
grep (lines) 9.213 (lines: 5107)
sift (lines) 6.303 (lines: 5107)
pt (lines) 15.485 (lines: 5107)
ucg (lines) 4.843 (lines: 1543)

Anaysis: At first gance, it appears ucg competes with rg when counting

ines (being ony sighty sower), but in fact, ucg reports the wrong number

of resuts! My suspicion is that ucg gets into troube when trying to search
fies over 2GB.

The other intesting bit here is how sow pt is, even when not counting ines,

despite the fact that sift is fast. They both use Goʼs regexp engine and
shoud be abe to be fast in the case of a simpe itera. Itʼs not cear what

ptʼs sow down here is. One hypothesis is that even though Iʼm asking it to
not count ines, itʼs sti counting them but simpy not showing them.

Concusions

I started this bog post by caiming that I coud support the foowing caims
with evidence:

• For both searching singe fies and huge directories of fies, no other
too obviousy stands above ripgrep in either performance or
correctness.

• ripgrep is the ony too with proper Unicode support that doesnʼt
make you pay deary for it.

• Toos that search many fies at once are generay sower if they use
memory maps, not faster.

I attempted to substantiate the first caim by picking a popuar repository
Linux kerne) and a variety of patterns that an end user might search for.

Whie rg doesnʼt quite come out on top on every benchmark, no other too

can caim superiority. In particuar, git grep edges out rg on occasion by

a few miiseconds, but rg in turn wi beat git grep handedy (sometimes

by an order of magnitude, as in the case of linux_unicode_word) as the
patterns grow more compex, especiay when the search too is asked to

support Unicode. rg manages to compete with git grep and beat other
toos ike The Siver Searcher by:

• Impementing fast directory traversa with a minima number of stat
cas.

• Appying .gitignore fiters with a RegexSet, which enabes matching
mutipe gobs against a singe path a at once.

• Distributing work quicky to mutipe threads with a Chase-Lev work
steaing queue.

• Expicity not using memory maps.
• Using an overa very fast regex engine.

I aso attempted to substantiate the first caim by showing benchmarks of rg
against other toos on a singe fie. In this benchmark, rg comes out on top
in every singe one, often by a arge margin. Some of those resuts are a
resut of the foowing optimizations:

• Attempting to pick a “rareˮ byte to use memchr with for fast skipping.
• Using a specia SIMD agorithm caed Teddy for fast mutipe pattern

search.
• When Teddy isnʼt usabe, faback to an “advancedˮ form of Aho-

Corasick that never moves through more than one transition on each
byte of input.

• Buiding UTF8 decoding into a finite state machine.

For the second caim, I provided benchmarks that attempt to use Unicode
features such as conforming to Unicodeʼs simpe case foding rues and

Unicode aware character casses such as \w. The ony toos capabe of

handing Unicode are rg, GNU grep and git grep. The atter two tend to

get much sower when supporting the fu gamut of Unicode whie rg mosty
maintains its performance.

For the third caim, I showed mutipe benchmarks of rg controing for

memory maps. Namey, we measured how fast rg was both with and
without memory maps, and showed that memory maps perform worse when
searching many sma fies in parae, but perform better on searching

singe arge fies. At east, on Linux x86_64.) We aso earned that
memory maps probaby pay an additiona penaty inside a VM.

https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html

My hope is that this artice not ony convinced you that rg is quite fast, but
more importanty, that you found my anaysis of each benchmark
educationa. String searching is an od probem in computer science, but
there is sti penty of work eft to do to advance the state of the art.

A content is dua icensed under the UNLICENSE and MIT icenses.

Powered by Hugo & Pixy

https://burntsushi.net/index.xml
http://gohugo.io/
http://gohugo.io/
https://github.com/azmelanar/hugo-theme-pixyll
https://github.com/azmelanar/hugo-theme-pixyll

