
About Projects GitHub Sponsor MeAndrew Gaant's Bog

ripgrep is faster than {grep, ag, git grep,
ucg, pt, sift}
Sep 23, 2016

In this artice I wi introduce a new command ine search too, ripgrep, that

combines the usabiity of The Siver Searcher (an ack cone) with the raw

performance of GNU grep. ripgrep is fast, cross patform (with binaries
avaiabe for Linux, Mac and Windows) and written in Rust.

ripgrep is avaiabe on Github.

We wi attempt to do the impossibe: a fair benchmark comparison between
severa popuar code search toos. Specificay, we wi dive into a series of
25 benchmarks that substantiate the foowing caims:

• For both searching singe fies and huge directories of fies, no other
too obviousy stands above ripgrep in either performance or
correctness.

• ripgrep is the ony too with proper Unicode support that doesnʼt
make you pay deary for it.

• Toos that search many fies at once are generay sower if they use
memory maps, not faster.

As someone who has worked on text search in Rust in their free time for the

ast 2.5 years, and as the author of both ripgrep and the underying reguar
expression engine, I wi use this opportunity to provide detaied insights into
the performance of each code search too. No benchmark wi go
unscrutinized!

Target audience: Some famiiarity with Unicode, programming and some
experience with working on the command ine.

NOTE: Iʼm hearing reports from some peope that rg isnʼt as fast as Iʼve
caimed on their data. Iʼd ove to hep expain whatʼs going on, but to do that,
Iʼ need to be abe to reproduce your resuts. If you fie an issue with

https://burntsushi.net/about/
https://burntsushi.net/about/
https://burntsushi.net/projects/
https://burntsushi.net/projects/
https://github.com/BurntSushi
https://github.com/BurntSushi
https://github.com/sponsors/BurntSushi
https://github.com/sponsors/BurntSushi
https://blog.burntsushi.net/
https://blog.burntsushi.net/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
http://beyondgrep.com/
http://beyondgrep.com/
http://beyondgrep.com/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
https://github.com/BurntSushi/ripgrep/issues
https://github.com/BurntSushi/ripgrep/issues

something I can reproduce, Iʼd be happy to try and expain it.

Screenshot of search resuts

Tabe of Contents
• Introducing ripgrep

◦ Pitch
◦ Anti-pitch
◦ Instaation
◦ Whirwind tour
◦ Regex syntax

• Anatomy of a grep
◦ Background
◦ Gathering fies to search
◦ Searching

▪ Regex engine
▪ Litera optimizations
▪ Mechanics

◦ Printing
• Methodoogy

◦ Overview
◦ Benchmark runner
◦ Environment

• Code search benchmarks
◦ linux_literal_default
◦ linux_literal
◦ linux_literal_casei
◦ linux_word

https://burntsushi.net/stuff/ripgrep1.png
https://burntsushi.net/stuff/ripgrep1.png

◦ linux_unicode_word
◦ linux_re_literal_suffix
◦ linux_alternates
◦ linux_alternates_casei
◦ linux_unicode_greek
◦ linux_unicode_greek_casei
◦ linux_no_literal

• Singe fie benchmarks
◦ subtitles_literal
◦ subtitles_literal_casei
◦ subtitles_alternate
◦ subtitles_alternate_casei
◦ subtitles_surrounding_words
◦ subtitles_no_literal

• Bonus benchmarks
◦ everything
◦ nothing
◦ context
◦ huge

• Concusions

Introducing ripgrep

Pitch

Why shoud you use ripgrep over any other search too? We…

• It can repace many use cases served by other search toos because it
contains most of their features and is generay faster. See the FAQ for
more detais on whether ripgrep can truy repace grep.)

• Like other toos speciaized to code search, ripgrep defauts to
recursive directory search and wonʼt search fies ignored by your
.gitignore fies. It aso ignores hidden and binary fies by defaut.
ripgrep aso impements fu support for .gitignore, whereas there
are many bugs reated to that functionaity in other code search toos
caiming to provide the same functionaity.

• ripgrep can search specific types of fies. For exampe, rg -tpy foo
imits your search to Python fies and rg -Tjs foo excudes
Javascript fies from your search. ripgrep can be taught about new fie
types with custom matching rues.

• ripgrep supports many features found in grep, such as showing the

https://github.com/BurntSushi/ripgrep/blob/master/FAQ.md#posix4ever
https://github.com/BurntSushi/ripgrep/blob/master/FAQ.md#posix4ever

context of search resuts, searching mutipe patterns, highighting
matches with coor and fu Unicode support. Unike GNU grep, ripgrep
stays fast whie supporting Unicode (which is aways on).

• ripgrep has optiona support for switching its regex engine to use
PCRE2. Among other things, this makes it possibe to use ook-around
and backreferences in your patterns, which are not supported in
ripgrepʼs defaut regex engine. PCRE2 support is enabed with -P.

• ripgrep supports searching fies in text encodings other than UTF8,
such as UTF16, atin-1, GBK, EUCJP, Shift_JIS and more. Some
support for automaticay detecting UTF16 is provided. Other text
encodings must be specificay specified with the -E/--encoding
fag.)

• ripgrep supports searching fies compressed in a common format (gzip,
xz, zma, bzip2 or z4) with the -z/--search-zip fag.

• ripgrep supports arbitrary input preprocessing fiters which coud be
PDF text extraction, ess supported decompression, decrypting,
automatic encoding detection and so on.

In other words, use ripgrep if you ike speed, fitering by defaut, fewer bugs
and Unicode support.

Anti-pitch

Iʼd ike to try to convince you why you shoudnʼt use ripgrep. Often, this is

far more reveaing than reasons why I think you shoud use ripgrep.

Despite initiay not wanting to add every feature under the sun to ripgrep,
over time, ripgrep has grown support for most features found in other fie
searching toos. This incudes searching for resuts spanning across
mutipe ines, and opt-in support for PCRE2, which provides ook-around
and backreference support.

At this point, the primary reasons not to use ripgrep probaby consist of one
or more of the foowing:

• You need a portabe and ubiquitous too. Whie ripgrep works on
Windows, macOS and Linux, it is not ubiquitous and it does not
conform to any standard such as POSIX. The best too for this job is
good od grep.

• There sti exists some other feature (or bug) not isted in this README
that you rey on thatʼs in another too that isnʼt in ripgrep.

• There is a performance edge case where ripgrep doesnʼt do we where

another too does do we. Pease fie a bug report!
• ripgrep isnʼt possibe to insta on your machine or isnʼt avaiabe for

your patform. Pease fie a bug report!

Instaation

The binary name for ripgrep is rg.

Binaries for ripgrep are avaiabe for Windows, Mac and Linux. Linux
binaries are static executabes. Windows binaries are avaiabe either as
buit with MinGW GNU) or with Microsoft Visua C MSVC. When
possibe, prefer MSVC over GNU, but youʼ need to have the Microsoft VC
 2015 redistributabe instaed.

If youʼre a Homebrew user, then you can insta it ike so:

$ brew install ripgrep

If youʼre an Archinux user, then you can insta ripgrep from the officia
repos:

$ pacman -Syu ripgrep

If youʼre a Rust programmer, ripgrep can be instaed with cargo:

$ cargo install ripgrep

If youʼd ike to buid ripgrep from source, that is aso easy to do. ripgrep
is written in Rust, so youʼ need to grab a Rust instaation in order to

compie it. ripgrep compies with Rust 1.9 (stabe) or newer. To buid:

$ git clone git://github.com/BurntSushi/ripgrep
$ cd ripgrep
$ cargo build --release
$./target/release/rg --version
0.1.2

https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://github.com/BurntSushi/ripgrep/releases
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.rust-lang.org/
https://www.rust-lang.org/

If you have a Rust nighty compier, then you can enabe optiona SIMD
acceeration ike so, which is used in a benchmarks reported in this artice.

RUSTFLAGS="-C target-cpu=native" cargo build --release --features simd-accel

Whirwind tour

The command ine usage of ripgrep doesnʼt differ much from other toos
that perform a simiar function, so you probaby aready know how to use

ripgrep. The fu detais can be found in rg --help, but etʼs go on a
whirwind tour.

ripgrep detects when its printing to a termina, and wi automaticay
coorize your output and show ine numbers, just ike The Siver Searcher.
Cooring works on Windows too! Coors can be controed more granuary

with the --color fag.

One ast thing before we get started: generay speaking, ripgrep assumes
the input is reading is UTF8. However, if ripgrep notices a fie is encoded
as UTF16, then it wi know how to search it. For other encodings, youʼ

need to expicity specify them with the -E/--encoding fag.

To recursivey search the current directory, whie respecting a .gitignore
fies, ignore hidden fies and directories and skip binary fies:

$ rg foobar

The above command aso respects a .rgignore fies, incuding in parent

directories. .rgignore fies can be used when .gitignore fies are

insufficient. In a cases, .rgignore patterns take precedence over

.gitignore.

To ignore a ignore fies, use -u. To additionay search hidden fies and

directories, use -uu. To additionay search binary fies, use -uuu. In other

words, “search everything, dammit!ˮ) In particuar, rg -uuu is simiar to

grep -a -r.

$ rg -uu foobar # similar to `grep -r`
$ rg -uuu foobar # similar to `grep -a -r`

Tip: If your ignore fies arenʼt being adhered to ike you expect, run your

search with the --debug fag.)

Make the search case insensitive with -i, invert the search with -v or show

the 2 ines before and after every search resut with -C2.

Force a matches to be surrounded by word boundaries with -w.

Search and repace (find first and ast names and swap them):

$ rg '([A-Z][a-z]+)\s+([A-Z][a-z]+)' --replace '$2, $1'

Named groups are supported:

$ rg '(?P<first>[A-Z][a-z]+)\s+(?P<last>[A-Z][a-z]+)' --replace

Up the ante with fu Unicode support, by matching any uppercase Unicode
etter foowed by any sequence of owercase Unicode etters (good uck
doing this with other search toos!

$ rg '(\p{Lu}\p{Ll}+)\s+(\p{Lu}\p{Ll}+)' --replace '$2, $1'

Search ony fies matching a particuar gob:

$ rg foo -g 'README.*'

Or excude fies matching a particuar gob:

$ rg foo -g '!*.min.js'

Search ony HTML and CSS fies:

$ rg -thtml -tcss foobar

Search everything except for Javascript fies:

$ rg -Tjs foobar

To see a ist of types supported, run rg --type-list. To add a new type,

use --type-add, which must be accompanied by a pattern for searching

(rg wonʼt persist your type settings):

$ rg --type-add 'foo:*.{foo,foobar}' -tfoo bar

The type foo wi now match any fie ending with the .foo or .foobar
extensions.

Regex syntax

The syntax supported is documented as part of Rustʼs regex ibrary.

Anatomy of a grep

Before we dive into benchmarks, I thought it might be usefu to provide a
high eve overview of how a grep-ike search too works, with a specia

focus on ripgrep in particuar. The goa of this section is to provide you
with a bit of context that wi hep make understanding the anaysis for each
benchmark easier.

Background

Moduo parsing command ine arguments, the first “reaˮ step in any search

too is figuring out what to search. Toos ike grep donʼt try to do anything
smart: they simpy search the fies given to it on the command ine. An

exception to this is the -r fag, which wi cause grep to recursivey search
a fies in the current directory. Various command ine fags can be passed
to contro which fies are or arenʼt searched.

https://docs.rs/regex/1.*/regex/#syntax
https://docs.rs/regex/1.*/regex/#syntax

ack came aong and turned this type of defaut behavior on its head. Instead

of trying to search everything by defaut, ack tries to be smarter about what
to search. For exampe, it wi recursivey search your current directory by
defaut, and it wi automaticay skip over any source contro specific fies

and directories (ike .git). This method of searching undoubtedy has its
own pros and cons, because it tends to make the too “smarter,ˮ which is
another way of saying “opaque.ˮ That is, when you reay do need the too to
search everything, it can sometimes be tricky to know how to speak the
right incantation for it to do so. With that said, being smart by defaut is
incrediby convenient, especiay when “smartˮ means “figure out what to
search based on your source contro configuration.ˮ Thereʼs no she aias

that can do that with grep.

A of the other search toos in this benchmark share a common ancestor

with either grep or ack. sift is descended from grep, whie ag, ucg, and

pt are descended from ack. ripgrep is a bit of a hybrid because it was

specificay buit to be good at searching huge fies just ike grep, but at the

same time, provide the “smartˮ kind of defaut searching ike ack. Finay,

git grep deserves a bit of a specia mention. git grep is very simiar to

pain grep in the kinds of options it supports, but its defaut mode of

searching is ceary descended from ack: it wi ony search fies checked
into source contro.

Of course, both types of search toos have a ot in common, but there are a
few broad distinctions worth making if you aow yoursef to squint your
eyes a bit:

• grep-ike toos need to be reay good at searching arge fies, so the
performance of the underying regex ibrary is paramount.

• ack-ike toos need to be reay good at recursive directory traversa
whie aso appying ignore rues from fies ike .gitignore quicky.
ack-ike toos are buit to run many searches in parae, so the raw
performance of the underying regex ibrary can be papered over
somewhat whie sti being faster than singe-threaded “search
everythingˮ toos ike grep. If the “smartsˮ of ack aso mean skipping
over that 2GB artifact in your directory tree, then the performance
difference becomes even bigger.

• ripgrep tries hard to combine the best of both words. Not ony is its
underying regex engine very fast, but it paraeizes searches and tries
to be smart about what it searches too.

http://beyondgrep.com/
http://beyondgrep.com/
http://beyondgrep.com/

Gathering fies to search

For an ack-ike too, it is important to figure out which fies to search in the
current directory. This means using a very fast recursive directory iterator,
fitering fie paths quicky and distributing those fie paths to a poo of
workers that actuay execute the search.

Directory traversa can be tricky because some recursive directory iterators
make more stat cas than are stricty necessary, which can have a arge
impact on performance. It can be terriby difficut to track down these types
of performance probems because they tend to be buried in a standard
ibrary somewhere. Python ony recenty fixed this, for exampe. Rest

assured that ripgrep uses a recursive directory iterator that makes the
minimum number of system cas possibe.

Fitering fie paths requires not ony respecting rues given at the command

ine (e.g., grepʼs --include or --exclude) fags, but aso requires reading

fies ike .gitignore and appying their rues correcty to a fie paths.

Even the mere act of ooking for a .gitignore fie in every directory can
have measurabe overhead! Otherwise, the key performance chaenge with
this functionaity is making sure you donʼt try to match every ignore rue
individuay against every fie path. Large repositories ike the Linux kerne

source tree have over a hundred .gitignore fies with thousands of rues
combined.

Finay, distributing work to other threads for searching requires some kind
of synchronization. One soution is a mutex protected ring buffer that acts
as a sort of queue, but there are ock-free soutions that might be faster.
Rustʼs ecosystem is so great that I was abe to reuse a ock-free Chase-Lev
work-steaing queue for distributing work to a poo of searchers. Every
other too that paraeizes work in this benchmark uses a variant of a mutex

protected queue. (sift and pt might not fit this criteria, since they use Go
channes, and I havenʼt foowed any impementation improvements to that
code for a few years.)

Searching

Searching is the heart of any of these toos, and we coud dig ourseves into
a hoe on just this section aone and not come out aive for at east 2.5

http://benhoyt.com/writings/scandir/
http://benhoyt.com/writings/scandir/
https://docs.rs/walkdir
https://docs.rs/walkdir
https://docs.rs/walkdir
https://docs.rs/walkdir
https://github.com/kinghajj/deque
https://github.com/kinghajj/deque
https://github.com/kinghajj/deque
https://github.com/kinghajj/deque

years. Wecome to “How Long Iʼve Been Working On Text Search In Rust.ˮ)
Instead, we wi ighty touch on the big points.

Regex engine

First up is the regex engine. Every search too supports some kind of syntax
for reguar expressions. Some exampes:

• foo|bar matches any itera string foo or bar
• [a-z]{2}_[a-z]+ matches two owercase atin etters, foowed by an

underscore, foowed by one or more owercase atin etters.
• \bfoo\b matches the itera foo ony when it is surrounded by word

boundaries. For exampe, the foo in foobar wonʼt match but it wi in I
love foo..

• (\w+) \1 matches any sequence of word characters foowed by a
space and foowed by exacty the word characters that were matched
previousy. The \1 in this exampe is caed a “back-reference.ˮ For
exampe, this pattern wi match foo foo but not foo bar.

Reguar expression engines themseves tend to be divided into two
categories predominanty based on the features they expose. Regex
engines that provide support for a of the above tend to use an approach
caed backtracking, which is typicay quite fast, but can be very sow on
some inputs. “Very sowˮ in this case means that it might take exponentia
time to compete a search. For exampe, try running this Python code:

>>> import re
>>> re.search('(a*)*c', 'a' * 30)

Even though both the regex and the search string are tiny, it wi take a very
ong time to terminate, and this is because the underying regex engine uses
backtracking, and can therefore take exponentia time to answer some
queries.

The other type of regex engine generay supports fewer features and is
based on finite automata. For exampe, these kinds of regex engines
typicay donʼt support back-references. Instead, these regex engines wi
often provide a guarantee that a searches, regardess of the regex or the
input, wi compete in inear time with respect to the search text.

Itʼs worth pointing out that neither type of engine has a monopoy on
average case performance. There are exampes of regex engines of both
types that are bazing fast. With that said, hereʼs a breakdown of some
search toos and the type of regex engine they use:

• GNU grep and git grep each use their own hand-roed finite
automata based engine.

• ripgrep uses Rustʼs regex ibrary, which uses finite automata.
• The Siver Searcher and Universa Code Grep use PCRE, which uses

backtracking.
• Both The Patinum Searcher and sift use Goʼs regex ibrary, which uses

finite automata.

Both Rustʼs regex ibrary and Goʼs regex ibrary share Googeʼs RE2 as a
common ancestor.

Finay, both toos that use PCRE The Siver Searcher and Universa Code
Grep) are susceptibe to worst case backtracking behavior. For exampe:

$ cat wat
c
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
c
$ ucg '(a*)*c' wat
terminate called after throwing an instance of 'FileScannerException'
 what(): PCRE2 match error: match limit exceeded
Aborted (core dumped)

The Siver Searcher fais simiary. It reports the first ine as a match and
negects the match in the third ine. The rest of the search toos
benchmarked in this artice hande this case without a probem.

Litera optimizations

Picking a fast regex engine is important, because every search too wi
need to rey on it sooner or ater. Nevertheess, even the performance of the
fastest regex engine can be dwarfed by the time it takes to search for a
simpe itera string. Boyer-Moore is the cassica agorithm that is used to
find a substring, and even today, it is hard to beat for genera purpose
searching. One of its defining quaities is its abiity to skip some characters

https://github.com/rust-lang-nursery/regex
https://github.com/rust-lang-nursery/regex
http://www.pcre.org/
http://www.pcre.org/
https://golang.org/pkg/regexp/
https://golang.org/pkg/regexp/
https://github.com/google/re2
https://github.com/google/re2
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm

in the search text by pre-computing a sma skip tabe at the beginning of
the search.

On modern CPUs, the key to making a Boyer-Moore impementation fast is
not necessariy the number of characters it can skip, but how fast it can
identify a candidate for a match. For exampe, most Boyer-Moore
impementations ook for the ast byte in a itera. Each occurrence of that
byte is considered a candidate for a match by Boyer-Moore. It is ony at this
point that Boyer-Moore can use its precomputed tabe to skip characters,
which means you sti need a fast way of identifying the candidate in the
first pace. Thankfuy, speciaized routines found in the C standard ibrary,

ike memchr, exist for precisey this purpose. Often, memchr impementations
are compied down to SIMD instructions that examine sixteen bytes in a

singe oop iteration. This makes it very fast. On my system, memchr often
gets throughputs at around severa gigabytes a second. In my own

experiments, Boyer-Moore with memchr can be just as fast as an expicit
SIMD impementation using the PCMPESTRI instruction, but this is
something Iʼd ike to revisit.)

For a search too to compete in most benchmarks, either it or its regex
engine needs to use some kind of itera optimizations. For exampe, Rustʼs
regex ibrary goes to great engths to extract both prefix and suffix iteras
from every pattern. The foowing patterns a have iteras extracted from
them:

• foo|bar detects foo and bar
• (a|b)c detects ac and bc
• [ab]foo[yz] detects afooy, afooz, bfooy and bfooz
• (foo)?bar detects foobar and bar
• (foo)*bar detects foo and bar
• (foo){3,6} detects foofoofoo

If any of these patterns appear at the beginning of a regex, Rustʼs regex
ibrary wi notice them and use them to find candidate matches very quicky
(even when there is more than one itera detected). Whie Rustʼs core regex
engine is fast, it is sti faster to ook for iteras first, and ony drop down into
the core regex engine when itʼs time to verify a match.

The best case happens when an entire regex can be broken down into a
singe itera or an aternation of iteras. In that case, the core regex engine

http://man7.org/linux/man-pages/man3/memchr.3.html
http://man7.org/linux/man-pages/man3/memchr.3.html
http://man7.org/linux/man-pages/man3/memchr.3.html
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=PCMPESTR&expand=786
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=PCMPESTR&expand=786

wonʼt be used at a!

A search too in particuar has an additiona trick up its seeve. Namey,
since most search toos do ine-by-ine searching The Siver Searcher is a
notabe exception, which does mutiine searching by defaut), they can
extract non-prefix or “innerˮ iteras from a regex pattern, and search for
those to identify candidate ines that match. For exampe, the regex

\w+foo\d+ coud have foo extracted. Namey, when a candidate ine is

found, ripgrep wi find the beginning and end of ony that ine, and then

run the fu regex engine on the entire ine. This ets ripgrep very quicky
skip through fies by staying out of the regex engine. Most of the search
toos we benchmark here donʼt perform this optimization, which can eave a
ot of performance on the tabe, especiay if your core regex engine isnʼt
that fast.

Handing the case of mutipe iteras (e.g., foo|bar) is just as important.
GNU grep uses a itte known agorithm simiar to Commentz-Water for
searching mutipe patterns. In short, Commentz-Water is what you get
when you merge Aho-Corasick with Boyer-Moore: a skip tabe with a
reverse automaton. Rustʼs regex ibrary, on the other hand, wi either use
pain Aho-Corasick, or, when enabed, a specia SIMD agorithm caed
Teddy, which was invented by Geoffrey Langdae as part of the Hyperscan
regex ibrary deveoped by Inte. This SIMD agorithm wi prove to be at

east one of the key optimizations that propes ripgrep past GNU grep.

The great thing about this is that ripgrep doesnʼt have to do much of this
itera optimization work itsef. Most of it is done inside Rustʼs regex ibrary,
so every consumer of that ibrary gets a these performance optimizations
automaticay!

Mechanics

Repeat after me: Thou Shat Not Search Line By Line.

The naive approach to impementing a search too is to read a fie ine by
ine and appy the search pattern to each ine individuay. This approach is
probematic primariy because, in the common case, finding a match is rare.
Therefore, you wind up doing a ton of work parsing out each ine a for
naught, because most fies simpy arenʼt going to match at a in a arge
repository of code.

https://en.wikipedia.org/wiki/Commentz-Walter_algorithm
https://en.wikipedia.org/wiki/Commentz-Walter_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan

Not ony is finding every ine extra work that you donʼt need to do, but
youʼre aso paying a huge price in overhead. Whether youʼre searching for a
itera or a regex, youʼ need to start and stop that search for every singe
ine in a fie. The overhead of each search wi be your undoing.

Instead, a search toos find a way to search a big buffer of bytes a at
once. Whether thatʼs memory mapping a fie, reading an entire fie into
memory at once or incrementay searching a fie using a constant sized
intermediate buffer, they a find a way to do it to some extent. There are
some exceptions though. For exampe, toos that use memory maps or read

entire fies into memory either canʼt support stdin (ike Universa Code
Grep), or revert to ine-by-ine searching (ike The Siver Searcher). Toos

that support incrementa searching (ripgrep, GNU grep and git grep) can
use its incrementa approach on any fie or stream with no probems.

Thereʼs a reason why not every too impements incrementa search: itʼs
hard. For exampe, you need to consider a of the foowing in a fuy
featured search too:

• Line counting, when requested.
• If a read from a fie ends in the midde of a ine, you need to do the

bookkeeping required to make sure the incompete ine isnʼt searched
unti more data is read from the fie.

• If a ine is too ong to fit into your buffer, you need to decide to either
give up or grow your buffer to fit it.

• Your searcher needs to know how to invert the match.
• Worst of a: your searcher needs to be abe to show the context of a

match, e.g., the ines before and after a matching ine. For exampe,
consider the case of a match that appears at the beginning of your
buffer. How do you show the previous ines if they arenʼt in your buffer?
You guessed it: you need to carry over at east as many ines that are
required to satisfy a context request from buffer to buffer.

Itʼs a steep price to pay in terms of code compexity, but by goy, is it worth
it. Youʼ need to read on to the benchmarks to discover when it is faster
than memory maps!

Printing

It might seem ike printing is such a trivia step, but it must be done with at
east some care. For exampe, you canʼt just print matches from each search

thread as you find them, because you reay donʼt want to intereave the
search resuts of one fie with the search resuts of another fie. A naive
approach to this is to seriaize the printer so that ony one thread can print to
it at a time. This is probematic though, because if a search thread acquires
a ock to the printer before starting the search (and not reeasing it unti it
has finished searching one fie), youʼ end up aso seriaizing every search
as we, effectivey defeating your entire approach to paraeism.

A code search toos in this benchmark that paraeize search therefore
write resuts to some kind of intermediate buffer in memory. This enabes a
of the search threads to actuay perform a search in parae. The printing
sti needs to be seriaized, but weʼve reduced that down to simpy dumping

the contents of the intermediate buffer to stdout. Using an in memory
buffer might set off aarm bes: what if you search a 2GB fie and every ine
matches? Doesnʼt that ead to excessive memory usage? The answer is:
“Why, yes, indeed it does!ˮ The key insight is that the common case is
returning far fewer matches than there are tota ines searched.
Nevertheess, there are ways to mitigate excessive memory usage. For

exampe, if ripgrep is used to search stdin or a singe fie, then it wi

write search resuts directy to stdout and forgo the intermediate buffer

because it just doesnʼt need it. (ripgrep shoud aso do this when asked to
not do any paraeism, but I havenʼt gotten to it yet.) In other words, pick
two: space, time or correctness.

Note that the detais arenʼt quite the same in every too. Namey, whie The
Siver Searcher and Universa Code Grep write matches as structured data

to memory (i.e., an array of match structs or something simiar), both git
grep and ripgrep write the actua output to a dynamicay growabe string

buffer in memory. Whie either approach does seem to be fast enough, git
grep and ripgrep have to do things this way because they support
incrementa search where as The Siver Searcher aways memory maps the
entire fie and Universa Code Grep aways reads the entire contents of the
fie into memory. The atter approach can refer back to the fieʼs contents in

memory when doing the actua printing, where as neither git grep nor

ripgrep can do that.

Methodoogy

Overview

Coming up with a good and fair benchmark is hard, and I have assuredy
made some mistakes in doing so. In particuar, there are so many variabes
to contro for that testing every possibe permutation isnʼt feasibe. This
means that the benchmarks Iʼm presenting here are curated, and, given that
I am the author of one of the toos in the benchmark, they are therefore aso
biased. Nevertheess, even if I fai in my effort to provide a fair benchmark
suite, I do hope that some of you may find my anaysis interesting, which
wi try to expain the resuts in each benchmark. The anaysis is in turn
heaviy biased toward expaining my own work, since that is the
impementation Iʼm most famiiar with. I have, however, read at east part of
the source code of every too I benchmark, incuding their underying regex
engines.

In other words, Iʼm pretty confident that Iʼve gotten the detais correct, but I
coud have missed something in the bigger picture. Because of that, etʼs go
over some important insights that guided construction of this benchmark.

• Focus on the probem that an end user is trying to sove. For exampe,
we spit the entire benchmark in two: one for searching a arge
directory of fies and one for searching a singe arge fie. The former
might correspond to an end user searching their code whie the atter
might correspond to an end user searching ogs. As we wi see, these
two use cases have markedy different performance characteristics. A
too that is good at one isnʼt necessariy good at the other. The
premise of ripgrep is that it is possibe to be good at both!

• Appy end user probems more granuary as we. For exampe, most
searches resut in few hits reative to the corpus searched, so prefer
benchmarks that report few matches. Another exampe: I hypothesize,
based on my own experience, that most searches use patterns that are
simpe iteras, aternations or very ight regexes, so bias the
benchmarks towards those types of patterns.

• Amost every search too has sighty different defaut behavior, and
these behaviora changes can have an impact on performance. There is
some vaue in ooking at “out-of-the-boxˮ performance, and we
therefore do ook at a benchmark for that, but stopping there is a bit
unsatisfying. If our goa is to do a fair comparison, then we need to at
east try to convince each too to do roughy the same work, from the
perspective of an end user. A good exampe of this is reporting ine
numbers. Some toos donʼt provide a way of disabing ine counting, so

when doing comparisons between toos that do, we need to expicity
enabe ine numbers. This is important, because counting ines can be
quite costy! A good non-exampe of this is if one too uses memory
maps and another uses an intermediate buffer. This is an
impementation choice, and not one that aters what the user actuay
sees, therefore comparing those two impementation choices in a
benchmark is competey fair (assuming an anaysis that points it out).

With that out of the way, etʼs get into the nitty gritty. First and foremost,
what toos are we benchmarking?

• ripgrep (rg) (v0.1.2) - Youʼve heard enough about this one aready.
• GNU grep (v2.25) - Oʼ reiabe.
• git grep (v2.7.4) - Like grep, but buit into git. Ony works we in git

repositories.
• The Siver Searcher (ag) (commit cda635, using PCRE 8.38 - Like ack,

but written in C and much faster. Reads your .gitignore fies just ike
ripgrep.

• Universa Code Grep (ucg) (commit 487bfb, using PCRE 10.21 with the
JIT enabed) - Aso ike ack but written in C, and ony searches fies
from a whiteist, and doesnʼt support reading .gitignore.

• The Patinum Searcher (pt) (commit 509368) - Written in Go and does
support .gitignore fies.

• sift (commit 2d175c) - Written in Go and supports .gitignore fies
with an optiona fag, but generay prefers searching everything (unike
every other too in this ist except for grep).

Notaby absent from this ist is ack. I chose not to benchmark it because, at

the time of writing, ack was much sower than the other toos in this ist.
However, ack 3 is now in beta and incudes some performance
improvements, sometimes decreasing search times by haf.

Benchmark runner

The benchmark runner is a Python program (requires at east Python 3.5)
that you can use to not ony run the benchmarks themseves, but downoad
the corpora used in the benchmarks as we. The script is caed

benchsuite and is in the ripgrep repository. You can use it ike so:

$ git clone git://github.com/BurntSushi/ripgrep
$ cd ripgrep/benchsuite

https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep
https://www.gnu.org/software/grep/
https://www.gnu.org/software/grep/
https://www.kernel.org/pub/software/scm/git/docs/git-grep.html
https://www.kernel.org/pub/software/scm/git/docs/git-grep.html
https://github.com/ggreer/the_silver_searcher
https://github.com/ggreer/the_silver_searcher
https://github.com/gvansickle/ucg
https://github.com/gvansickle/ucg
https://github.com/monochromegane/the_platinum_searcher
https://github.com/monochromegane/the_platinum_searcher
https://github.com/svent/sift
https://github.com/svent/sift
https://beyondgrep.com/ack3/
https://beyondgrep.com/ack3/
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/benchsuite

WARNING! This downloads several GB of data, and builds the Linux kernel.
This took about 15 minutes on a high speed connection.
Tip: try `--download subtitles-ru` to grab the smallest corpus, but you'll
be limited to running benchmarks for only that corpus.
$./benchsuite --dir /path/to/data/dir --download all
List benchmarks available.
$./benchsuite --dir /path/to/data/dir --list
Run a benchmark.
Omit the benchmark name to run all benchmarks. The full suite can take arou
30 minutes to complete on default settings and 120 minutes to complete with
--warmup-iter 3 --bench-iter 10.
$./benchsuite --dir /path/to/data/dir '^subtitles_ru_literal$'

If you donʼt have a of the code search toos used in the benchmarks, then

pass --allow-missing to give benchsuite permission to skip running

them. To save the raw data (the timing for every command run), pass --raw
/path/to/raw.csv.

The benchmark runner tries to do a few basic things for us to hep reduce
the chance that we get miseading data:

• Every benchmarked command is run three times before being
measured as a “warm up.ˮ Specificay, this is to ensure that the
corpora being searched is aready in the operating systemʼs page
cache. If we didnʼt do this, we might end up benchmarking disk I/O,
which is not ony uninteresting for our purposes, but is probaby not a
common end user scenario. Itʼs more ikey that youʼ be executing ots
of searches against the same corpus (at east, I know I do).

• Every benchmarked command is run ten times, with a timing recorded
for each run. The fina “resutˮ of that command is its distribution (mean
+/- standard deviation). If I were a statistician, I coud probaby prove
that ten sampes is insufficient. Nevertheess, getting more sampes
takes more time, and for the most part, the variance is very ow.

Each individua benchmark definition is responsibe for making sure each
command is trying to do simiar work as other commands weʼre comparing it
to. For exampe, we need to be carefu to enabe and disabe Unicode
support in GNU grep where appropriate, because fu Unicode handing can
make GNU grep run very sowy. Within each benchmark, there are often
mutipe variabes of interest. To account for this, Iʼve added abes ike

(ASCII) or (whitelist) where appropriate. Weʼ dig into those abes in
more detai ater.

Pease aso fee encouraged to add your own benchmarks if youʼd ike to
pay around. The benchmarks are in the top-haf of the fie, and it shoud be
fairy straight-forward to copy & paste another benchmark and modify it.
Simpy defining a new benchmark wi make it avaiabe. The second haf of
the script is the runner itsef and probaby shoudnʼt need to be modified.

Environment

The actua environment used to run the benchmarks presented in this artice

was a c3.2xlarge instance on Amazon EC2. It ran Ubuntu 16.04, had a
Xeon E52680 2.8 GHz CPU, 16 GB of memory and an 80 GB SSD (on which
the corpora was stored). This was enough memory to fit a of the corpora in
memory. The box was specificay provisioned for the purpose of running
benchmarks, so it was not doing anything ese.

The fu og of system setup and commands I used to insta each of the
search toos and run benchmarks can be found here. I aso captured the
output of the bench runner SPOILER ALERT) and the raw output, which
incudes the timings, fu set of command ine arguments and any
environment variabes set for every command run in every benchmark.

Code search benchmarks

This is the first haf of our benchmarks, and corresponds to an end user
trying to search a arge repository of code for a particuar pattern.

The corpus used for this benchmark is a buit checkout of the Linux kerne,

specificay commit d0acc7. We actuay buid the Linux kerne because the
process of buiding the kerne eaves a ot of garbage in the repository that
you probaby donʼt want to search. This can infuence not ony the
reevance of the resuts returned by a search too, but the performance as
we.

A benchmarks run in this section were run in the root of the repository.
Remember, you can see the fu raw resuts of each command if you ike.
The benchmark names correspond to the headings beow.

https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/README.SETUP
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/README.SETUP
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/summary
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/summary
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv

Note that since these benchmarks were run on an EC2 instance, which uses
a VM, which in turn can penaize search toos that use memory maps, Iʼve
aso recorded benchmarks on my oca machine. My oca machine is an
Inte i76900K 3.2 GHz, 16 CPUs, 64 GB memory and an SSD. Youʼ notice

that ag does a ot better (but sti worse than rg) on my machine. Lest you

think Iʼve chosen resuts from the EC2 machine because they paint rg more

favoraby, rest assured that I havenʼt. Namey, rg wins every singe

benchmark on my oca machine except for one, where as rg is beat out just
sighty by a few toos on some benchmarks on the EC2 machine.

Without further ado, etʼs start ooking at benchmarks.

linux_literal_default

Description: This benchmark compares the time it takes to execute a simpe
itera search using each tooʼs defaut settings. This is an intentionay unfair
benchmark meant to highight the differences between toos and their “out-
of-the-boxˮ settings.

Pattern: PM_RESUME

rg 0.349 +/- 0.104 (lines: 16)
ag 1.589 +/- 0.009 (lines: 16)
ucg 0.218 +/- 0.007 (lines: 16)*+
pt 0.462 +/- 0.012 (lines: 16)
sift 0.352 +/- 0.018 (lines: 16)
git grep 0.342 +/- 0.005 (lines: 16)

• * - Best mean time.
• + - Best sampe time.
• rg == ripgrep, ag == The Silver Searcher, ucg == Universal
Code Grep, pt == The Platinum Searcher

Anaysis: Weʼ first start by actuay describing what each too is doing:

• rg respects the Linux repoʼs .gitignore fies (of which there are
178!) of them), and skips hidden and binary fies. rg does not count
ines.

• ag has the same defaut behavior as rg, except it counts ines.

https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-22-archlinux-cheetah/summary
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-22-archlinux-cheetah/summary

• ucg aso counts ines, but does not attempt to read .gitignore fies.
Instead, it ony searches fies from an (extensibe) whiteist according
to a set of gob rues. For exampe, both rg and ag wi search fs/
jffs2/README.Locking whie ucg wonʼt, because it doesnʼt recognize
the Locking extension. A search too probaby shoud search that fie,
athough it does not impact the resuts of this specific benchmark.)

• pt has the same defaut behavior as ag.
• sift searches everything, incuding binary fies and hidden fies. It

shoud be equivaent to grep -r, for exampe. It aso does not count
ines.

• git grep shoud have the same behavior at rg, and simiary does not
count ines. Note though that git grep has a specia advantage: it
does not need to traverse the directory hierarchy. It can discover the
set of fies to search straight from its git index.

The high-order bit to extract from this benchmark is that a naive comparison
between search toos is competey unfair from the perspective of
performance, but is reay important if you care about the reevance of

resuts returned to you. sift, ike grep -r, wi throw everything it can
back at you, which is totay at odds with the phiosophy behind every other
too in this benchmark: ony return resuts that are probaby reevant. Things

inside your .git probaby arenʼt, for exampe. This isnʼt to say that siftʼs
phiosophy is wrong. The too is ceary intended to be configured by an end
user to their own tastes, which has its own pros and cons.)

With respect to performance, there are two key variabes to pay attention to.
They wi appear again and again throughout our benchmark:

• Counting ines can be quite expensive. A naive soution—a oop over
every byte and comparing it to a \n—wi be quite sow for exampe.
Universa Code Grep counts ines using SIMD and ripgrep counts
ines using packed comparisons 16 bytes at a time). However, in the
Linux code search benchmarks, because the size of each individua fie
is very sma and the number of matches is tiny compared to the corpus
size, the time spent counting ines tends to not be so significant.
Especiay since every too in this benchmark paraeizes search to
some degree. When we get to the singe-fie benchmarks, this variabe
wi become much more pertinent.

• Respecting .gitignore fies incurs some amount of overhead. Even
though respecting .gitignore reduces the number of fies searched,
it can be sower overa to actuay read the patterns, compie them and

https://github.com/gvansickle/ucg/blob/8bbebc002bbf112d147928f89677cba703d007bb/src/FileScanner_sse4_2.cpp#L190
https://github.com/gvansickle/ucg/blob/8bbebc002bbf112d147928f89677cba703d007bb/src/FileScanner_sse4_2.cpp#L190
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549
https://github.com/BurntSushi/ripgrep/blob/919c5c72994edb378706594f6268542983eeee6d/src/search_stream.rs#L549

match them against every path than to just search every fie. This is
precisey how ucg soundy beats ripgrep in this benchmark. We wi
contro for this variabe in future benchmarks.) In other words,
respecting .gitignore is a feature that improves reevance first and
foremost. It is stricty a bonus if it aso happens to improve
performance.

The specific reasons why supporting .gitignore eads to a sower overa
search are:

• Every directory descended requires ooking for a corresponding
.gitignore. Mutipy the number of cas if you support additiona
ignore fies, ike both The Siver Searcher and ripgrep do. The Linux
kerne repository has 4,640 directories. 178 of them have .gitignore
fies.

• Each .gitignore fie needs to be compied into something that can
match fie paths. Both The Siver Searcher and ripgrep use tricks to
make this faster. For exampe, simpe patterns ike /vmlinux or *.o
can be matched using simpe itera comparisons or by ooking at the
fie extension of a candidate path and comparing it directy. For more
compex patterns ike *.c.[012]*.*, a fu gob matcher needs to be
used. The Siver Searcher uses fnmatch whie ripgrep transates a
such gobs into a singe reguar expression which can be matched
against a singe path a at once. Doing a this work takes time.

• Unike ag, rg wi try to support the fu semantics of a .gitignore fie.
This means finding every ignore pattern that matches a fie path and
giving precedent to the most recenty defined pattern. ag wi bai on
the first match it sees.

• Actuay matching a path has non-trivia overhead that must be paid for
every path searched. The compiation phase described above is
compex precisey for making this part faster. We try to stay out of the
regex machinery as best we can, but we canʼt avoid it competey.

In contrast, a whiteist ike the one used by ucg is comparativey easy to
make fast. The set of gobs is known upfront, so no additiona checks need
to be made whie traversing the fie tree. Moreover, the gobs tend to be of

the *.ext variety, which fa into the bucket of gobs that can be matched
efficienty just by ooking at the extension of a fie path.

The downside of a whiteist is obvious: you might end up missing search

resuts simpy because ucg didnʼt know about a particuar fie extension.

You coud aways teach ucg about the fie extension, but youʼre sti bind to

“unknown unknownsˮ (i.e., fies that you probaby want to search but didnʼt
know upfront that you needed to).

linux_literal

Description: This benchmark runs the same query as in the

linux_literal_default benchmark, but we try to do a fair comparison.

In particuar, we run ripgrep in two modes: one where it respects

.gitignore fies (corresponding to the (ignore) abe) and one where it

uses a whiteist and doesnʼt respect .gitignore (corresponding to the

(whitelist) abe). The former mode is comparabe to ag, pt, sift and

git grep, whie the atter mode is comparabe to ucg. We aso run rg a
third time by expicity teing it to use memory maps for search, which

matches the impementation strategy used by ag. sift is run such that it

respects .gitignore fies and excudes binary, hidden and PDF fies. A

commands executed here count ines, because some commands (ag and

ucg) donʼt support disabing ine counting.

Pattern: PM_RESUME

rg (ignore) 0.334 +/- 0.053 (lines: 16)
rg (ignore) (mmap) 1.611 +/- 0.009 (lines: 16)
ag (ignore) (mmap) 1.588 +/- 0.011 (lines: 16)
pt (ignore) 0.456 +/- 0.025 (lines: 16)
sift (ignore) 0.630 +/- 0.004 (lines: 16)
git grep (ignore) 0.345 +/- 0.007 (lines: 16)
rg (whitelist) 0.228 +/- 0.042 (lines: 16)+
ucg (whitelist) 0.218 +/- 0.007 (lines: 16)*

• * - Best mean time.
• + - Best sampe time.

Anaysis: We have a ton of ground to cover on this one.

First and foremost, the (ignore) vs. (whitelist) variabes have a cear

impact on the performance of rg. We wonʼt rehash a the detais from the

anaysis in linux_literal_default, but switching rg into its whiteist

mode brings it into a dead heat with ucg.

https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default
https://burntsushi.net/ripgrep/#linux-literal-default

Secondy, ucg is just as fast as ripgrep and git grep (ignore) is just as

fast as rg (ignore), even though Iʼve said that ripgrep is the fastest. It

turns out that ucg, git grep and rg are pretty eveny matched when
searching for pain iteras in arge repositories. We wi see a stronger

separation in ater benchmarks. Sti, what makes ucg fast?

• ucg reads the entire fie into memory before searching it, which means
it avoids the memory map probem described beow. On a code
repository, this approach works we, but it comes with a steep price in
the singe-fie benchmarks.

• It has a fast expicity SIMD based ine counting agorithm. ripgrep has
something simiar, but reies on the compier for autovectorization.

• ucg uses PCRE2ʼs JIT, which is insaney fast. In my own very rough
benchmarks, PCRE2ʼs JIT is one of the few genera purpose regex
engines that is competitive with Rustʼs regex engine (on regexes that
donʼt expose PCREʼs exponentia behavior due to backtracking, since
Rustʼs regex engine doesnʼt suffer from that weakness).

• ucg paraeizes directory traversa, which is something that ripgrep
doesnʼt do. ucg has it a bit easier here because it doesnʼt support
.gitignore fies. Paraeizing directory traversa whie maintaining
state for .gitignore fies in a way that scaes isnʼt a probem Iʼve
figured out how to ceany sove yet.

What about git grep? A key performance advantage of git grep is that it
doesnʼt need to wak the directory tree, which can save it quite a bit of time.
Its regex engine is aso quite fast, and works simiary to GNU grepʼs, RE2
and Rustʼs regex engine (i.e., it uses a DFA.

Both sift and pt perform amost as we as ripgrep. In fact, both sift
and pt do impement a parae recursive directory traversa whie sti

respecting .gitignore fies, which is ikey one reason for their speed. As
we wi see in future benchmarks, their speed here is miseading. Namey,
they are fast because they stay outside of Goʼs regexp engine since the
pattern is a itera. There wi be more discussion on this point ater.)

Finay, whatʼs going on with The Siver Searcher? Is it reay that much
sower than everything ese? The key here is that its use of memory maps is
making it sower, not faster (in direct contradiction to the caims in its
README.

OK, etʼs pause and pop up a eve to tak about what this actuay means.

First, we need to consider how these search toos fundamentay work.
Generay speaking, a search too ike this has two ways of actuay
searching fies on disk:

�It can memory map the fie and search the entire fie a at once as if it
were a singe contiguous region of bytes in memory. The operating
system does the work behind the scenes to make a fie ook ike a
contiguous region of memory. This particuar approach is reay
convenient when comparing it to the aternative described next.

�… or it can aocate an intermediate buffer, read a fixed size bock of
bytes from the fie into it, search the buffer and then repeat the
process. This particuar approach is absoutey ghouish to impement,
because you need to account for the fact that a buffer may end in the
midde of the ine. You aso need to account for the fact that a singe
ine may exceed the size of your buffer. Finay, if youʼre going to
support showing the ines around a match (its “contextˮ) as both grep
and ripgrep do, then you need to do additiona bookkeeping to make
sure any ines from a previous buffer are printed even if a match occurs
at the beginning of the next bock read from the fie.

Naivey, it seems ike 1) woud be obviousy faster. Surey, a of the
bookkeeping and copying in 2) woud make it much sower! In fact, this is
not at a true. 1) may not require much bookkeeping from the perspective
of the programmer, but there is a ot of bookkeeping going on inside the
Linux kerne to maintain the memory map. That ink goes to a maiing ist
post that is quite od, but it sti appears reevant today.)

When I first started writing ripgrep, I used the memory map approach. It
took me a ong time to be convinced enough to start down the second path
with an intermediate buffer (because neither a CPU profie nor the output of

strace ever showed any convincing evidence that memory maps were to
bame), but as soon as I had a prototype of 2) working, it was cear that it
was much faster than the memory map approach.

With a that said, memory maps arenʼt a bad. They just happen to be bad
for the particuar use case of “rapidy open, scan and cose memory maps
for thousands of sma fies.ˮ For a different use case, ike, say, “open this
arge fie and search it once,ˮ memory maps turn out to be a boon. Weʼ see
that in action in our singe-fie benchmarks ater.

The key datapoint that supports this concusion is the comparison between

http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html
http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html
http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html
http://lkml.iu.edu/hypermail/linux/kernel/0004.0/0728.html

rg (ignore) and rg (ignore) (mmap). In particuar, this contros for
everything except for the search strategy and fairy concusivey points right
at memory maps as the probem.

With a that said, the performance of memory maps is very dependent on

your environment, and the absoute difference between rg (ignore) and

ag (ignore) (mmap) can be miseading. In particuar, since these

benchmarks were run on an EC2 c3.2xlarge, we were probaby inside a
virtua machine, which coud feasiby impact memory map performance. To
test this, I ran the same benchmark on my machine under my desk Inte
i76900K 3.2 GHz, 16 CPUs, 64 GB memory, SSD) and got these resuts:

rg (ignore) 0.156 +/- 0.006 (lines: 16)
rg (ignore) (mmap) 0.397 +/- 0.013 (lines: 16)
ag (ignore) (mmap) 0.444 +/- 0.016 (lines: 16)
pt (ignore) 0.159 +/- 0.008 (lines: 16)
sift (ignore) 0.344 +/- 0.002 (lines: 16)
git grep (ignore) 0.195 +/- 0.023 (lines: 16)
rg (whitelist) 0.108 +/- 0.005 (lines: 16)*+
ucg (whitelist) 0.165 +/- 0.005 (lines: 16)

rg (ignore) sti soundy beats ag, and our memory map concusions

above are sti supported by this data, but the difference between rg
(ignore) and ag (ignore) (mmap) has narrowed quite a bit!

linux_literal_casei

Description: This benchmark is ike linux_literal, except it asks the
search too to perform a case insensitive search.

Pattern: PM_RESUME (with the -i fag set)

rg (ignore) 0.345 +/- 0.073 (lines: 370)
rg (ignore) (mmap) 1.612 +/- 0.011 (lines: 370)
ag (ignore) (mmap) 1.609 +/- 0.015 (lines: 370)
pt (ignore) 17.204 +/- 0.126 (lines: 370)
sift (ignore) 0.805 +/- 0.005 (lines: 370)
git grep (ignore) 0.343 +/- 0.007 (lines: 370)

https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal

rg (whitelist) 0.222 +/- 0.021 (lines: 370)+
ucg (whitelist) 0.217 +/- 0.006 (lines: 370)*

• * - Best mean time.
• + - Best sampe time.

Anaysis: The biggest change from the previous benchmark is that pt got
an order of magnitude sower than the next sowest too.

So why did pt get so sow? In particuar, both sift and pt use Goʼs regexp
package for searching, so why did one perish whie the other ony got

sighty sower? It turns out that when pt sees the -i fag indicating case

insensitive search, it wi force itsef to use Goʼs regexp engine with the i
fag set. So for exampe, given a CLI invocation of pt -i foo, it wi

transate that to a Go regexp of (?i)foo, which wi hande the case
insensitive search.

On the other hand, sift wi notice the -i fag and take a different route.

sift wi owercase both the pattern and every bock of bytes it searches.

This fiter over a the bytes searched is ikey the cause of siftʼs
performance drop from the previous linux_literal benchmark. Itʼs worth
pointing out that this optimization is actuay incorrect, because it ony
accounts for ASCII case insensitivity, and not fu Unicode case insensitivity,

which pt gets by virture of Goʼs regexp engine.)

But sti, is Goʼs regexp engine reay that sow? Unfortunatey, yes, it is.
Whie Goʼs regexp engine takes worst case inear time on a searches (and
is therefore exponentiay faster than even PCRE2 for some set of regexes
and corpora), its actua impementation hasnʼt quite matured yet. Indeed,
every fast regex engine based on finite automata that Iʼm aware of
impements some kind of DFA engine. For exampe, GNU grep, Googeʼs RE2
and Rustʼs regex ibrary a do this. Goʼs does not (but there is work in

progress to make this happen, so perhaps pt wi get faster on this
benchmark without having to do anything at a!.

There is one other thing worth noting here before moving on. Namey, that

rg, ag, git grep and ucg didnʼt noticeaby change much from the previous
benchmark. Shoudnʼt a case insensitive search incur some kind of
overhead? The answer is compicated and actuay requires more

https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal

knowedge of the underying regex engines than I have. Thankfuy, I can at
east answer it for Rustʼs regex engine.

The key insight is that a case insensitive search for PM_RESUME is precisey
the same as a case sensitive search of the aternation of a possibe case

agnostic versions of PM_RESUME. So for exampe, it might start ike:

PM_RESUME|pM_RESUME|Pm_RESUME|PM_rESUME|... and so on. Of
course, the fu aternation, even for a sma itera ike this, woud be quite
arge. The key is that we can extract a sma prefix and enumerate a of its
combinations quite easiy. In this case, Rustʼs regex engine figures out this

aternation (which you can see by passing --debug to rg and examining

stderr):

PM_RE
PM_Re
PM_rE
PM_re
Pm_RE
Pm_Re
Pm_rE
Pm_re
pM_RE
pM_Re
pM_rE
pM_re
pm_RE
pm_Re
pm_rE
pm_re

Rest assured that Unicode support is baked into this process. For exampe,

a case insensitive search for S woud yied the foowing iteras: S, s and ſ.)

Now that we have this aternation of iteras, what do we do with them? The
cassica answer is to compie them into a DFA (perhaps Aho-Corasick), and
use it as a way to quicky skip through the search text. A match of any of the
iteras woud then cause the regex engine to activate and try to verify the
match. This way, we arenʼt actuay running the entire search text through

https://github.com/BurntSushi/aho-corasick
https://github.com/BurntSushi/aho-corasick

the regex engine, which coud be quite a bit sower.

But, Rustʼs regex engine doesnʼt actuay use Aho-Corasick for this. When
SIMD acceeration is enabed (and you can be sure it is for these
benchmarks, and for the binaries I distribute), a specia mutipe pattern
search agorithm caed Teddy is used. The agorithm is unpubished, but
was invented by Geoffrey Langdae as part of Inteʼs Hyperscan regex
ibrary. The agorithm works roughy by using packed comparisons of 16
bytes at a time to find candidate ocations where a itera might match. I
adapted the agorithm from the Hyperscan project to Rust, and incuded an
extensive write up in the comments if youʼre interested.

Whie Teddy doesnʼt buy us much over other toos in this particuar
benchmark, we wi see much arger wins in ater benchmarks.

linux_word

Description: This benchmarks the PM_RESUME itera again, but adds the -w
fag to each too. The -w fag has the foowing behavior: a matches
reported must be considered “words.ˮ That is, a “wordˮ is something that
starts and ends at a word boundary, where a word boundary is defined as a
position in the search text that is adjacent to both a word character and a
non-word character.

Pattern: PM_RESUME (with the -w fag set)

rg (ignore) 0.362 +/- 0.080 (lines: 6)
ag (ignore) 1.603 +/- 0.009 (lines: 6)
pt (ignore) 14.417 +/- 0.144 (lines: 6)
sift (ignore) 7.840 +/- 0.123 (lines: 6)
git grep (ignore) 0.341 +/- 0.005 (lines: 6)
rg (whitelist) 0.220 +/- 0.026 (lines: 6)*+
ucg (whitelist) 0.221 +/- 0.007 (lines: 6)

• * - Best mean time.
• + - Best sampe time.

Anaysis: Not much has changed between this benchmark and the previous

linux_literal or linux_literal_casei benchmarks. The most

https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

important thing to note is that most search toos hande the -w fag just fine
without any noticeabe drop in performance. There are two additiona things
Iʼd ike to note.

rg is searching with Unicode aware word boundaries where as the rest of

the toos are using ASCII ony word boundaries. (git grep can be made to
use Unicode word boundaries by adjusting your systemʼs ocae settings. In
this benchmark, we force it to use ASCII word boundaries.)

sift and pt are the ony toos that gets noticeaby sower in this benchmark
compared to previous benchmarks. The reason is the same as the reason

why pt got noticeaby sower in the linux_literal_casei benchmark:

both pt and sift are now aso bottenecked on Goʼs regexp ibrary. pt and

sift coud do a itte better here by staying out of Goʼs regexp ibrary and

searching for the PM_RESUME itera, and then ony confirming whether the

match corresponds to a word boundary after it found a hit for PM_RESUME.
This sti might use Goʼs regexp ibrary, but in a much more imited form.

linux_unicode_word

Description: This benchmarks a simpe query for a prefixed forms of the
“amp-hourˮ Ah unit of measurement. For exampe, it shoud show things

ike mAh (for miiamp-hour) and µAh (for microamp-hour). It is particuary

interesting because the second form starts with µ, which is part of a

Unicode aware \w character cass, but not an ASCII-ony \w character cass.

We again continue to contro for the overhead of respecting .gitignore
fies.

Pattern: \wAh

rg (ignore) 0.355 +/- 0.073 (lines: 186)
rg (ignore) (ASCII) 0.329 +/- 0.060 (lines: 174)
ag (ignore) (ASCII) 1.774 +/- 0.011 (lines: 174)
pt (ignore) (ASCII) 14.180 +/- 0.180 (lines: 174)
sift (ignore) (ASCII) 11.087 +/- 0.108 (lines: 174)
git grep (ignore) 13.045 +/- 0.008 (lines: 186)
git grep (ignore) (ASCII) 2.991 +/- 0.004 (lines: 174)
rg (whitelist) 0.235 +/- 0.031 (lines: 180)

https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

rg (whitelist) (ASCII) 0.225 +/- 0.023 (lines: 168)*+
ucg (ASCII) 0.229 +/- 0.007 (lines: 168)

• * - Best mean time.
• + - Best sampe time.

Anaysis: In this benchmark, weʼve introduced a new variabe: whether or
not to enabe Unicode support in each too. Searches that are Unicode
aware report sighty more matches that are missed by the other ASCII ony
searches.

Of a the toos here, the ony ones that support Unicode togging are rg and

git grep. rgʼs Unicode support can be togged by setting a fag in the

pattern itsef (e.g., \w is Unicode aware whie (?-u)\w is not), and git
grepʼs Unicode suport can be togged by setting the LC_ALL environment

variabe (where en_US.UTF-8 is one way to enabe Unicode support and C
forces it to be ASCII. More generay, git grepʼs Unicode support is

supposed to ine up with your systemʼs ocae settings—setting LC_ALL is a
bit of a hack.

It gets a itte worse than that actuay. Not ony are rg and git grep the
ony ones to support togging Unicode, but they are the ony ones to support

Unicode at a. ag, pt, sift and ucg wi a force you to use the ASCII ony

\w character cass. For pt and sift in particuar, Goʼs regexp ibrary

doesnʼt have the abiity to treat \w as Unicode aware. For ag and ucg, which

use PCRE, \w coud be made Unicode aware with a fag sent to PCRE.
Neither too exposes that functionaity though.)

The key resut to note here is that whie git grep suffers a major

performance hit for enabing Unicode support, ripgrep hums aong just

fine with no noticeabe oss in performance, even though both rg
(ignore) and git grep (ignore) report the same set of resuts.

As in the previous benchmark, both pt and sift coud do better here by

searching for the Ah itera, and ony using Goʼs regexp ibrary to verify a
match.)

Looking at the benchmark resuts, I can think of two important questions to
ask:

�Why is git grep (ignore) (ASCII) so much sower than rg
(ignore) (ASCII)? And whie the two arenʼt directy comparabe, itʼs
aso a ot sower than ucg (ASCII).

�How is rg (ignore) (which is Unicode aware) just as fast as rg
(ignore) (ASCII)?

I actuay donʼt have a great answer for 1. In the case of rg at east, it wi

extract the Ah itera suffix from the regex and use that to find candidate

matches before running the \w prefix. Whie GNU grep has sophisticated

itera extraction as we, it ooks ike git grep doesnʼt go to simiar engths
to extract iteras. Iʼm arriving at this concusion after skimming the source

of git grep, so I coud be wrong.)

In the case of ucg, itʼs ikey that PCRE2 is doing a simiar itera optimization

that rg is doing.

2) is fortunatey much easier to answer. The trick is not inside of rg, but
inside its regex ibrary. Namey, the regex engine buids UTF8 decoding
into its finite state machine. This is a trick that is originay attributed to Ken
Thompson, but was more carefuy described by Russ Cox. To read more

about how this is achieved in Rustʼs regex engine, pease see the utf8-
ranges ibrary.) The reason why this is fast is because there is no extra
decoding step required. The regex can be matched directy against UTF8
encoded byte strings one byte at a time. Invaid UTF8 doesnʼt pose any
probems: the finite automaton simpy wonʼt match it because it doesnʼt
recognize it.

In contrast, git grep (and GNU grep) have a competey separate path in
their core matching code for handing Unicode aware features ike this. To

be fair, git grep can hande text encodings other than UTF8, where as rg
is imited to UTF8 (or otherwise “ASCII compatibeˮ text encodings) at the
moment.

linux_re_literal_suffix

Description: This benchmarks a simpe regex pattern that ends with a

itera. We continue to contro for the overhead of respecting .gitignore
fies.

Pattern: [A-Z]+_RESUME

https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges
https://docs.rs/utf8-ranges

rg (ignore) 0.318 +/- 0.034 (lines: 1652)
ag (ignore) 1.899 +/- 0.008 (lines: 1652)
pt (ignore) 13.713 +/- 0.241 (lines: 1652)
sift (ignore) 10.172 +/- 0.186 (lines: 1652)
git grep (ignore) 1.108 +/- 0.004 (lines: 1652)
rg (whitelist) 0.221 +/- 0.022 (lines: 1630)*+
ucg (whitelist) 0.301 +/- 0.001 (lines: 1630)

• * - Best mean time.
• + - Best sampe time.

Anaysis: This benchmark doesnʼt revea anything particuary new that we

havenʼt aready earned from previous benchmarks. In particuar, both rg
and ucg continue to be competitive, pt and sift are getting bottenecked

by Goʼs regexp ibrary and git grep has a sow down simiar to the one

observed in linux_unicode_word. My hypothesis for that sow down

continues to be that git grep is missing the itera optimization.) Finay, ag
continues to be hed back by its use of memory maps.

rg, and amost assuredy ucg (by virtue of PCRE2, are picking on the

_RESUME itera suffix and searching for that instead of running the regex
over the entire search text. This expains why both toos are abe to maintain

their speed even as the pattern gets sighty more compex. rg does seem to

sighty edge out ucg here, which might be attributabe to differences in how
each underying regex ibrary does itera search.

linux_alternates

Description: This benchmarks an aternation of four iteras. The iteras
were specificay chosen to start with four distinct bytes to make it harder to
optimize.

Pattern: ERR_SYS|PME_TURN_OFF|LINK_REQ_RST|CFG_BME_EVT

rg (ignore) 0.351 +/- 0.074 (lines: 68)
ag (ignore) 1.747 +/- 0.005 (lines: 68)
git grep (ignore) 0.501 +/- 0.003 (lines: 68)
rg (whitelist) 0.216 +/- 0.031 (lines: 68)+

https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word

ucg (whitelist) 0.214 +/- 0.008 (lines: 68)*

• * - Best mean time.
• + - Best sampe time.
• We drop pt and sift from this benchmark and the next one for

expediency. In this benchmark and in a few previous benchmarks, they
have been hovering around an order of magnitude sower than the next
sowest too. Neither get any better as the compexity of our patterns
increase.

Anaysis: Yet again, both rg and ucg maintain high speed even as the
pattern grows beyond a simpe itera. In this case, there isnʼt any one
particuar itera that we can search to find match candidates quicky, but a
good reguar expression engine can sti find ways to speed this up.

For rg in particuar, it sees the four iteras and diverts to the Teddy mutipe

pattern SIMD agorithm (as described in the linux_literal_casei
benchmark). In fact, for this particuar pattern, Rustʼs core regex engine is
never used at a. Namey, it notices that a itera match of any of the
aternates corresponds to an overa match of the pattern, so it can
competey skip the verification step. This makes searching aternates of
iteras very fast.

linux_alternates_casei

Description: This benchmark is precisey the same as the

linux_alternates benchmark, except we make the search case

insensitive by adding the -i fag. Note that git grep is run under ASCII
mode, in order to give it every chance to be fast.

Pattern: ERR_SYS|PME_TURN_OFF|LINK_REQ_RST|CFG_BME_EVT (with the

-i fag set)

rg (ignore) 0.391 +/- 0.078 (lines: 160)
ag (ignore) 1.968 +/- 0.009 (lines: 160)
git grep (ignore) 2.018 +/- 0.006 (lines: 160)
rg (whitelist) 0.222 +/- 0.001 (lines: 160)*+
ucg (whitelist) 0.522 +/- 0.002 (lines: 160)

https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates

• * - Best mean time.
• + - Best sampe time.

Anaysis: The case insensitive fag causes quite a bit of separation, reative

to the previous linux_alterates benchmark. For one, git grep gets over

4 times sower. Even ucg gets twice as sow. Yet, rg continues to maintain
its speed!

The secret continues to be the Teddy agorithm, just as in the

linux_alternates benchmark. The trick ies in how we transform an
aternation of case insensitive iteras into a arger aternation that the Teddy
agorithm can actuay use. In fact, it works exacty how it was described in

the linux_literal_casei benchmark: we enumerate a possibe
aternations of each itera that are required for case insensitive match.
Since that can be quite a arge number, we imit ourseves to a sma number
of prefixes from that set that we can enumerate. In this case, we use the

foowing prefixes (which can be seen by running rg with the --debug fag):

CFG_
CFg_
CfG_
Cfg_
ERR_
ERr_
ErR_
Err_
LIN
LIn
LiN
Lin
PME_
PMe_
PmE_
Pme_
cFG_
cFg_
cfG_
cfg_

https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-alternates
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

eRR_
eRr_
erR_
err_
lIN
lIn
liN
lin
pME_
pMe_
pmE_
pme_

We feed these iteras to the Teddy agorithm, which wi quicky identify
candidate matches in the search text. When a candidate match is found, we
need to verify it since a match of a prefix doesnʼt necessariy mean the
entire pattern matches. It is ony at that point that we actuay invoke the fu
regex engine.

linux_unicode_greek

Description: This benchmarks usage of a particuar Unicode feature that
permits one to match a certain cass of codepoints defined in Unicode. Both
Rustʼs regex engine and Goʼs regex engine support this nativey, but none of
the other toos do.

Pattern: \p{Greek} (matches any Greek symbo)

rg 0.414 +/- 0.021 (lines: 23)*+
pt 12.745 +/- 0.166 (lines: 23)
sift 7.767 +/- 0.264 (lines: 23)

• * - Best mean time.
• + - Best sampe time.

Anaysis: This one is pretty simpe. rg compies \p{Greek} into a

deterministic finite state machine whie Go (used in pt and sift) wi aso
use a finite state machine, but it is a nondeterministic simuation. The core

difference between the two approaches is that the former is ony ever in one
state at any point in time, whie the atter must constanty keep track of a
the different states it is in.

linux_unicode_greek_casei

Description: This benchmark is just ike the linux_unicode_greek
benchmark, except it makes the search case insensitive. This particuar
query is a bit idiosyncratic, but it does demonstrate just how we supported

Unicode is in rg.

Pattern: \p{Greek} (with the -i fag set, matches any Greek symbo)

rg 0.425 +/- 0.027 (lines: 103)
pt 12.612 +/- 0.217 (lines: 23)
sift 0.002 +/- 0.000 (lines: 0)*+

• * - Best mean time.
• + - Best sampe time.

Anaysis: sift doesnʼt actuay beat rg here: it just gets so confused by the

search request that it gives up and reports no matches. pt seems to execute
the search, but doesnʼt hande Unicode case insensitivity correcty.

Meanwhie, rg handes the request just fine, and itʼs sti fast.

In this particuar case, the entire Greek category, aong with a of its case-
insensitive variants, are compied into a singe fast deterministic finite state
machine.

One interesting thing to note about this search is that if you run it, youʼ see

a ot more resuts containing the character µ, which ooks essentiay

identica to the character μ that aso shows up in a case sensitive search. As
you might have guessed, even though these two characters ook the same,
they are in fact distinct Unicode codepoints:

• µ is MICRO SIGN with codepoint U+000000B5.
• μ is GREEK SMALL LETTER MU with codepoint U+000003BC.

The atter codepoint is considered part of the \p{Greek} group whie the
former codepoint is not (the former codepoint appears to be the correct sigi

https://burntsushi.net/ripgrep/#linux-unicode-greek
https://burntsushi.net/ripgrep/#linux-unicode-greek
https://burntsushi.net/ripgrep/#linux-unicode-greek

to use in the case of the Linux kerne). However, the Unicode simpe case

foding tabes map MICRO SIGN to GREEK SMALL LETTER MU, which

causes rg to pick up on ines containing MICRO SIGN even though it stricty

isnʼt part of the Greek group.

linux_no_literal

Description: This is the ast benchmark on the Linux kerne source code

and is a bit idiosyncratic ike linux_unicode_greek_casei. In particuar, it
ooks for ines containing 5 consecutive repetitions of 5 word characters,
each separated by one or more space characters. The key distinction of this
pattern from every other pattern in this benchmark is that it does not contain

any iteras. Given the presence of \w and \s, which have vaid Unicode and
ASCII interpretations, we attempt to contro for the presence of Unicode
support.

Pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}

rg (ignore) 0.577 +/- 0.003 (lines: 490)
rg (ignore) (ASCII) 0.416 +/- 0.025 (lines: 490)
ag (ignore) (ASCII) 2.339 +/- 0.010 (lines: 766)
pt (ignore) (ASCII) 22.066 +/- 0.057 (lines: 490)
sift (ignore) (ASCII) 25.563 +/- 0.108 (lines: 490)
git grep (ignore) 26.382 +/- 0.044 (lines: 490)
git grep (ignore) (ASCII) 4.153 +/- 0.010 (lines: 490)
rg (whitelist) 0.503 +/- 0.011 (lines: 419)
rg (whitelist) (ASCII) 0.343 +/- 0.038 (lines: 419)*+
ucg (whitelist) (ASCII) 1.130 +/- 0.003 (lines: 416)

• * - Best mean time.
• + - Best sampe time.
• ag reports many more matches than other toos because it does

mutiine search where the \s can match a \n.

Anaysis: Since this particuar pattern doesnʼt have any iteras in it, itʼs
entirey up to the underying regex engine to answer this query. It canʼt be
smart and skip through the input—it has to pass it competey through the
regex engine. Since non-itera patterns are pretty rare in my experience,

http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
http://www.unicode.org/Public/UNIDATA/CaseFolding.txt
https://burntsushi.net/ripgrep/#linux-unicode-greek-casei
https://burntsushi.net/ripgrep/#linux-unicode-greek-casei
https://burntsushi.net/ripgrep/#linux-unicode-greek-casei

this benchmark exists primariy as an engineered way to test how we the
underying regex engines perform.

rg, regardess of whether it respects .gitignore fies or whether it
handes Unicode correcty, does quite we here compared to other toos.

git grep in particuar pays a 5x penaty for Unicode support. rg on the
other hand pays about a 0.3x penaty for Unicode support. Interestingy,

even though ucg doesnʼt enabe Unicode support, not even PCRE2ʼs JIT can

compete with rg!

What makes rg so fast here? And what actuay causes the 0.3x penaty?

rg continues to be fast on this benchmark primariy for the same reason
why itʼs fast with other Unicode-centric benchmarks: it compies the UTF8
decoding right into its deterministic finite state machine. This means there is
no extra step to decode the search text into Unicode codepoints first. We
can match directy on the raw bytes.

To a first approximation, the performance penaty comes from compiing the
DFA to match the pattern. In particuar, the DFA to match the Unicode variant
is much much arger than the DFA to match the ASCII variant. To give you a
rough idea of the size difference:

• The ASCII DFA has about 250 distinct NFA states.
• The Unicode DFA has about 77,000 distinct NFA states.

These numbers are produced directy from the compier in Rustʼs regex
ibrary, and donʼt necessariy refect a minima automaton.)

A DFA produced from these patterns doesnʼt necessariy have the same
number of states, since each DFA state typicay corresponds to mutipe
NFA states. Check out the Powerset construction Wikipedia artice.
Athough it doesnʼt correspond to the same impementation strategy used in
Rustʼs regex engine, it shoud give good intuition.)

However, the first approximation is a bit miseading. Whie Rustʼs regex
engine does have a preprocessing compiation phase, it does not actuay
incude converting an NFA into a DFA. Indeed, that woud be far too sow
and coud take exponentia time! Instead, Rustʼs regex engine buids the DFA
on the fy or “aziy,ˮ as it searches the text. In the case of the ASCII pattern,
this search barey spends any time constructing the DFA states since there

https://en.wikipedia.org/wiki/Powerset_construction
https://en.wikipedia.org/wiki/Powerset_construction

are so few of them. However, in the Unicode case, since there are so many
NFA states, it winds up spending a ot of time compiing new DFA states.

Iʼve confirmed this by inspecting a profie generated by perf.) Digging a bit
deeper, the actua story here might be subter. For exampe, the Unicode
pattern might wind up with the same number of DFA states as the ASCII
pattern, primariy because the input its searching is the same and is
primariy ASCII. The sow down then must come from the fact that each
individua DFA state takes onger to buid. This is ikey correct since a singe

Unicode \w is over two orders of magnitude arger than a singe ASCII \w.
Therefore, each DFA state probaby has a ot more NFA states in it for the
Unicode pattern as opposed to the ASCII pattern. Itʼs not cear whether we

can do any better here (other than trying to minimize the Unicode \w, which
woud be totay feasibe), since we donʼt actuay know the composition of
the search text ahead of time.

One idea for improvement is to have mutipe types of DFAs. For exampe,
you might imagine trying to match with an ASCII ony DFA. If the DFA sees a
non-ASCII byte, then it coud cause a transition into a Unicode-aware DFA.
However, the penaty here is so sma that itʼs hard to justify this kind of
impementation compexity!

Singe fie benchmarks

In the second haf of our benchmarks, we wi shift gears and ook more
cosey at the performance of search toos on a singe arge fie. Each
benchmark wi be run on two sampes of the OpenSubtites2016 dataset.
One sampe wi be Engish and therefore predominanty ASCII, and another
sampe wi be in Russian and therefore predominanty Cyriic. The patterns
for the Russian sampe were transated from Engish using Googe Transate.
Sady, I canʼt read Russian, but I have tried each search by hand and
confirmed that a sampe of the resuts I was ooking at were reevant by
piping them back through Googe Transate.) The Engish sampe is around
1GB and the Russian sampe is around 1.6GB, so the benchmark timings
arenʼt directy comparabe.

In this benchmark, the performance of the underying regex engine and
various itera optimizations matter a ot more. The two key variabes weʼ
need to contro for are ine counting and Unicode support. Normay, weʼd

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://opus.lingfil.uu.se/OpenSubtitles2016.php
http://opus.lingfil.uu.se/OpenSubtitles2016.php

just not request ine counting from any of the toos, but neither of The Siver
Searcher or Universa Code Grep support disabing ine numbers.
Additionay, Unicode support is tricky to contro for in some exampes

because ripgrep does not support ASCII ony case insensitive semantics
when searching with a non-ASCII string. Itʼs Unicode a the way and thereʼs

no way to turn it off. As weʼ see, at east for ripgrep, itʼs sti faster than its
ASCII aternatives even when providing case insensitive Unicode support.

As with the Linux benchmark, you can see precisey which command was
run and its recorded time in the raw data.

ripgrep uttery dominates this round, both in performance and
correctness.

subtitles_literal

Description: This benchmarks the simpest case for any search too: find a

occurrences of a itera string. Toos annotated with (lines) were passed

the -n fag (or equivaent) so that the output reports ine numbers.

Engish pattern: Sherlock Holmes

rg 0.268 +/- 0.000 (lines: 629)*+
rg (no mmap) 0.336 +/- 0.001 (lines: 629)
pt 3.433 +/- 0.002 (lines: 629)
sift 0.326 +/- 0.002 (lines: 629)
grep 0.516 +/- 0.001 (lines: 629)
rg (lines) 0.595 +/- 0.001 (lines: 629)
ag (lines) 2.730 +/- 0.003 (lines: 629)
ucg (lines) 0.745 +/- 0.001 (lines: 629)
pt (lines) 3.434 +/- 0.005 (lines: 629)
sift (lines) 0.756 +/- 0.002 (lines: 629)
grep (lines) 0.969 +/- 0.001 (lines: 629)

Russian pattern: Шерлок Холмс

rg 0.325 +/- 0.001 (lines: 583)*+
rg (no mmap) 0.452 +/- 0.002 (lines: 583)

https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv
https://github.com/BurntSushi/ripgrep/blob/master/benchsuite/runs/2016-09-20-ubuntu1604-ec2/raw.csv

pt 12.917 +/- 0.009 (lines: 583)
sift 16.418 +/- 0.008 (lines: 583)
grep 0.780 +/- 0.001 (lines: 583)
rg (lines) 0.926 +/- 0.001 (lines: 583)
ag (lines) 4.481 +/- 0.003 (lines: 583)
ucg (lines) 1.889 +/- 0.004 (lines: 583)
pt (lines) 12.935 +/- 0.011 (lines: 583)
sift (lines) 17.177 +/- 0.010 (lines: 583)
grep (lines) 1.300 +/- 0.003 (lines: 583)

• * - Best mean time.
• + - Best sampe time.
• This is the ony benchmark that contains pt and sift, since they

become too sow in a future benchmarks.

Anaysis: Whether itʼs part of the underying regex engine or part of the
search too itsef, every search too in this benchmark does some kind of

itera optimization. ag wi inspect the pattern, and if it doesnʼt contain any
specia regex characters, then it wi use a Boyer-Moore variant to perform
the search instead of PCRE. GNU grep does something simiar, athough it
has ceary been the subject of much optimization.

If thatʼs true, how does rg beat GNU grep by amost a factor of 2? We, first

and foremost, we note that both sift and ucg beat GNU grep as we. I

wonʼt be abe to go into detai on ucgʼs speed since PCRE2ʼs JIT isnʼt
something I understand very we, but I can at east te you that the reasons

why rg and sift are faster than GNU grep are actuay distinct:

• sift uses Goʼs regexp ibrary, which wi do at east one sma itera
optimization: if every match of a regex starts with the same byte, the
regex engine wi scan for that byte before starting a match. If you
foow the code that does the scan for the byte a the way back to its
source for x86_64 systems, then youʼ find that it is using AVX2
instructions and ymm registers, which permit scanning 32 bytes in each
iteration. In contrast, GNU grep uses libcʼs memchr, which doesnʼt use
AVX2. However, that C code wi be autovectorized to use xmm registers
and SIMD instructions, which are haf the size of ymm registers. In other
words, by virture of being written in Go, sift is making more efficient
use of the CPU.

• rg aso uses memchr from libc. The rg binary that was used in this

http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
http://ridiculousfish.com/blog/posts/old-age-and-treachery.html
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://github.com/golang/go/blob/b851ded09a300033849b60ab47a468087ce557a1/src/runtime/asm_amd64.s#L1394-L1413
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86_64/memrchr.S;h=840de30cd71ba96b3ae43540e6ac255c28906cc5;hb=HEAD

benchmark was staticay inked with musl, which provides its own
impementation of memchr. Despite it being quite a bit terser than GNUʼs
ibc impementation used in GNU grep, it appears to be doing roughy
the same work. If thatʼs the case, how is rg faster? The answer ies not
in memchr nor in the variant of Boyer-Moore nor in the number
characters Boyer-Moore can skip. The answer instead ies in which
byte is given to memchr. rg wi actuay try to guess the “rarestˮ byte in
a itera, and use memchr on that. A standard Boyer-Moore
impementation wi use memchr aways on the ast byte.) In this
particuar case, running memchr on either S or H is probaby quite a bit
better than running it on s because S and H are far ess common than s.
That is, rg tries harder than GNU grep to spend more time skipping
bytes in a fast SIMD optimized oop. rg can get this wrong, but it seems
stricty better to at east guess and probaby get it right in the common
case than to submit to an artifact of common Boyer-Moore
impementations.

Now that the secrets of itera search have been reveaed, we can better
anayze the Russian benchmark. The answer once again ies in which byte is

used for quick scanning. Both sift and pt use the same AVX2 routine in
Goʼs runtime, so why did they get so much sower than every other too in
the Russian benchmark? The answer becomes more cear when we ook at

the actua UTF8 bytes of the pattern Шерлок Холмс:

\xd0\xa8\xd0\xb5\xd1\x80\xd0\xbb\xd0\xbe\xd0\xba \xd0\xa5\xd0\xbe\xd0\xbb\xd0

There are two key observations to take away from this:

�Every character in the pattern Шерлок Холмс is encoded with two
UTF8 code units, which corresponds to two bytes.

�Every character starts with either the byte \xD0 or \xD1.

If we ooked at the UTF8 bytes of the Russian subtites weʼre searching,
weʼd end up seeing exacty the same pattern. This pattern occurs because
the contents of the fie are mosty Cyric, which are a mosty part of a

coupe sma ranges in Unicode. This means that the \xD0 and \xD1 bytes
occur a ot.

If you reca from above, Goʼs regex engine wi scan for occurrences of the
first byte. But if that first byte happens as frequenty as it does here, the

http://www.musl-libc.org/
http://www.musl-libc.org/
http://www.musl-libc.org/
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c
https://github.com/ifduyue/musl/blob/master/src/string/memchr.c

overa search wi wind up going sower because there is overhead
associated with doing that scan. This is precisey the trade off one is

exposed to whenever memchr is used.

As you might have guessed, rg works around this issue by trying to guess

the rarest byte. rg specificay draws from a pre-computed frequency tabe

of a 256 bytes. Bytes ike \xD0 and \xD1 are considered to be among the

most frequent whie bytes ike \xA8 and \x81 are considered more rare.

Therefore, rg wi prefer bytes other than \xD0 and \xD1 for use with

memchr.

GNU grep continues to do we on this benchmark mosty because of bind

uck: Boyer-Moore uses the ast byte, which wi correspond to \x81, which

is much rarer than \xD0 or \xD1.

Switching gears, we shoud briefy discuss memory maps. In this

benchmark, rg beats out rg (no mmap) by about 25%. The ony difference
between the two is that the former memory maps the fie into memory whie
the atter incrementay reads bytes from the fie into an intermediate buffer,
and searches it. In this case, the overhead of the memory map is very sma
because we ony need to create one of them. This is the opposite resut
from our Linux benchmark above, where memory maps proved to be worse
than searching with an intermediate buffer since we needed to create a new
memory map for every fie we searched, which ends up incurring quite a bit

of overhead. rg takes an empirica approach here and enabes memory map
searching when it knows it ony needs to search a few fies, and otherwise
searches using an intermediate buffer.

One ast note: Iʼve negected to tak about (lines) because thereʼs reay
not much to say here: counting ines takes work, and if you donʼt need to

report ine numbers, you can avoid doing that work. ucg has a rather coo

SIMD agorithm to count ines and rg aso has a packed counting agorithm

that works simiary to the memchr impementations we taked about.

If it were up to me, Iʼd probaby remove benchmarks with ine numbers
atogether, since most toos tend to reiaby pay just a itte bit extra for

them. However, neither ag nor ucg aow turning them off, so we need to
turn them on in other toos in order to make a fair comparison.

subtitles_literal_casei

Description: This benchmark is just ike subtitles_literal, except it

does case insensitive search. Toos annotated with (lines) show ine

numbers in their output, and toos annotated with (ASCII) are doing an

ASCII-ony search. Correspondingy, toos not abeed with (ASCII) are
doing a proper Unicode search.

Engish pattern: Sherlock Holmes (with the -i fag set)

rg 0.366 +/- 0.001 (lines: 642)*+
grep 4.084 +/- 0.005 (lines: 642)
grep (ASCII) 0.614 +/- 0.001 (lines: 642)
rg (lines) 0.696 +/- 0.002 (lines: 642)
ag (lines) (ASCII) 2.775 +/- 0.004 (lines: 642)
ucg (lines) (ASCII) 0.841 +/- 0.002 (lines: 642)

Russian pattern: Шерлок Холмс

rg 1.131 +/- 0.001 (lines: 604)
grep 8.187 +/- 0.006 (lines: 604)
grep (ASCII) 0.785 +/- 0.001 (lines: 583)
rg (lines) 1.733 +/- 0.002 (lines: 604)
ag (lines) (ASCII) 0.729 +/- 0.001 (lines: 0)*+
ucg (lines) (ASCII) 1.896 +/- 0.005 (lines: 583)

• * - Best mean time.
• + - Best sampe time.
• There is no rg (ASCII) because rg canʼt do ASCII-ony case

insensitive search.

Anaysis: This is a fun benchmark, because we start to see just how

awesome rgʼs support for Unicode is. Namey, that it not ony gets it correct,
but itʼs aso fast. Itʼs fast enough that it beats the competition even when the
competition is using ASCII-ony rues.

Right off the bat, GNU grep pays deary for doing a case insensitive search
with Unicode support. The probem it faces is that it can no onger do a

https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal

straight-forward Boyer-Moore search, so it either needs to fa back to some
aternative itera search or its fu regex engine. Even though GNU grep is
much faster at ASCII-ony case sensitive search than its Unicode aware

variant, rgʼs Unicode case insensitive search sti handedy beats GNU
grepʼs ASCII-ony case insensitive search.

The reason why rg is so fast on this benchmark is the same reason why itʼs

fast in the linux_literal_casei benchmark: it turns the pattern

Sherlock Holmes into an aternation of a possibe iteras according to
Unicodeʼs simpe case foding rues. It then takes a sma prefix from each
aternate so that our set of iteras ooks ike this:

SHER
SHEr
SHeR
SHer
ShER
ShEr
SheR
Sher
sHER
sHEr
sHeR
sHer
shER
shEr
sheR
sher
ſHER
ſHEr
ſHeR
ſHer
ſhER
ſhEr
ſheR
ſher

Notice that we get Unicode right by incuding ſ as a case variant of S.)

https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei
https://burntsushi.net/ripgrep/#linux-literal-casei

It then feeds these iteras to the Teddy SIMD mutipe pattern agorithm. The
agorithm is unpubished, but was invented by Geoffrey Langdae as part of
Inteʼs Hyperscan regex ibrary. The agorithm works roughy by using
packed comparisons of 16 bytes at a time to find candidate ocations where
a itera might match. I adapted the agorithm from the Hyperscan project to
Rust, and incuded an extensive write up in the comments if youʼre
interested.

Whie essentiay the same anaysis appies to the Russian benchmark, there

are a few interesting things to note. Namey, whie the resuts show grep
(ASCII) as being very fast, it seems cear that itʼs competey ignoring the -
i fag in this case since the pattern is not an ASCII string. Notaby, its timing

is essentiay identica to its timing on the previous subtitles_literal
benchmark. The other interesting thing to note is that ag reports 0 matches.
This isnʼt entirey unreasonabe, if it somehow knows that it canʼt satisfy the
request (case insensitive search of a non-ASCII string when Unicode
support isnʼt enabed). If I had to guess, Iʼd say PCRE is returning an error

(possiby from pcre_exec) and it isnʼt being forwarded to the end user, but
thatʼs just a shot in the dark.

subtitles_alternate

Description: This benchmarks an aternation of iteras, where there are
severa distinct eading bytes from each itera. We contro for ine counting.

Engish pattern: Sherlock Holmes|John Watson|Irene Adler|
Inspector Lestrade|Professor Moriarty

rg 0.294 +/- 0.001 (lines: 848)*+
grep 2.955 +/- 0.003 (lines: 848)
rg (lines) 0.619 +/- 0.001 (lines: 848)
ag (lines) 3.757 +/- 0.001 (lines: 848)
ucg (lines) 1.479 +/- 0.002 (lines: 848)
grep (lines) 3.412 +/- 0.004 (lines: 848)

Russian pattern: Шерлок Холмс|Джон Уотсон|Ирен Адлер|инспектор
Лестрейд|профессор Мориарти

https://github.com/01org/hyperscan
https://github.com/01org/hyperscan
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/master/src/simd_accel/teddy128.rs
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal
https://burntsushi.net/ripgrep/#subtitles-literal

rg 1.300 +/- 0.002 (lines: 691)*+
grep 7.994 +/- 0.017 (lines: 691)
rg (lines) 1.902 +/- 0.002 (lines: 691)
ag (lines) 5.892 +/- 0.003 (lines: 691)
ucg (lines) 2.864 +/- 0.006 (lines: 691)
grep (lines) 8.511 +/- 0.005 (lines: 691)

• * - Best mean time.
• + - Best sampe time.

Anaysis: rg does reay we here, on both the Engish and Russian
patterns, primariy thanks to Teddy as described in the anaysis for

subtitles_literal_casei. On the Engish pattern, rg is around an order
of magnitude faster than GNU grep.

The performance cost of counting ines is on fu dispay here. For rg at
east, it makes returning search resuts take twice as ong.

Note that the benchmark description mentions picking iteras with distinct
eading bytes. This is to avoid measuring an optimization where the regex

engine detects the eading byte and runs memchr on it. Of course, this

optimization is important (and rg wi of course do it), but itʼs far more
interesting to benchmark what happens in a sighty trickier case.

subtitles_alternate_casei

Description: This benchmark is just ike subtitles_alternate, except it
searches case insensitivey. In this benchmark, instead of controing for ine
counting (a commands count ines), we contro for Unicode support.

Engish pattern: Sherlock Holmes|John Watson|Irene Adler|
Inspector Lestrade|Professor Moriarty (with the -i fag set)

https://burntsushi.net/ripgrep/#subtitles-literal-casei
https://burntsushi.net/ripgrep/#subtitles-literal-casei
https://burntsushi.net/ripgrep/#subtitles-literal-casei
https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate

rg 2.724 +/- 0.002 (lines: 862)*+
grep 5.125 +/- 0.006 (lines: 862)
ag (ASCII) 5.170 +/- 0.004 (lines: 862)
ucg (ASCII) 3.453 +/- 0.005 (lines: 862)
grep (ASCII) 4.537 +/- 0.025 (lines: 862)

Russian pattern: Шерлок Холмс|Джон Уотсон|Ирен Адлер|инспектор
Лестрейд|профессор Мориарти

rg 4.834 +/- 0.004 (lines: 735)
grep 8.729 +/- 0.004 (lines: 735)
ag (ASCII) 5.891 +/- 0.001 (lines: 691)
ucg (ASCII) 2.868 +/- 0.005 (lines: 691)*+
grep (ASCII) 8.572 +/- 0.009 (lines: 691)

• * - Best mean time.
• + - Best sampe time.

Anaysis: Whie rg gets an order of magnitude sower on this benchmark

compared to subtitles_alternate, it sti comfortaby beats out the rest
of the search toos, even when other toos donʼt support Unicode. A key
thing this benchmark demonstrates are the imits of the Teddy agorithm. In

fact, rg opts to not use Teddy in this benchmark because it predicts it wonʼt
perform we.

Why doesnʼt Teddy perform we here? We, the answer is in how we

generate iteras for this pattern. Namey, rg wi try to generate a possibe
iteras that satisfy Unicode simpe case foding rues, and then wi take a
short prefix of that set to cut the number of iteras down to reasonabe size.
In this particuar case, we wind up with 48 iteras:

INS
INs
INſ
IRE
IRe
InS

https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate
https://burntsushi.net/ripgrep/#subtitles-alternate

Ins
Inſ
IrE
Ire
JOH
JOh
JoH
Joh
PRO
PRo
PrO
Pro
SHE
SHe
ShE
She
iNS
iNs
iNſ
iRE
iRe
inS
ins
inſ
irE
ire
jOH
jOh
joH
joh
pRO
pRo
prO
pro
sHE
sHe
shE
she

ſHE
ſHe
ſhE
ſhe

If we passed a of those to Teddy, it woud become overwhemed. In
particuar, Teddy works by finding candidates for matches very quicky.
When there are roughy the same number of candidates as there are
matches, Teddy performs exceedingy we. But, if we give it more iteras,
then itʼs more ikey to find candidates that donʼt match, and wi therefore
have to spend a ot more time verifying the match, which can be costy.

A more subte aspect of the Teddy impementation is that a arger number
of iteras increases the cost of every verification, even if the number of
candidates produced doesnʼt increase. As Iʼve mentioned before, if you
want the fu scoop on Teddy, see its we commented impementation.
Going into more detai on Teddy woud require a whoe bog post on its
own!

When rg sees that there are a arge number of iteras, it coud do one of
two things:

�Try to cut down the set even more. For exampe, in this case, we coud
strip the ast character from each prefix off and end up with a much
smaer set. Unfortunatey, even though we have fewer iteras, we wind
up with a sti not-so-sma set of two-character iteras, which wi aso
tend to produce a ot more fase positive candidates just because of
their ength.

�Move to a different mutipe pattern agorithm, such as Aho-Corasick.

I have tried to impement 1) in the past, but Iʼve aways wound up in a game
of whack-a-moe. I might make one common case faster, but another
common case a ot sower. In those types of cases, itʼs usuay better to try
and achieve good average case performance. Luckiy for us, Aho-Corasick
does exacty that.

We do sti have a few tricks up our seeve though. For exampe, many Aho-
Corasick impementations are buit as-if they were tries with back-pointers
for their faiure transitions. We can actuay do better than that. We can
compie a of its faiure transitions into a DFA with a transition tabe

https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://github.com/rust-lang-nursery/regex/blob/3de8c44f5357d5b582a80b7282480e38e8b7d50d/src/simd_accel/teddy128.rs
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/Trie

contiguous in memory. This means that every byte of input corresponds to a
singe ookup in the transition tabe to find the next state. We never have to
waste time chasing pointers or waking more than one faiure transition for
any byte in the search text.

Of course, this transition tabe based approach is memory intensive, since

you need space for number_of_literals * number_of_states, where

number_of_states is roughy capped at the tota number of bytes in a of
the iteras. Whie 48 iteras of ength 3 is too much for Teddy to hande, itʼs
barey a bip when it comes to Aho-Corasick, even with its memory
expensive transition tabe based approach. N.B. In the iterature, this
particuar impementation of Aho-Corasick is often caed “Advancedˮ Aho-
Corasick.)

subtitles_surrounding_words

Description: This benchmarks a pattern that searches for words

surrounding the itera string Holmes. This pattern was specificay
constructed to defeat both prefix and suffix itera optimizations.

Engish pattern: \w+\s+Holmes\s+\w+

rg 0.605 +/- 0.000 (lines: 317)
grep 1.286 +/- 0.002 (lines: 317)
rg (ASCII) 0.602 +/- 0.000 (lines: 317)*+
ag (ASCII) 11.663 +/- 0.008 (lines: 323)
ucg (ASCII) 4.690 +/- 0.002 (lines: 317)
grep (ASCII) 1.276 +/- 0.002 (lines: 317)

Russian pattern: \w+\s+Холмс\s+\w+

rg 0.957 +/- 0.001 (lines: 278)*+
grep 1.660 +/- 0.002 (lines: 278)
ag (ASCII) 2.411 +/- 0.001 (lines: 0)
ucg (ASCII) 2.980 +/- 0.002 (lines: 0)
grep (ASCII) 1.596 +/- 0.003 (lines: 0)

• * - Best mean time.
• + - Best sampe time.

Anaysis: In order to compete on this benchmark, a search too wi need to
impement a so-caed “inner iteraˮ optimization. You can probaby guess
what that means: it is an optimization that ooks for itera strings that appear
anywhere in the pattern, and if a itera is found that must appear in every
match, then a search too can quicky scan for that itera instead of appying
the fu regex to the search text.

The key thing that permits this optimization to work is the fact that most
search toos report resuts per ine. For exampe, in this case, if a ine

contains the itera Holmes, then the search too can find the beginning and
ending of that ine and run the fu pattern on just that ine. If the itera is
reativey rare, this keeps us out of the regex engine for most of the search.
And of course, if the itera doesnʼt appear at a in the corpus, then we wi
have never touched the regex engine at a.

To achieve the fu optimization, you probaby need to parse your pattern
into its abstract syntax (abbreviated “ASTˮ for abstract syntax tree) to
extract the itera. It is worth pointing out however that one can probaby get
a ot of mieage with simper heuristics, but a rea pattern parser is the ony
way to do this optimization robusty. The probem here is that for most regex
engines, parsing the pattern is an unexposed impementation detai, so it
can be hard for search toos to extract iteras in a robust way without
writing their own parser, and a modern regex parser is no easy task!

Thankfuy, Rustʼs regex ibrary exposes an additiona ibrary, regex-
syntax, which provides a fu parser. rg impements this optimization

reativey easiy with the hep of regex-syntax, whie GNU grep
impements this optimization because the search too and the underying
regex engine are couped together.

Why does the search too need to perform this optimization? Why canʼt the
underying regex engine do it? I personay have thought ong and hard
about this particuar probem and havenʼt been abe to come up with an
eegant soution. The core probem is that once you find an occurrence of
the itera, you donʼt know where to start searching the fu regex. In a
genera purpose regex engine, a pattern coud match an arbitrariy ong

string. For exampe, \w+\s+Holmes\s+\w+ mighty ony match at the very

https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html
https://doc.rust-lang.org/regex/regex_syntax/index.html

end of a gigabyte sized document. There are ways to work around this. For

exampe, you coud spit the regex into three pieces: \w+\s+, Holmes and

\s+\w+. On every occurrence of the Holmes itera, you coud search for the

beginning of the match by executing \w+\s+ in reverse starting just before

the itera, and executing \s+\w+ forwards starting just after the itera. The
key probem with this approach is that it exposes you to quadratic behavior

in the worst case (since \w+\s+ or \s+\w+ coud cause you to re-scan text
youʼve aready seen). Whie I beieve there is a genera purpose way to
sove this and sti guarantee inear time searching, a good soution hasnʼt
reveaed itsef yet.

Based on the data in this benchmark, ony rg and GNU grep perform this

optimization. Neither ag nor ucg attempt to extract any inner iteras from
the pattern, and it ooks ike PCRE doesnʼt try to do anything too cever. Of

course, Rustʼs regex ibrary doesnʼt either, this optimization is done in rg
proper.)

As for the Russian pattern, we see that ony toos with proper Unicode

support can execute the query successfuy. The reason is because \w is

ASCII ony in ucg and ag, so it canʼt match the vast majority of word

characters (which are Cyric) in our sampe. Otherwise, both rg and GNU
grep remain fast, primariy because of the inner itera optimization.

subtitles_no_literal

Description: This benchmark purposefuy has no iteras in it, which makes
it a bit idiosyncratic, since most searches done by end users probaby have
at east some itera in them. However, it is a usefu benchmark to gauge the
genera performance of the underying regex engine.

Engish pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+
\w{5}\s+\w{5}

rg 2.777 +/- 0.003 (lines: 13)
rg (ASCII) 2.541 +/- 0.005 (lines: 13)*+
ag (ASCII) 10.076 +/- 0.005 (lines: 48)
ucg (ASCII) 7.771 +/- 0.004 (lines: 13)
grep (ASCII) 4.411 +/- 0.004 (lines: 13)

Russian pattern: \w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+\w{5}\s+
\w{5}\s+\w{5}

rg 4.905 +/- 0.003 (lines: 41)
rg (ASCII) 3.973 +/- 0.002 (lines: 0)
ag (ASCII) 2.395 +/- 0.004 (lines: 0)*+
ucg (ASCII) 3.006 +/- 0.005 (lines: 0)
grep (ASCII) 2.483 +/- 0.005 (lines: 0)

• * - Best mean time.
• + - Best sampe time.
• ag gets more matches on the Engish pattern since it does mutiine

search. Namey, the \s can match a \n.
• grep with Unicode support was dropped from this benchmark because

it takes over 90 seconds on the Engish pattern and over 4 minutes on
the Russian pattern. In both cases, GNU grep and rg report the same
resuts.

Anaysis: Once again, no other search too performs as we as rg. For the

Engish pattern, both rg and rg (ASCII) have very simiar performance,

despite rg supporting Unicode.

What specificay makes rg faster than GNU grep in this case? Both search
toos utimatey use a DFA to execute this pattern, so their performance
shoud be roughy the same. I donʼt actuay have a particuary good answer
for this. Both GNU grep and Rustʼs regex ibrary unro the DFAʼs inner oop,
and both impementations compute states on the fy. I can make a guess
though.

Rustʼs regex ibrary avoids a singe pointer dereference when foowing a
transition. How it achieves this is compicated, but itʼs done by representing
states as indices into the transition tabe rather than simpe incrementa ids.
This permits the generated code to use simpe addition to address the
ocation of the next transition, which can be done with addressing modes in
a singe instruction. Specificay, this optimization means we donʼt need to
do any mutipication to find the state transition.) A singe pointer
dereference might not seem ike much, but when itʼs done for every state
transition over a arge corpus such as this, it can have an impact.

When it comes to the Russian pattern, such detais are far ess important
because GNU grep takes minutes to run. This suggests that it isnʼt buiding
UTF8 decoding into its DFA, and is instead doing something ike decoding a
character at a time, which can have a ot of overhead associated with it. I
admit that I donʼt quite grok this aspect of GNU grep though, so I coud have
its cost mode wrong. Now, in a fairness, GNU grepʼs ocae and encoding

support far exceeds what rg supports. However, in todayʼs word, UTF8 is
quite prevaent, so supporting that aone is often enough. More to the point,
given how common UTF8 is, itʼs important to remain fast whie supporting
Unicode, which GNU grep isnʼt abe to do.

Unfortunatey, the other toos donʼt support Unicode, so they canʼt be
meaningfuy benchmarked on the Russian pattern.

Bonus benchmarks

In this section, weʼ take a ook at a few crazier benchmarks that arenʼt
actuay part of the suite Iʼve pubished. Indeed, the performance
differences between toos are often so arge that a fastidious anaysis isnʼt
reay necessary. More to the point, these usage patterns arenʼt necessariy
representative of common usage (not that these usages arenʼt important,
theyʼre just niche), so the performance differences are ess important.

Nevertheess, it is fun to see how we rg and the other toos hod up under
these requests.

everything

Description: In this benchmark, we compare how ong it takes for each too
to report every ine as a match. This benchmark was run in the root of the
Linux repository.

Pattern: .*

rg 1.081 (lines: 22065361)
ag 1.660 (lines: 55939)
git grep 3.448 (lines: 22066395)
sift 110.018 (lines: 22190112)
pt 0.245 (lines: 3027)

rg (whitelist) 0.987 (lines: 20936584)
ucg (whitelist) 5.558 (lines: 23163359)

Anaysis: This benchmark is somewhat siy since itʼs something you
probaby never want a search too to do. Nevertheess, it is usefu to know

that rg scaes quite we to a huge number of matches.

One of the key tricks that a good regex engine wi do in this case is stop
searching text as soon as it knows it has a match if a the caer cares about
is “is there a match or not?ˮ In this case, we wi find a match at the
beginning of every ine, immediatey quit, find the ine boundaries and then

repeat the process. There is no particuar specia cased optimization for .*
in either rg or Rustʼs regex ibrary (athough there coud be).

Interestingy, neither ag nor pt actuay report every ine. They appear to
have some kind of match imit. Which isnʼt atogether unreasonabe. This is
a search too after a, and some might consider that returning every resut
isnʼt usefu.

nothing

Description: This is just ike the everything benchmark, except it inverts
the resuts. The correct resut is for a search too to report no ines as
matching. This benchmark aso searches the Linux kerne source code,
from the root of repository.

Pattern: .* (with the -v or --invert-match fag set)

rg 0.302 (lines: 0)
ag takes minutes
git grep 0.905 (lines: 0)
sift 12.804 (lines: 0)
pt -----
rg (whitelist) 0.251 (lines: 0)
ucg (whitelist) -----

Anaysis: Whie this benchmark is even more ridicuous than the previous
one (“give me nothing of everythingˮ), it does expose a few warts and

omissions in other toos. Namey, ag seems to sow way down when

reporting inverted matches. Neither pt nor ucg support inverted searching

at a. sift redeems itsef from the previous benchmark (perhaps it has a ot
of overhead associated with printing matches that it doesnʼt hit here).

Neither rg nor git grep have any probems satisfying the request.

context

Description: This benchmarks how we a search too can show the context
around each match. Specificay, in this case, we ask for the two ines
preceding and succeeding every match. We run this benchmark on the
Engish subtite corpus. Note that a toos are asked to count ines.

Pattern: Sherlock Holmes (with --context 2)

rg 0.612 (lines: 3533)
ag 3.530 (lines: 3533)
grep 1.075 (lines: 3533)
sift 0.717 (lines: 3533)
pt 17.331 (lines: 2981)
ucg -----

Anaysis: rg continues to do we here, but beats sift by ony a hair. In
genera, computing the context shoudnʼt be that expensive since it is done

rarey (ony for each match). Nevertheess, both ag and pt seem to take a

pretty big hit for it. pt aso seems to have a bug. Which is understandabe,

getting contexts right is tricky.) Finay, ucg doesnʼt support this feature, so
we canʼt benchmark it.

huge

Description: This benchmark runs a simpe itera search on a fie that is

9.3GB. In fact, this is the origina Engish subtite corpus in its entirety. In
the benchmark suite, we take a 1GB sampe.)

Pattern: Sherlock Holmes

rg 1.786 (lines: 5107)

grep 5.119 (lines: 5107)
sift 3.047 (lines: 5107)
pt 14.966 (lines: 5107)
rg (lines) 4.467 (lines: 5107)
ag (lines) 19.132 (lines: 5107)
grep (lines) 9.213 (lines: 5107)
sift (lines) 6.303 (lines: 5107)
pt (lines) 15.485 (lines: 5107)
ucg (lines) 4.843 (lines: 1543)

Anaysis: At first gance, it appears ucg competes with rg when counting

ines (being ony sighty sower), but in fact, ucg reports the wrong number

of resuts! My suspicion is that ucg gets into troube when trying to search
fies over 2GB.

The other intesting bit here is how sow pt is, even when not counting ines,

despite the fact that sift is fast. They both use Goʼs regexp engine and
shoud be abe to be fast in the case of a simpe itera. Itʼs not cear what

ptʼs sow down here is. One hypothesis is that even though Iʼm asking it to
not count ines, itʼs sti counting them but simpy not showing them.

Concusions

I started this bog post by caiming that I coud support the foowing caims
with evidence:

• For both searching singe fies and huge directories of fies, no other
too obviousy stands above ripgrep in either performance or
correctness.

• ripgrep is the ony too with proper Unicode support that doesnʼt
make you pay deary for it.

• Toos that search many fies at once are generay sower if they use
memory maps, not faster.

I attempted to substantiate the first caim by picking a popuar repository
Linux kerne) and a variety of patterns that an end user might search for.

Whie rg doesnʼt quite come out on top on every benchmark, no other too

can caim superiority. In particuar, git grep edges out rg on occasion by

a few miiseconds, but rg in turn wi beat git grep handedy (sometimes

by an order of magnitude, as in the case of linux_unicode_word) as the
patterns grow more compex, especiay when the search too is asked to

support Unicode. rg manages to compete with git grep and beat other
toos ike The Siver Searcher by:

• Impementing fast directory traversa with a minima number of stat
cas.

• Appying .gitignore fiters with a RegexSet, which enabes matching
mutipe gobs against a singe path a at once.

• Distributing work quicky to mutipe threads with a Chase-Lev work
steaing queue.

• Expicity not using memory maps.
• Using an overa very fast regex engine.

I aso attempted to substantiate the first caim by showing benchmarks of rg
against other toos on a singe fie. In this benchmark, rg comes out on top
in every singe one, often by a arge margin. Some of those resuts are a
resut of the foowing optimizations:

• Attempting to pick a “rareˮ byte to use memchr with for fast skipping.
• Using a specia SIMD agorithm caed Teddy for fast mutipe pattern

search.
• When Teddy isnʼt usabe, faback to an “advancedˮ form of Aho-

Corasick that never moves through more than one transition on each
byte of input.

• Buiding UTF8 decoding into a finite state machine.

For the second caim, I provided benchmarks that attempt to use Unicode
features such as conforming to Unicodeʼs simpe case foding rues and

Unicode aware character casses such as \w. The ony toos capabe of

handing Unicode are rg, GNU grep and git grep. The atter two tend to

get much sower when supporting the fu gamut of Unicode whie rg mosty
maintains its performance.

For the third caim, I showed mutipe benchmarks of rg controing for

memory maps. Namey, we measured how fast rg was both with and
without memory maps, and showed that memory maps perform worse when
searching many sma fies in parae, but perform better on searching

singe arge fies. At east, on Linux x86_64.) We aso earned that
memory maps probaby pay an additiona penaty inside a VM.

https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://burntsushi.net/ripgrep/#linux-unicode-word
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html
https://doc.rust-lang.org/regex/regex/struct.RegexSet.html

My hope is that this artice not ony convinced you that rg is quite fast, but
more importanty, that you found my anaysis of each benchmark
educationa. String searching is an od probem in computer science, but
there is sti penty of work eft to do to advance the state of the art.

A content is dua icensed under the UNLICENSE and MIT icenses.

Powered by Hugo & Pixy

https://burntsushi.net/index.xml
http://gohugo.io/
http://gohugo.io/
https://github.com/azmelanar/hugo-theme-pixyll
https://github.com/azmelanar/hugo-theme-pixyll

