
2024-11-30

async/await support has been a long time coming in the atsamd-

hal project. Some time around 2020, I discovered embassy, a

comprehensive framework that exploits asynchronous programming

on a wide range of microcontrollers. It immediately appealed to

me; to my brain, it made complete sense to harness cooperative

multitasking on small, single-core systems. It enables you to

write seemingly linear and straightforward code, without needing

to manually deal with complex finite states machines, and

without the drawbacks of threading on a more "traditional" RTOS.

Having been involved with atsamd-hal for some time at that

point, I started thinking about how we could support async

programming in the HAL.

At that time, most async-enabled HALs were tightly integrated

into the embassy ecosystem. I had already poured a good deal of

effort into atsamd-hal, and didn't necessarily want to start a

new HAL from scratch, fragmenting the (already small) community

of Rust devs deploying their code on the ATSAMD chip line. I

therefore set out to integrate async support directly in atsamd-

hal. A first proof of concept was proposed in a PR in October

2022. It was finally merged in November 2024, a little more than

two years later.

Nowadays, while most async HALs out there are still maintained

by the embassy organization, they're much less coupled to the

executor. In fact, most HALs out there will be useable with a

multitude of executors, like embassy-executor and rtic - that's

also the case for atsamd-hal.

Justin Beaurivage's Blog

blog tags archive about me publications github rss

Implementing async APIs for microcontroller
peripherals

:: tags: #async/await #atsamd-hal #embedded #rust

https://github.com/atsamd-rs/atsamd
https://github.com/atsamd-rs/atsamd
https://github.com/atsamd-rs/atsamd
https://github.com/atsamd-rs/atsamd
https://github.com/embassy-rs/embassy
https://github.com/embassy-rs/embassy
https://github.com/atsamd-rs/atsamd/pull/635
https://github.com/atsamd-rs/atsamd/pull/635
https://github.com/atsamd-rs/atsamd/pull/635
https://github.com/atsamd-rs/atsamd/pull/635
https://crates.io/crates/embassy-executor
https://crates.io/crates/embassy-executor
https://crates.io/crates/rtic
https://crates.io/crates/rtic
https://beaurivage.io/
https://beaurivage.io/
https://beaurivage.io/
https://beaurivage.io/
https://beaurivage.io/
https://beaurivage.io/
https://beaurivage.io/tags
https://beaurivage.io/tags
https://beaurivage.io/archive
https://beaurivage.io/archive
https://beaurivage.io/about
https://beaurivage.io/about
https://beaurivage.io/publications
https://beaurivage.io/publications
https://github.com/jbeaurivage
https://github.com/jbeaurivage
https://beaurivage.io/rss.xml
https://beaurivage.io/rss.xml
https://beaurivage.io/atsamd-hal-async/
https://beaurivage.io/atsamd-hal-async/
https://beaurivage.io/atsamd-hal-async/

With that bit of history out of the way, let's get cooking!

Understanding async in an embedded context

async/await is a fantastic tool to leverage concurrency on

single-core systems such as microcontrollers. Some tasks may be

offloaded to hardware peripherals, freeing up the CPU to move

onto better things. For example, think of a UART waiting on some

bytes to arrive on the wire, or a timer that is bound to expire

some time in the future. In both these cases, the CPU doesn't

have anything useful to do until something happens: the

peripherals are already doing all the work in parallel.

Instead of busy-waiting until the task is complete (no

multitasking), or using RTOS-style threads or plain interrupts

and a state machine (preemptive multitasking), we can abstract

that complexity away to the compiler, and write code that has

the appearance of being straightforward and linear.

That's the whole idea of cooperative multitasking: let the CPU

do some work when it has some work to do. But don't let it block

waiting on something to happen! That time could be better

utilized doing some more useful work elsewhere, or sleeping to

save some power.

If you'd rather first see a complete usage example of an async

peripheral before diving into its internals, check this out.

The three building blocks of async/await in
Rust

To make cooperative multitasking possible in an embedded

context, we will need three things:

1. A Future

Futures are the cornerstone of asynchronous operations in Rust.

You might have seen them called a Promise in other languages.

Conceptually, a Future represents a value that might not be

available yet. It allows us to continue doing more work until

the value is needed. Practically, a Future is a trait that looks

like this:

https://doc.rust-lang.org/stable/std/future/trait.Future.html
https://doc.rust-lang.org/stable/std/future/trait.Future.html

pub trait Future {

type Output;

fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::

}

It returns Poll , which is a wrapper around the value which we

are expecting eventually:

pub enum Poll<T> {

 Ready(T),

 Pending,

}

Notice that Future::poll takes a Pin<&mut Self> argument. It

behaves similarly to a normal &mut self , but with additional

restrictions, which we won't cover in this post. If you want to

learn more about pinning, check out the Additional Reading

section. The method also takes a &mut Context argument: we will

come back to that in a moment.

The async keyword

An async function is syntax sugar for a function which returns

a Future:

async fn some_function() {

// ...

}

// Roughly desugars to

fn some_function() -> impl Future<Output = ()> {

// ...

}

A Future can also be constructed by using an async block, which

behaves similarly to a closure:

https://doc.rust-lang.org/stable/std/task/enum.Poll.html
https://doc.rust-lang.org/stable/std/task/enum.Poll.html
https://doc.rust-lang.org/stable/std/task/enum.Poll.html
https://beaurivage.io/atsamd-hal-async#additional-reading
https://beaurivage.io/atsamd-hal-async#additional-reading

fn some_function() -> impl Future<Output = ()> {

 async {

// ...

 }

}

Furthermore, since Future is just a trait, we can simply

implement it on an arbitrary struct:

use core::future::Future;

use core::pin::Pin;

use core::task::{Context, Poll};

struct MyFuture;

impl Future for MyFuture {

type Output = ();

fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::

// When implementing Future directly, it's all about what

// happens in the poll() method.

 }

}

The await keyword

However, Futures aren't enough on its own. A Future does nothing

until it is first polled; we need a way to drive that Future to

make progress. Enter the await keyword:

Awaiting a future boils down to calling poll() until the

future returns Poll::Ready . If it returns Poll::Pending , it

will be polled again at some later time. Note that a Future is

free to panic (but not to display undefined behavior) if it is

polled again after it has returned Poll::Ready .

See what happens if we forget to await or otherwise poll a

Future:

async fn some_function() {

 println!("Hello, world!");

}

fn main() {

some_function();

}

$ cargo run

(nothing happens)

However we do get a compile-time warning:

warning: unused implementer of `Future` that must be used

 --> src/main.rs:6:5

 |

6 | some_function();

 | ^^^^^^^^^^^^^^^

 |

 = note: futures do nothing unless you `.await` or poll them

 = note: `#[warn(unused_must_use)]` on by default

The compiler helpfully reminds us to .await our Future.

Alright, let's try that:

async fn some_function() {

 println!("Hello, world!");

}

fn main() {

some_function().await;

}

Trying to run this code gives us a compile error:

error[E0728]: `await` is only allowed inside `async` functions and blocks

 --> src/main.rs:6:21

 |

5 | fn main() {

 | --------- this is not `async`

6 | some_function().await;

 | ^^^^^ only allowed inside `async` functions and blocks

The compiler is telling us that we can't await a Future outside

of an async function or block. But how do we turn an synchronous

function into an async one? For that we need...

2. An executor

The executor is the runtime responsible for scheduling the tasks

to be ran. It's responsible for checking in with tasks when they

are ready to make progress, by handing Futures a Waker, which is

used to notify the executor that it's ready for some work. It's

also responsible for parking tasks that aren't quite ready yet.

In the embedded world, the two most popular executors are

probably embassy-executor and rtic. In the normal computing

world, tokio is the uncontested champion of the async runtime

popularity contest, with honorable mentions for async-std and

smol. Note that I didn't use the word executor here, because a

third building block is necessary to make async tasks work:

3. A reactor

The name says it all: it reacts to stuff. Their job is to listen

to external events, and wake the executor when a task is ready

to make progress. Typically, std runtimes bundle reactors

along with the executor to enable async operations like reading

from a file, or waiting on a TCP packet. In the embedded world,

we will need to provide those reactors ourselves when building

our futures from scratch.

How do we know when a task is ready?

A naive executor could repeatedly poll a future in a busy loop

until it returns:

async fn some_future() {

// Do some async things here

}

fn naive_spawn(){

https://crates.io/crates/embassy-executor
https://crates.io/crates/embassy-executor
https://crates.io/crates/rtic
https://crates.io/crates/rtic
https://crates.io/crates/tokio
https://crates.io/crates/tokio
https://crates.io/crates/async-std
https://crates.io/crates/async-std
https://crates.io/crates/smol
https://crates.io/crates/smol

let future = some_future();

let result = loop {

if let Poll::Ready(value) = future.poll(/* what should we put in here? */

break value;

 }

 };

}

However, you can probably see that this completely defeats the

purpose of using cooperative multitasking: our CPU is now

completely tied up in repeatedly checking if our task is ready!

Therefore, we can't free it up to do other things while we're

waiting for this task to complete. So how does the executor know

when a task is ready to make progress?

Wakers

As we say earlier, the Future::poll method takes a &mut

Context argument, which itself is a wrapper around a Waker .

Since the executor is ulimately responsible for polling top-

level Futures, it must provide a Waker when calling poll() . In

return, it expects the Future to call Waker::wake (or

wake_by_ref) when it wants to make more progress. When

constructing our Futures, we need some way to wake the Waker

when we're ready to move forward. The executor, by design, will

not poll a Future again after it has returned Poll::Pending -

unless the Future's Waker has been woken. So we need a way to be

preemptively notified when a task has completed, without relying

on manually checking for progress...

You guessed it: interrupts!

Conveniently enough, microcontrollers have interrupts! They're

perfect for this - they can preempt whatever code is running at

the time, wake the Waker, and let the executor know that we're

ready to move forward. The interrupt handlers are our reactors -

they react to external events (the peripherals finishing their

assigned duties), and can wake the executor to signal that

progress has been made.

Let's build a Future from scratch -

https://doc.rust-lang.org/std/task/struct.Context.html
https://doc.rust-lang.org/std/task/struct.Context.html
https://doc.rust-lang.org/std/task/struct.Context.html
https://doc.rust-lang.org/std/task/struct.Context.html
https://doc.rust-lang.org/std/task/struct.Context.html
https://doc.rust-lang.org/std/task/struct.Context.html
https://doc.rust-lang.org/std/task/struct.Waker.html
https://doc.rust-lang.org/std/task/struct.Waker.html
https://doc.rust-lang.org/std/task/struct.Waker.html
https://doc.rust-lang.org/stable/std/task/struct.Waker.html#method.wake
https://doc.rust-lang.org/stable/std/task/struct.Waker.html#method.wake
https://doc.rust-lang.org/stable/std/task/struct.Waker.html#method.wake
https://doc.rust-lang.org/stable/std/task/struct.Waker.html#method.wake_by_ref
https://doc.rust-lang.org/stable/std/task/struct.Waker.html#method.wake_by_ref
https://doc.rust-lang.org/stable/std/task/struct.Waker.html#method.wake_by_ref

microcontroller style

Let's now dive into the specifics of implementing async support

for a peripheral. The code presented is loosely based on atsamd-

hal. As an example, we will work with the SAMD21 External

Interrupt Controller (or in simpler terms, GPIO interrupts), as

it's probably the easiest peripheral to understand from a

hardware perspective.

Our goal is to start with an ExtInt , which represents a GPIO

pin capable of generating interrupts based on its input state,

and end up with the following wait() method, as seen in the

async usage example:

pub enum Sense {

/// No detection

 None,

/// Rising edge

 Rise,

/// Falling edge

 Fall,

/// Any edge

 Both,

/// Generate interrupts as long as the

/// pin is in High state

 High,

/// Generate interrupts as long as the

/// pin is in Low state

 Low,

}

impl ExtInt

where

Self: embedded_hal::digital::InputPin

{

/// Wait for the specified input state to occur on the pin

pub async fn wait(&mut self, sense: Sense) {

// ...

 }

}

To get there, there are multiple steps we need to consider:

1. HAL generalities: declaring interrupt handler
bindings

Disclaimer: the concepts shown in this section were heavily

inspired by the embassy project.

We want our async peripherals to be as self-contained as

possible. Since for our use case, Wakers are intimately tied to

interrupt handlers, we'd like to provide users with a way to

pass ownership of the handlers to the peripheral. That way, we

can guarantee that the correct code will be ran upon the

interrupt firing. At the same time, we can leverage the type

system to prove at compile time that the user gave the

peripheral ownership of the correct handler. Surprising things

would happen if a peripheral expects some interrupt to fire, but

some other handler is ran instead!

To provide a reusable way to bind an interrupt handler to an

interrupt, we create three traits. Note that these traits are

generic across the HAL; all peripherals reuse these three trait

declarations:

The first one, InterruptSource , represents the basic NVIC

interrupt operations an async peripheral must be able to perform

on an interrupt source:

// src/async_hal/interrupts.rs

pub trait InterruptSource: crate::typelevel::Sealed {

unsafe fn enable();

1. We must figure out a way to tie a particular peripheral to

its interrupt handler. We want the peripheral to take

ownership of the handler - we don't want to rely on the user

calling the right functions in the handler, which could be

very error prone.

2. Then, inside our wait() method, we must ensure that the

(correct) interrupt will be fired when the pin reaches the

desired state;

3. Finally, when an interrupt occurs, we must wake the Waker

inside the interrupt handler.

fn disable();

fn unpend();

fn set_priority(prio: Priority);

}

The HAL creates a type for each interrupt source that may be

used in an async peripheral, and implements InterruptSource for

that type. In reality, InterruptSource may represent a single

interrupt, or multiple interrupts related to a single

peripheral; on some chips, there is more than one interrupt per

peripheral. The async peripherals in this HAL consolidate all

interrupts of a single peripheral into a single handler for

simplicity.

The second trait, Handler , represents a struct that holds an

interrupt handler. Each peripheral that wishes to take ownership

of a handler must declare their own types that implement

Handler . The type parameter I lets perhiperals declare which

interrupt sources they are able to accept:

// src/async_hal/interrupts.rs

pub trait Handler<I: InterruptSource>: Sealed {

/// The actual interrupt handler

unsafe fn on_interrupt();

}

Finally, Binding is a marker trait used to statically prove

that an interrupt source has been tied to a specific handler

which can accept it:

// src/async_hal/interrupts.rs

pub unsafe trait Binding<I: InterruptSource, H: Handler<I>> {}

Registering interrupts: the bind_interrupts macro

Interrupt handlers must de declared in the final binary crate1.

This means we need a user-facing mechanism to bind an interrupt

source to the correct interrupt handler. The easiest way (for

HAL authors and for the end-users) to do this is by providing a

macro that does the heavy lifting. This bind_interrupts macro

does 3 things:

The actual macro declaration is of little interest in this post.

However, if you're interested in seeing the code, you can take a

look here. What's more interesting is how it's used and what the

generated code looks like:

use atsamd_hal::async_hal::interrupts;

atsamd_hal::bind_interrupts!(struct Irqs {

 EIC => atsamd_hal::eic::InterruptHandler;

});

Which inlines to:

use atsamd_hal::eic;

use atsamd_hal::async_hal::interrupts::{

 Binding, EIC, Handler, SingleInterruptSource

};

// Zero-sized type used to statically prove interrupt bindings

#[derive(Copy,Clone)]

struct Irqs;

// The "real" interrupt handler. Can only appear once in the compiled binary.

Takes a user-provided link between an interrupt source and a

peripheral Handler. Even though peripherals can statically

check that the correct source is bound to the correct hander,

this step must still be done manually.

►

Create a zero-sized struct that implements Binding . This

struct may be passed to any peripheral to statically prove

that the correct interrupt source has been bound to the

correct interrupt handler for a given peripheral.

►

Declares the interrupt handler, and calls

Handler::on_interrupt() inside the function.

►

https://docs.rs/atsamd-hal/0.20.0/src/atsamd_hal/async_hal/mod.rs.html#168-189
https://docs.rs/atsamd-hal/0.20.0/src/atsamd_hal/async_hal/mod.rs.html#168-189
https://docs.rs/atsamd-hal/0.20.0/src/atsamd_hal/async_hal/mod.rs.html#168-189
https://docs.rs/atsamd-hal/0.20.0/src/atsamd_hal/async_hal/mod.rs.html#168-189

// Its sole job is to call the on_interrupt trampoline.

#[allow(non_snake_case)]

#[no_mangle]

unsafe extern "C" fn EIC(){

 <eic::InterruptHandler as Handler<EIC>>::on_interrupt();

}

// Implement the binding

unsafe impl Binding<EIC, eic::InterruptHandler> for Irqs

where

 EIC: SingleInterruptSource

{

}

Implementing our async peripheral

We now have the ground work laid out to start actually working

with Futures! Let's remember our to-do list:

We've only taken care of half the problem in item 1 so far: we

can declare interrupt bindings, but our EIC peripheral still

needs to take ownership of them.

1. (continued): Take ownership of the handler

The core struct that manages setting up the external interrupt

peripheral is Eic . Its definition looks like this:

use crate::pac;

use crate::typelevel::NoneT;

1. We must figure out a way to tie a particular peripheral to

its interrupt handler. We want the peripheral to take

ownership of the handler - we don't want to rely on the user

calling the right functions in the handler, which could be

very error prone.

2. Then, inside our wait() method, we must ensure that the

(correct) interrupt will be fired when the pin reaches the

desired state;

3. Finally, when an interrupt occurs, we must wake the Waker

inside the interrupt handler.

pub struct Eic<I = NoneT>{

eic: pac::Eic,

_irq: PhantomData<T>,

}

We also have another helper type that will let us define methods

on Eic only when it has async support enabled:

// An empty enum can only exist at the type level

pub enum EicFuture {}

We can define our async methods on Eic when its type paramater

is EicFuture , like this:

impl Eic<EicFuture> {

// Implement our async methods here

}

The NoneT type is used pervasively across atsamd-hal. It's a

zero-sized type that semantically represents the absence of a

type, similar to Option::None but at the type level. Very

useful indeed, especially as a default parameter in this case.

Now we just need to turn an Eic<NoneT> into an Eic<EicFuture> .

This is where we'll check that the interrupt handler binding

invariants have been upheld:

use crate::typelevel::NoneT;

use crate::async_hal::interrupts::{self, Binding, Handler};

impl Eic<NoneT> {

pub fn into_future<I>(self, _irq: I) -> Eic<EicFuture>

where

 I: Binding<interrupts::EIC, InterruptHandler>,

 {

// Unpend any potentially pending interrupts that could mess with

// our handler before we've registered a waker

 interrupts::EIC::unpend();

// Enable the NVIC interrupt

unsafe { interrupts::EIC::enable() };

 Eic {

 eic: self.eic,

 _irqs: PhantomData,

 }

 }

}

The Binding trait bound guarantees that the user has linked

the correct interrupt source to our handler. We can assume that

the Eic peripheral now "owns" the handler for the EIC

interrupt source2. Note that we haven't talked about the

InterruptHandler type just yet; for now, all we need to know is

that it's the type that implements Handler for the EIC

peripheral.

For coherency, I want to point out that the Eic struct is

eventually turned into an ExtInt , which is the type that

actually does the waiting on interrupts. The details of how this

is done are unimportant for this post, apart from the fact that

ExtInt inherits Eic 's EicFuture type parameter if it is

present.

2. The wait() method

We can now start writing the method which will actually be

waiting on the GPIO pin to reach the desired state. It goes as

follows:

use core::convert::Infaillible;

use embedded_hal::digital::Input;

impl<P, Id> ExtInt<P, Id, EicFuture>

where

 P: EicPin,

 Id: ChId,

// ExtInt must implement InputPin, because we

// will be reading its input state

Self: InputPin<Error = Infallible>,

{

/// Wait on the pin to reach the state specified in `sense`

pub async fn wait(&mut self, sense: Sense) {

use core::{future::poll_fn, task::Poll};

// We start by disabling interrupts as to not interfere

// with the handler before we had a chance to register a waker

self.disable_interrupt();

// Before starting to deal with futures, we have an opportunity to

// return early if the pin is already in the desired state

match sense {

 Sense::High => {

if self.is_high().unwrap() {

return;

 }

 }

 Sense::Low => {

if self.is_low().unwrap() {

return;

 }

 }

 _ => (),

 }

// Ensure that the interrupt will wake the cpu. At this point, the

// interrupt itself isn't enabled yet.

self.enable_interrupt_wake();

// sense() sets up the pin to generate an interrupt when the

// desired state is reached

self.sense(sense);

// Start building the Future that will actually be polled.

// The closure will be called every time the future is polled.

poll_fn(|cx| {

// is_interrupt checks if the interrupt flag is set.

// Remember that this closure is called at least once,

// but it's also called every time the Waker is woken

// (ie, the interrupt handler runs). Thus we need to check

// if our task is complete before going through another

// register-waker/enable-interrupt/wait-for-interrupt cycle.

if self.is_interrupt() {

self.clear_interrupt();

self.disable_interrupt();

// Reset the pin so it doesn't try to sense anything else

self.sense(Sense::None);

// We're ready to make more progress!

// The closure will not be called again.

return Poll::Ready(());

 }

// If we reached this point, we haven't succeeded in returning early.

// We need to register the Waker.

//

// The interrupt handler will wake it when the task has completed,

// at which point this entire closure will be executed

// again **from the top**.

WAKERS[ChId::ID].register(cx.waker());

// The interrupt must be enabled **after** the waker is registered.

self.enable_interrupt();

// Between the time we checked the interrupt flag and now,

// there's a chance the interrupt has fired; this gives us

// another chance to return early without actually having

// to wait on anything.

if self.is_interrupt() {

self.clear_interrupt();

self.disable_interrupt();

self.sense(Sense::None);

return Poll::Ready(());

 }

// If we failed to return early, we'll have to wait on the

// interrupt handler to run.

// Return Poll::Pending and give up control back to the executor.

 Poll::Pending

 })

 .await;

 }

}

poll_fn is a nice way of avoiding having to create a newtype

struct that implements the Future trait, especially if we want

to capture variables inside the closure. When using it, we just

need to be mindful of the fact that while the code looks linear,

the closure we provide might be executed more than once, as it

will be called every time the Waker is woken.

You also might have noticed this line, where we register a

waker:

// ChId::ID is the mechanism by which the ExtInt knows which EIC channel

// it's using, at compile time.

WAKERS[ChId::ID].register(cx.waker());

What's with the WAKERS variable? We haven't declared it

anywhere. Well, interrupt handlers can only communicate with

other parts of the code via static variables. Therefore, we need

to have a place to keep our wakers in static storage, since they

are registered in the main thread, but are woken from the

handler. Let's look at the declaration:

use embassy_sync::waitqueue::AtomicWaker;

// One waker per EIC channel.

// NUM_CHANNELS is defined elsewhere in the HAL.

static WAKERS: [AtomicWaker; NUM_CHANNELS] = [

const { AtomicWaker::new() }; NUM_CHANNELS

];

We keep an array of wakers - one each for each EIC channel. That

way, each channel can work independently from one another; if we

only had one waker, we'd open ourselves up to the possibility of

crosstalk, and the wrong task could be woken. AtomicWaker is a

convenient way of keeping a Waker in static storage, as it only

requires shared, &self references for registering or waking

it.

3. The interrupt handler

Our final puzzle piece is the interrupt handler implementation

itself. Earlier, we've looked at the Handler trait, which has

one method: unsafe fn on_interrupt() . When the interrupt fires,

it will trampoline to whatever code we have in on_interrupt() .

Let's define an empty InterruptHandler struct, and implement

Handler for the EIC interrupt source:

use crate::async_hal::interrupts::{self, Handler};

pub struct InterruptHandler {

// Add a private field to prevent anyone from creating an instance

// of the struct.

_private: (),

}

impl Handler<interrupts::EIC> for InterruptHandler {

unsafe fn on_interrupt() {

// We need to steal the EIC peripheral here.

// This is safe, as long as we only touch the interrupt

// related fields and don't otherwise mess with the

// peripheral's configuration

let eic = pac::Peripherals::steal().eic;

// Since we only have a single interrupt for all EIC channels,

// we have to iterate over all of them that have a pending

// interrupt flag

let pending_interrupts = BitIter(eic.intflag().read().bits

for channel in pending_interrupts {

let mask = 1 << channel;

// Disable the interrupt but don't clear the flag; will be cleared

// when future is next polled.

 eic.intenclr().write(|w| w.bits(mask));

// Wake the waker!

WAKERS[channel as usize].wake();

 }

 }

}

The interrupt flag is our main way of communicating between the

handler and the Future in its poll() method. It acts as a

signal that the task is complete. The best part about it is we

don't even need to store that signal anywhere; it's already in

the peripheral's registers.

As a convention, in most async peripherals (at least in atsamd-

hal's case), the interrupt handler is NOT responsible for

clearing the flag. Rather it's the the Future being polled's

responsibility. However, the interrupt handler does have to

disable the interrupt: otherwise its handler would be repeatedly

called in an infinite loop, never giving the Future a chance to

clear the flag and break the cycle.

There we have it! We managed to write a future from scratch,

that will react to interrupts. Putting all the pieces together:

use core::convert::Infaillible;

use embassy_sync::waitqueue::AtomicWaker;

use crate::async_hal::interrupts::{self, Handler};

use embedded_hal::digital::InputPin;

static WAKERS: [AtomicWaker; NUM_CHANNELS] = [

const { AtomicWaker::new() }; NUM_CHANNELS

];

pub struct InterruptHandler {

_private: (),

}

impl Handler<interrupts::EIC> for InterruptHandler {

unsafe fn on_interrupt() {

// We need to steal the EIC peripheral here.

// This is safe, as long as we only touch the interrupt

// related fields and don't otherwise mess with the

// peripheral's configuration

let eic = pac::Peripherals::steal().eic;

// Since we only have a single interrupt for all EIC channels,

// we have to iterate over all of them that have a pending

// interrupt flag

let pending_interrupts = BitIter(eic.intflag().read().bits

for channel in pending_interrupts {

let mask = 1 << channel;

// Disable the interrupt but don't clear the flag; will be cleared

// when future is next polled.

 eic.intenclr().write(|w| w.bits(mask));

// Wake the waker!

WAKERS[channel as usize].wake();

 }

 }

}

impl<P, Id> ExtInt<P, Id, EicFuture>

where

 P: EicPin,

 Id: ChId,

// ExtInt must implement embedded_hal::digital::InputPin, because we

// will be reading its input state

Self: InputPin<Error = Infallible>,

{

/// Wait on the pin to reach the state specified in `sense`

pub async fn wait(&mut self, sense: Sense) {

use core::{future::poll_fn, task::Poll};

// We start by disabling interrupts as to not interfere

// with the handler before we had a chance to register a waker

self.disable_interrupt();

// Before starting to deal with futures, we have an opportunity to

// return early if the pin is already in the desired state

match sense {

 Sense::High => {

if self.is_high().unwrap() {

return;

 }

 }

 Sense::Low => {

if self.is_low().unwrap() {

return;

 }

 }

 _ => (),

 }

// Ensure that the interrupt will wake the cpu

self.enable_interrupt_wake();

// sense() sets up the pin to generate an interrupt when the

// desired state is reached

self.sense(sense);

// Start building the Future that will actually be polled.

// The closure will be called every time the future is polled.

poll_fn(|cx| {

// is_interrupt checks if the interrupt flag is set.

// Remember that this closure is called at least once,

// but it's also called every time the Waker is woken

// (ie, the interrupt handler runs). Thus we need to check

// if our task is complete before going through another

// register-waker/enable-interrupt/wait-for-interrupt cycle.

if self.is_interrupt() {

self.clear_interrupt();

self.disable_interrupt();

// Reset the pin so it doesn't try to sense anything else

self.sense(Sense::None);

// We're ready to make more progress!

// The closure will not be called again.

return Poll::Ready(());

 }

// If we reached this point, we haven't succeeded in returning early.

// We need to register the Waker.

//

// The interrupt handler will wake it when the task has completed,

// at which point this entire closure will be executed

// again **from the top**.

WAKERS[P::ChId::ID].register(cx.waker());

self.enable_interrupt();

// Between the time we checked the interrupt flag and now,

// there's a chance the interrupt has fired; this gives us

// another chance to return early without actually having

// to wait on anything.

if self.is_interrupt() {

self.clear_interrupt();

self.disable_interrupt();

self.sense(Sense::None);

return Poll::Ready(());

 }

// If we failed to return early, we'll have to wait on the

// interrupt handler to run.

// Return Poll::Pending and give up control back to the executor.

 Poll::Pending

 })

 .await;

 }

}

A usage example

To demonstrate how we can use our new async API, we'll implement

a simple program that toggles a LED when a button is pressed.

We'll implement the same program in both sync and async mode,

using the Feather M0 development board. We'll also use the

feather_m0 Board Support Package, which in turn uses atsamd-

hal .

Cargo.toml

[package]

name = "external-interrupts"

version = "0.1.0"

[dependencies.feather_m0]

version = "0.20.0"

features = ["rt", "async"]

[dependencies.cortex_m]

version = "0.7"

[dependencies.embassy-executor]

version = "0.6.2"

features = ["arch-cortex-m", "executor-thread", "task-arena-size-64

Sync version

https://www.adafruit.com/product/3403
https://www.adafruit.com/product/3403
https://crates.io/crates/feather_m0
https://crates.io/crates/feather_m0
https://crates.io/crates/feather_m0

// src/bin/eic_sync.rs

#![no_std]

#![no_main]

use panic_halt as _;

use feather_m0 as bsp;

use bsp::{entry, hal, pac};

use pac::{interrupt, CorePeripherals, Peripherals};

use core::cell::RefCell;

use core::sync::atomic::{AtomicBool, Ordering};

use bsp::hal::ehal::digital::StatefulOutputPin;

use cortex_m::{interrupt::Mutex, peripheral::NVIC};

use hal::{

 clock::GenericClockController,

 eic::{Ch2, Eic, ExtInt, Sense},

 gpio::{Pin, PullUpInterrupt, PA18},

};

type ButtonPin = ExtInt<Pin<PA18, PullUpInterrupt>, Ch2>;

// To avoid unsafely passing the button pin to the interrupt handler,

// we must use a Mutex. This can also be done safely by using a framework

// like RTIC.

static BUTTON_PIN: Mutex<RefCell<Option<ButtonPin>>> = Mutex::new(RefCell::new(None

// Used to signal to the main thread that the interrupt has fired

// from the interrupt handler

static INTERRUPT_FIRED: AtomicBool = AtomicBool::new(false);

#[entry]

fn main() -> ! {

// -- Setup clocks and peripherals

let mut peripherals = Peripherals::take().unwrap();

let mut core = CorePeripherals::take().unwrap();

let mut clocks = GenericClockController::with_external_32kosc(

 peripherals.gclk,

 &mut peripherals.pm,

 &mut peripherals.sysctrl,

 &mut peripherals.nvmctrl,

);

let _internal_clock = clocks

 .configure_gclk_divider_and_source(ClockGenId::Gclk2, 1, ClockSource::Osc32

 .unwrap();

 clocks.configure_standby(ClockGenId::Gclk2, true);

enable_internal_32kosc(&mut peripherals.sysctrl);

// Configure a clock for the EIC peripheral

let gclk2 = clocks.get_gclk(ClockGenId::Gclk2).unwrap();

let eic_clock = clocks.eic(&gclk2).unwrap();

let pins = bsp::Pins::new(peripherals.port);

// Take the LED pin and set it to output mode

let mut red_led: bsp::RedLed = pins.d13.into();

// Setup the External Interrupt Controller and split it into its individual cha

let eic_channels = Eic::new(&mut peripherals.pm, eic_clock, peripherals.eic).

// Enable EIC interrupt in the NVIC

unsafe {

 core.NVIC.set_priority(interrupt::EIC, 1);

NVIC::unmask(interrupt::EIC);

 }

// Take the user button pin

let button: Pin<_, PullUpInterrupt> = pins.d10.into();

// Turn the pin into an external interrupt using EIC channel 2

let mut extint = eic_channels.2.with_pin(button);

// Setup the button pin to wake the CPU upon interrupt

 extint.enable_interrupt_wake();

// Setup the pin to sense falling edges. It will generate

// interrupts on every falling edge, not juste the first one

 extint.sense(Sense::Fall);

// Enable the pin's interrupt

 extint.enable_interrupt();

// Store the button pin in static storage so that the interrupt

// handler can access it

 cortex_m::interrupt::free(|cs| BUTTON_PIN.borrow(cs).borrow_mut

loop {

// Check if our interrupt has fired

if INTERRUPT_FIRED.load(Ordering::Acquire) {

// Toggle the LED! We don't use the return

// value, because toggling a pin is infaillible

// in atsamd-hal.

let _ = red_led.toggle();

// Reset the signal for the next loop

INTERRUPT_FIRED.store(false, Ordering::Release);

 }

// Put the CPU to sleep while we wait for an interrupt

// to happen

 cortex_m::asm::wfi();

 }

}

/// The external interrupt controller handler

#[interrupt]

fn EIC() {

// Clear the interrupt so we don't reenter the handler

// infinitely

 cortex_m::interrupt::free(|cs| {

let mut button = BUTTON_PIN.borrow(cs).borrow_mut();

let button = button.as_mut().unwrap();

 button.clear_interrupt();

 });

// Send a signal to the main thread

INTERRUPT_FIRED.store(true, Ordering::Release);

}

Async version

// src/bin/eic_async.rs

#![no_std]

#![no_main]

use panic_halt as _;

use bsp::pac;

use bsp::{hal, pin_alias};

use feather_m0 as bsp;

use hal::{

 clock::{enable_internal_32kosc, ClockGenId, ClockSource, GenericClockController

 ehal::digital::StatefulOutputPin,

 eic::{Eic, Sense},

 gpio::{Pin, PullUpInterrupt},

};

atsamd_hal::bind_interrupts!(struct Irqs {

 EIC => atsamd_hal::eic::InterruptHandler;

});

// We use embassy-executor to turn our main function in an async one

#[embassy_executor::main]

async fn main(_s: embassy_executor::Spawner) {

// -- Setup clocks and peripherals

let mut peripherals = pac::Peripherals::take().unwrap();

let _core = pac::CorePeripherals::take().unwrap();

let mut clocks = GenericClockController::with_external_32kosc(

 peripherals.gclk,

 &mut peripherals.pm,

 &mut peripherals.sysctrl,

 &mut peripherals.nvmctrl,

);

let pins = bsp::Pins::new(peripherals.port);

let _internal_clock = clocks

 .configure_gclk_divider_and_source(ClockGenId::Gclk2, 1, ClockSource::Osc32

 .unwrap();

 clocks.configure_standby(ClockGenId::Gclk2, true);

enable_internal_32kosc(&mut peripherals.sysctrl);

// Configure a clock for the EIC peripheral

let gclk2 = clocks.get_gclk(ClockGenId::Gclk2).unwrap();

let eic_clock = clocks.eic(&gclk2).unwrap();

// Take the LED pin and set it to output mode

let mut red_led: bsp::RedLed = pins.d13.into();

// Setup the External Interrupt Controller and split it into its individual cha

let eic_channels = Eic::new(&mut peripherals.pm, eic_clock, peripherals.eic)

 .into_future(Irqs)

 .split();

// Take the user button pin

let button: Pin<_, PullUpInterrupt> = pins.d10.into();

// Turn the pin into an external interrupt using EIC channel 2

let mut extint = eic_channels.2.with_pin(button);

loop {

// Wait for a falling edge...

 extint.wait(Sense::Fall).await;

// ...and toggle the LED!

let _ = red_led.toggle();

 }

}

Not only is the async version of the program almost 50% shorter,

it's also much more linear and readable. Plus, as a bonus, it

doesn't use any unsafe code, and doesn't require passing data

between an executor handler and the main thread through a

critical section!3 The async loop might look linear, but the CPU

is actually free do take care of other async tasks during the

await call while it's waiting for the interrupt to arrive, or go

to sleep like in the sync example.

Wrapping up

There you have it - a working async implementation. We skimmed

over lots of details that are specific to the atsamd-hal way of

doing things - I plan on covering some of those in a later post,

especially how the type system works. However, in my opinion,

what we did cover really do captures the essence of working with

asynchronous periperals on microcontrollers, and how they

interact with interrupts and their handlers.

Until next time!

Additional Reading

Footnotes

3 Okay, that's a bit of a lie. Deep down in the HAL's internals,

registering and waking a waker does take a critical section.

Although, that can easily be optimized. We could also (unsafely)

steal the EIC peripheral in the sync version to avoid statically

storing it behind a Mutex. ↩

1 That's not entirely true; interrupt handlers can be declared

in a library, but things get ugly and rife with linker errors

pretty quickly. ↩

2 It is not the same thing as the commonly understood Rust

ownership semantics: The Eic interrupt handler is bound to the

EIC interrupt source for the entirety of the program's lifetime.

It can not "return" ownership of the handler to the caller. ↩

Writing an OS in Rust: Async/Await: A truly excellent post

that goes through all the concepts necessary to write and

understand Futures and executors.

►

Pin and suffering: A deep-dive into the intricacies of using

the Pin type for async tasks and Futures.

►

© 2024 Justin Beaurivage

https://github.com/embassy-rs/embassy/blob/4acc0f84b084235b576de3b9e1d12a3472a5274b/embassy-sync/src/waitqueue/atomic_waker.rs#L21
https://github.com/embassy-rs/embassy/blob/4acc0f84b084235b576de3b9e1d12a3472a5274b/embassy-sync/src/waitqueue/atomic_waker.rs#L21
https://os.phil-opp.com/async-await/
https://os.phil-opp.com/async-await/
https://fasterthanli.me/articles/pin-and-suffering
https://fasterthanli.me/articles/pin-and-suffering
https://doc.rust-lang.org/stable/std/pin/struct.Pin.html
https://doc.rust-lang.org/stable/std/pin/struct.Pin.html

